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Abstract

	 The study aimed to apply the Google Earth Engine (GEE) for monitoring drought 
impacts on urban tree with the Standardized Vegetation Index (SVI) for long-term and 
near real-time period in Amphoe Mueang, Nakhonratchasima Province, Thailand. Terra/
MODIS satellites from 2000 to recently were analyzed and accessed drought impacts on 
urban tree in the study area. The results of this study indicated that the SVI values (-2.50 
to -1.50) in the condition of very high drought were found mostly in 2019, especially in 
summer season and with an increasing trend of higher drought in the middle of the study 
area (Tambon Nai Mueang) and in the south part of the study area (Tambon Nong Chabok, 
Pho Klang, and Nong Bua Sala) where should be seriously realized and considered on 
coming dry conditions. Based on the SVI timeseries, the condition of high drought (-1.5 to 
-0.5) was obviously found in years of 2002, 2005, 2015, 2016, and 2019. In addition, the 
study demonstrated that the GEE could display the SVI image of the whole timescale in 
the map section and can receive a pixel value from the visualized SVI images by clicking on 
a location within the study area in long-term and near real-time period. Conclusively, the 
application of the GEE for monitoring drought impacts on urban tree can be an efficiency 
tool for planning urban management to mitigate the impact of drought on urban tree and 
is helpful to take care of tree growth in urban area. 

Keywords: Google Earth Engine, Drought, Urban Tree, Standardized Vegetation Index, 
Terra/MODIS satellite
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1. Introduction

	 Droughts are recognized as a complex natural 
phenomenon that impacts on water resources, 
agriculture, natural ecosystems, and society (Chen et al., 
2013; Zhang et al., 2015; Wang et al., 2014; Wang and 
Meng, 2013). Recently, due to the change in climate, 
drought is expected to increase in frequency and severity. 
Additionally, drought impacts on urban tree and crop 
development and the yield. As a result, urban trees 
currently must face on a large range of additional stresses 
that are less strong or non-existent. This is because 
climate variabilities and environmental conditions within 
a city are overall more extreme and harmful to trees and 
can cause vitality loss and increase mortality risk.

	 Although many efforts have been made to develop 
methodologies to assess the drought, it is very difficult 
to isolate the beginning of a drought, as drought 
development is slow and very often the drought is not 
recognized until human activities, or the environment, 
are affected. Moreover, the effects of a drought can 
persist over many years after it has ended. In contrast 
to other extreme events such as floods, which are 
typically restricted to small regions and well-defined 
temporal intervals, droughts are difficult to pinpoint 
in time and space, affecting wide areas over long 
periods of time. Commonly, there are several climatic 
drought indices that have been developed to monitor, 
predict, and assess the severity of drought, such as the 
Palmer Drought Severity Index (PDSI) (Palmer, 1965), 
Standardized Precipitation Index (SPI) (McKee et al., 
1993), Standardized Precipitation Evapotranspiration 
Index (SPEI) (Vicente et al., 2010), Vegetation Condition 
Index (VCI) (Kogan, 1995), Effective Drought Index (EDI) 
(Byun and Wilhite, 1996), Reconnaissance Drought Index 
(RDI) (Tsakiris et al., 2007), Soil Moisture Index (SMI) (Nam 
et al., 2012), Integrated Surface Drought Index (ISDI) (Wu 
et al., 2013), Multivariate Standardized Drought Index 
(MSDI) (Hao and AghaKouchak, 2013), and Standardized 
Vegetation Index (SVI) (Peters et al., 2002) etc. Among 
these, drought is more severe or less dependent on many 
factors, including physical, ecological, and human activity. 
Precipitation is an important factor that should be used 
to find correlations with these indices. In addition, in 
order to study the duration of precipitation that affects 
urban tree, the relationship between precipitation and 
the index is an important parameter for determining 
drought areas (Kogan and Guo, 2015). These indices that 
correlates with physical condition of plants, water content 
in plants and soil can then indicate drought condition. 

