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Abstract

The study aimed to apply the Google Earth Engine (GEE) for monitoring drought
impacts on urban tree with the Standardized Vegetation Index (SVI) for long-term and
near real-time period in Amphoe Mueang, Nakhonratchasima Province, Thailand. Terra/
MODIS satellites from 2000 to recently were analyzed and accessed drought impacts on
urban tree in the study area. The results of this study indicated that the SVI values (-2.50
to -1.50) in the condition of very high drought were found mostly in 2019, especially in
summer season and with an increasing trend of higher drought in the middle of the study
area (Tambon Nai Mueang) and in the south part of the study area (Tambon Nong Chabok,
Pho Klang, and Nong Bua Sala) where should be seriously realized and considered on
coming dry conditions. Based on the SVI timeseries, the condition of high drought (-1.5 to
-0.5) was obviously found in years of 2002, 2005, 2015, 2016, and 2019. In addition, the
study demonstrated that the GEE could display the SVI image of the whole timescale in
the map section and can receive a pixel value from the visualized SVI images by clicking on
a location within the study area in long-term and near real-time period. Conclusively, the
application of the GEE for monitoring drought impacts on urban tree can be an efficiency
tool for planning urban management to mitigate the impact of drought on urban tree and
is helpful to take care of tree growth in urban area.
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1. Introduction

Droughts are recognized as a complex natural
phenomenon that impacts on water resources,
agriculture, natural ecosystems, and society (Chen et al.,
2013; Zhang et al., 2015; Wang et al., 2014; Wang and
Meng, 2013). Recently, due to the change in climate,
drought is expected to increase in frequency and severity.
Additionally, drought impacts on urban tree and crop
development and the yield. As a result, urban trees
currently must face on a large range of additional stresses
that are less strong or non-existent. This is because
climate variabilities and environmental conditions within
a city are overall more extreme and harmful to trees and
can cause vitality loss and increase mortality risk.

Although many efforts have been made to develop
methodologies to assess the drought, it is very difficult
to isolate the beginning of a drought, as drought
development is slow and very often the drought is not
recognized until human activities, or the environment,
are affected. Moreover, the effects of a drought can
persist over many years after it has ended. In contrast
to other extreme events such as floods, which are
typically restricted to small regions and well-defined
temporal intervals, droughts are difficult to pinpoint
in time and space, affecting wide areas over long
periods of time. Commonly, there are several climatic
drought indices that have been developed to monitor,
predict, and assess the severity of drought, such as the
Palmer Drought Severity Index (PDSI) (Palmer, 1965),
Standardized Precipitation Index (SPI) (McKee et al.,
1993), Standardized Precipitation Evapotranspiration
Index (SPEI) (Vicente et al., 2010), Vegetation Condition
Index (VCI) (Kogan, 1995), Effective Drought