That is, growth and abundance of vegetation at different 
weather conditions can be indicated by the Standardized 
Vegetation Index (SVI) estimations (Peters and Walter-
Shea, 2002; Park et al., 2008). The SVI was developed 
by Peters et al. (2002) that describes the probability of 
variation from the Normalized Difference Vegetation 
Index (NDVI) or the Enhanced Vegetation Index (EVI) over 
multiple times of data. Therefore, the SVI can provide 
information about the relative vegetation condition 
compared to the time periods being analyzed. In this 
study, the SVI was then used as the drought index for 
monitoring drought impacts on urban trees.

	 Currently, satellite data can show details from 
repetition of data recording continually and be able to 
monitor areas in near real-time with multi-temporal 
diversity, process of some characteristics change can 
be monitored better. When satellite data are done with 
image processing with mathematic equation, they show 
more outstandingly what to study such as calculating 
the NDVI which is estimated by determining the ratio of 
red and near infrared. (Gao et al., 2016; Rimkus et al., 
2017). In fact, drought crisis is a spatial problem. Thus, 
using of satellite data to analyze areas being at risk of 
drought can increase efficiency in indicating problem 
conditions. This study focuses on monitoring drought 
impacts on urban trees that is a challenge to apply and 
develop a method using remote sensing based on drought 
monitoring of trees for the management of urban areas. 
For the urban management, there are many studies to 
attempt for monitoring and planning urban trees and 
greenspaces e.g., Brune (2016) in Germany, Vaz Monteiro 
et al. (2019) in United Kingdom, Intasen et al. (2016) in 
Bangkok, and Jantakat et al. (2018; 2019; 2020; 2021) in 
Nakhonratchasima, Thailand. These studies indicated that 
urban trees and greenspaces can reduce air temperature 
in the city through plant transpiration, evaporation, 
shading of surfaces, and reflectance of radiation 
(Kleerekoper et al., 2012; Doick and Hutchings, 2013). 
Moreover, mature trees are especially important for 
shading and interception of precipitation and protecting 
extreme runoff (Bowler et al., 2010; Gill et al., 2014).      
Due to the efficiency of satellite data in indicating drought 
problem, this study uses the tool of Google Earth Engine 
(GEE) to help for monitoring and evaluating drought 
impacts on urban trees. The GEE is a web-platform for 
cloud-based processing of remote sensing data that 
dedicated to geographic data processing and analysis 
and can provide massive global geospatial data and 
many excellent image-processing algorithms, and all the 
processing is parallel (Gorelick et al., 2017; Kumar and 
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Mutanga, 2018). These advantages enable 
researchers to perform large-scale and 
long-term analysis with minimal cost and 
equipment (Hansen et al., 2013), including 
population mapping (Patel et al., 2015), 
land cover mapping (Huang et al., 2017), 
cropland mapping (Xiong et al., 2017), 
surface water mapping (Pekel et al., 2016; 
Tang et al., 2016), and drought assessment 
mapping (Sazib et al., 2018).
The main objective of this study is to 
apply the Google Earth Engine (GEE) for 
monitoring drought impacts on urban 
tree with the Standardized Vegetation 
Index (SVI) in Amphoe Mueang, 
Nakhonratchasima Province, Thailand. The 
assessment of SVI is provided for the spatial 
identification of drought events including 
duration, intensity, and frequency.

2. Materials and Methods

2.1 Study area
	 The study area is Amphoe Mueang 
in Nakhonratchasima province, 
Thailand (Figure 1) where is a district of 
Nakhonratchasima province from the 
total of 32 districts. The study area is 
in the northeastern region of Thailand 
and far from Bangkok about 255 km. 
The total of the study area is 755.6 km2 
that is subdivided into 25 sub-districts 
(Tambon) as shown in Table 1. The climate 
is temperate with a daily mean maximum 
temperature varying from a minimum of 
24⁰C in December to a maximum of 34⁰C 
in April. The rainfall in Amphoe Muang of 
Nakhonratchasima province is mainly from 
the southwest monsoon with the total 
annual average rainfall of about 193 mm. 

Figure 1. Amphoe Mueang 
with 25 sub-districts in 
Nakhonratchasima province, 
Thailand.
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The population in 2018 was approximately 
455,000 people (Department of the Interior, 
2020; Thai Meteorological Department, 
2021). In terms of topography, the study 
area is on the Korat plateau, the lower part 
of northeastern plateau of Thailand. The 
Lam Takhong river is as a main river flowing 
through the study area. Currently, Amphoe 
Mueang Nakhonratchasima is rapidly 
increasing construction of buildings and 
roads for business and housing has 
encroached on surrounding green areas and 
agricultural land (Wijitkosum and Sriburi, 
2008; Chotchaiwong and Wijitkosum, 2019).
Moreover, temperatures are rising world-
wide due to greenhouse gases trapping 
more heat in the atmosphere, especially 

No. Sub-districts 
(Tambon)

Population
(people)

Area 
(sq.km.)

Density 
(people/sq.km.)

Housing 
(house)

1 Nai Mueang 137,579 37.50 3,668.77 63,302

2 Pho Klang 26,174 55.23 473.9 10,742

3 Nong Chabok 12,168 23.56 516.46 4,991

4 Khok Sung 9,997 30.56 327.12 3,368

5 Maroeng 7,414 10.25 723.31 2,542

6 Nong Rawiang 11,400 54.77 208.14 3,877

7 Pru Yai 9,526 16.63 572.82 4,194

8 Muen Wai 10,296 9.76 1,054.91 4,852

9 Phon Krang 26,174 55.23 473.9 10,742

10 Nong Phai Lom 19,157 17.89 1,070.82 10,305

11 Hua Thale 25,510 15.59 1,636.3 11,255

12 Ban Ko 11,123 11.30 984.33 5,247

13 Ban Mai 17,873 19.55 914.21 6,337

14 Phutsa 9,746 39.36 247.61 2,795

15 Ban Pho 9,045 44.36 203.89 3,293

16 Cho Ho 12,955 26.97 480.34 4,884

17 Khok Kruat 7,059 3.00 2,353 3,387

18 Chai Mongkhon 7,111 60.18 118.16 2,949

19 Nong Bua Sala 19,041 36.61 520.1 10,841

20 Suranari 16,663 49.90 333.92 8,357

21 Si Mum 6,387 15.0 425.8 1,924

22 Talat 6,606 22.20 297.56 2,798

23 Phanao 5,008 18.16 275.77 1,530

24 Nong Krathum 7,648 18.50 413.4 3,575

25 Nong Khai Nam 5,998 43.44 138.07 1,537

Table 1. 25 sub-districts 
(Tambon) of Amphoe Mueang 
in Nakhonratchasima province, 
Thailand (Department of the 
Interior, 2020).

in the urban area. As a results, droughts are 
becoming longer and more extreme. 
In Amphoe Mueang Nakhonratchasima, 
green spaces and urban trees face 
difficulties in maintenance. Thus, it is 
necessary to develop an effective tool (e.g., 
GEE) that can assist in the management of 
green space and urban tree.
 
2.2 Methodology
	 Figure 2 presents the flow chart of 
the detailed methodology adopted in the 
study. The methodology was divided into 
the following main steps including 1) data 
preparation and pre-processing, 2) SVI 
calculation, and 3) visualization: 
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Figure 2. Flow chart of the 
methodology in the study.

2.2.1 Data preparation and pre-processing 
	 Data of the Terra/MODIS satellite from 
the USGS was used in this study. Generally, 
the data is designed to track and monitor 
natural resources, with a swath of about 
2,330 km (cross track) by 10 km (along track 
at nadir), spatial resolution of 250-1,000 m, 
36 discrete spectral bands, and collecting 
data for every point of the earth’s surface 
every 2 days. Two set of MOD13Q1 
products, including h27v07 and h28v07, 
were used for estimating the Enhanced 
Vegetation Index (EVI) and covered the 
period since 2000 to recently in this study. 
The data from the satellite was pre-
processed through the radiometric 
collection and mosaic image processing to 
combine the two sets of data. The value 
of the data was then set under the mask 
to make the cloud area and the water 
area null and not used in the calculation 
(Didan et al., 2015).  Table 2 shows data 
characteristics of the Terra/MODIS product.    

2.2.2 The calculation of SVI 
	 For calculating the SVI, the study used 
monthly data from Terra/MODIS of 
MOD13Q1 series with the EVI format, which 
can be utilized for monitoring vegetation 
dynamics. The EVI was based on a standard 
score (Z-core) deviation from the mean in 
units of the standard deviation, calculated 
from the EVI values for each pixel location 
in each season of 3 seasons in the study 
area including the hot season (February to 
May), the rainy season (June to October), 
and the cold season (November to January). 
The EVI decouples the soil and atmospheric 
influences from the vegetation signal by 
including a feedback term for simultaneous 
correction. The EVI formula is presented as 
equation 1 (Didan et al., 2015).

	 	 (e.q.1)

Characteristics Terra/MODIS product

Acquisition date Jan. 01, 2000 to May 31, 2021

Serie of product MOD13Q1

Name of product Vegetation Indices 16-Day L3 Global 250m

Used data from product Enhanced Vegetation Index (EVI)

Swath 2,330 km (cross track) by 10 km (along track at nadir)

Spatial resolution 250 m (bands 1-2), 500 m (bands 3-7), 1,000 m (bands 8-36)

Temporal resolution 1-2 Days

Table 2. Data characteristics of 
the Terra/MODIS product.
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	 where NIR, Red, and Blue are the full or partially 
atmospheric-corrected surface reflectances, L is the 
canopy background adjustment for correcting the 
nonlinear, differential NIR and red radiant transfer 
through a canopy, C1 and C2 are the coefficients of the 
aerosol resistance term, and G is a gain or scaling factor. 
The coefficients adopted for the MODIS/EVI algorithm are, 
L=1, C1=6, C2=7.5, and G=2.5 (Didan et al., 2015).

	 The Z-core can be calculated via the following 
equation 2 (Peters et al., 2002; Anyamba and Tucker, 2012).

	  		   	 (e.q.2)

	 where Zijk is the z-value for the pixel i during week j 
for year k, EVIijk is the weekly EVI value for pixel i during 
week j for year k,  is the mean EVI for pixel i during 
week j over n years, and σij is the standard deviation of 
pixel i during week j over n years.

	 Basically, the Z-score value from e.q.1 indicates how 
many standard deviations an element is away from the 
mean and how spread out the set of data is. A low 
standard deviation implies that the data is closely 
clustered around the mean whereas a high standard 
deviation implies that the data is dispersed over a wider 
range of values (Columbia Business School and Columbia 
University, 2003; Trek, 2018). Therefore, the Z-score value 
is consistent with a standard normal distribution with 
the mean of 0 and standard deviation of 1 to examine 
hypothesis from pixel locations in each season of the 
years 2016, 2017, 2018, 2019 and 2020. The probability 
value of the SVI of the standard score of EVI to reflect the 
probability of plant conditions. The SVI can be calculated 
from equation 3 (Peters et al., 2002).

	 	 (e.q.3)

	 where Zijk is the z-value for the pixel i during week j for 
year k, ZijMIN is the minimum of z-value for pixel i during 
week j, and ZijMAX is the maximum of z-value for pixel i 
during week j.

	 Based on the equation 2, the probability of each pixel 
was expressed as the SVI, to present the greenness of the 
vegetation in terms of the probability of each pixel during 
different seasons of different periods. In this study, the 
long-term period of 20 years (2000-2021) was conducted 
and compared the high-level drought and low-level 

drought during such a period by seasons. The range of the 
SVI value of more than zero but less than one (0<SVI<1) 
described that 0 was the lowest standard deviation of the 
EVI at the pixel in that period over a period of 20 years 
and 1 was the highest standard deviation of the EVI at the 
pixel in that period over a period of 20 years. 

	 For the spatial analysis of drought intensity in this study,
it was classified by critical levels of vegetation in each 
month of the years 2016, 2017, 2018, 2019 and 2020. 
The drought levels of the SVI were classified into 5 levels 
based on SVI values of the standard deviation including 
very low drought or very high vegetation (1.50 to 2.50), 
low drought or high vegetation (0.50 to 1.50), moderate 
drought or moderate vegetation (-0.50 to 0.50), high 
drought or low vegetation (-1.50 to -0.50), and very 
high drought or very low vegetation (-2.50 to -1.50) as 
presented in Table 3.

2.2.3 The visualization in Google Earth Engine 
	 In this study, Google Earth Engine (GEE) (more 
information on the website: https://developers.google.
com/earth-engine/guides/playground) was used for the 
analysis and visualization of drought levels. One major 
advantage of GEE is the accessibility of global time series 
data which are already loaded on Google’s servers and 
contained a certain type or quality of data. The GEE code 
can be found in the recommended practice of the United 
Nations Office for Outer Space Affairs (2020). After the 
calculations, the GEE can display the latest SVI image in 
the map section, the latest EVI image, and the mean EVI 
image of the whole timescale in the layers. The GEE can 
also show the charts of the EVI and SVI overtime by taking 
the mean of all pixels in the study area for each season. 
Moreover, the results of the SVI jpg and geotiff files were 
provided for downloading from the GEE. 
    
3. Results and Discussion

3.1 Spatial Drought monitoring through the SVI
	 The SVI was used as the drought index since 2000 to 
recently for more than 20 years to access drought impacts 
on urban tree in this study. For analyzing the spatial 
drought monitoring with the SVI, the study used satellite 
data from 2016 to 2020 for examining hypothesis from 
pixel locations in each season of the years 2016, 2017, 
2018, 2019 and 2020. In this study area, there are 3 
seasons including cold season (November to January), 
summer season (February to May), and rainy season (June 
to October). Thus, this study estimated the mean monthly 
SVI for each season with the SVI values from -2.5 (high 
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Level SVI value SVI category Drought category

1 1.50 to 2.50 Very high vegetation Very low drought

2 0.50 to 1.50 High vegetation Low drought

3 -0.50 to 0.50 Moderate vegetation Moderate drought

4 -1.50 to -0.50 Low vegetation High drought

5 -2.50 to -1.50 Very low vegetation Very high drought

Table 3. The classification of SVI 
and drought levels.

drought) to 2.5 (low drought). The results 
show that the SVI values (-2.50 to -1.50) 
in the condition of very high drought were 
found mostly in 2019, especially in summer 
season. In addition, there is an increasing 
trend of higher drought in the middle of 
the study area (Tambon Nai Mueang) and 
in the south part of the study area (Tambon 
Nong Chabok, Pho Klang, and Nong Bua 
Sala) as shown in Table 4. 
 

Table 4. Analyzing the spatial drought monitoring with the SVI in each season in Amphoe Mueang of Nakhonratchasima province, Thailand.

Year November to January February to May June to October

Cold Season Summer Season Rainy Season

2020

 

2019

 

2018
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Year November to January February to May June to October

Cold Season Summer Season Rainy Season

2017

 

2016

 

Table 4. Analyzing the spatial drought monitoring with the SVI in each season in Amphoe Mueang of Nakhonratchasima province, Thailand. (Continue)

3.2	 Timeseries of Drought monitoring with
	 the SVI and EVI
	 Data satellite from year 2000 to recently 
were collected and calculated for the mean 
of SVI and EVI values in the study area. 
Figure 3 and 4 presented the timeseries 
of the mean of SVI and EVI, respectively. 
Based on the SVI timeseries, the condition 
of high drought (-1.5 to -0.5) was obviously 
found in years of 2002, 2005, 2015, 2016, 
and 2019 in accordance with the mean of 
EVI timeseries in Figure 4. 

3.3	Drought monitoring through Google 
	 Earth Engine 
	 Figure 5 and 6 present the results of 
drought monitoring in the study area 
through Google Earth Engine (GEE) app. 
The GEE can display the SVI, EVI, and mean 
EVI image of the whole timescale in the 
map section and can receive a pixel value 
from the visualized images by clicking on 

a location within the study area. The charts, 
which display the EVI and SVI values over 
time by taking the mean of all pixels in the 
study area for each acquisition date. Briefly, 
a positive SVI indicates a good vegetation 
condition and a negative SVI indicates a 
worse vegetation condition. The GEE script 
can be found and used  in the available 
website of https://code.earthengine.
google.com/ and https://juntakut37.users.
earthengine.app/view/drought-monitoring-
in-amphoe-mueang-nakhonratchasima-
province. For assessing of accuracy of 
the study results, according to field 
surveying based on the research project of 
geospatial technology along street trees 
in Nakhonratchasima City Municipality 
(https://www.gis-streettreets.ibuddyweb.
com) and Google View Street, urban trees 
during 2014 to 2020 in the study area were 
shown to compare with the SVI results in 
Table 5.
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Figure 4. Timeseries of the 
mean of EVI in the study area.

Figure 3. Timeseries of drought 
monitoring with the mean of 
SVI in the study area.

4. Conclusions

	 In this study, the GEE was applied to 
monitor drought impacts on urban tree with 
the SVI in Amphoe Mueang, Nakhonratchasima 
Province, Thailand. The data of Terra/
MODIS satellite from 2000 to recently was 
analyzed and accessed drought impacts on 
urban tree in the study area. For analyzing 
the spatial drought monitoring with the SVI, 
the study used satellite data from 2016 to 
2020 for examining hypothesis from pixel 
locations in each season of the years 2016, 
2017, 2018, 2019 and 2020. The results 
of the study indicated that the SVI values 
(-2.50 to -1.50) in the condition of very high 
drought were found mostly in 2016 and 

2019, especially in summer season and with 
an increasing trend of higher drought in 
the middle of the study area (Tambon Nai 
Mueang) and in the south part of the study 
area (Tambon Nong Chabok, Pho Klang, and 
Nong Bua Sala), probably due to the less 
precipitation rate in 2016 and 2019. Based 
on the SVI timeseries, the condition of high 
drought (-1.5 to -0.5) was obviously found 
in years of 2002, 2005, 2015, 2016, and 
2019 in accordance with the mean of EVI 
timeseries, especially in the beginning of 
summer season. As a result, urban trees 
should be carefully maintained during and 
after the summer season to aid in the 
recovery of trees in the study area, such as 
by watering and fertilizing them on a regular
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Figure 5. Displaying the SVI 
image and timescale from 
requested pixel (Jomsurangyard 
Rd.).
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Figure 6. Displaying the SVI 
image and timescale from 
requested pixel (Sueb Siri Rd.)
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Jomsurangyard Rd. (Tambon Nai Mueang, Amphoe Mueang, 
Nakhonratchasima Province)

Sueb Siri Rd. (Tambon Nong Chabok, Amphoe Mueang, 
Nakhonratchasima Province)

Year Month Urban Trees Year Month Urban Trees

2014 March 
(SVI = -1.2)

High drought

2014 February
(SVI = -0.7)

High drought

2017 April
(SVI = +0.7)

Low drought

2018 September
(SVI = +0.7)

Low drought

2018 September
(SVI = +0.5)

Low drought

2018 October
(SVI = +1.0)

Low drought

2020 September
(SVI = +0.2)

Moderate drought

2020 September
(SVI = +2.2)

Very low drought

Table 5. Urban tree conditions during 2014 to 2020 on Jomsurangyard Rd. and Sueb Siri Rd. in the study area.

basis. After years of severe drought, it is 
likely that new trees should be planted. 
According to the study, the GEE can display 
the SVI, EVI, and mean EVI image of the 
whole timescale in the study area, which 
can help keep urban trees healthy and less 
vulnerable to drought stress. Conclusively, 
the application of the GEE for monitoring 
drought impacts on urban tree with the SVI 
can be an efficiency tool for urban planning 
and taking care urban tree health in near 
real-time period. For further research, the 
study will use data from the results of this 
study to run a model and predict a future 
drought trending in the study area.
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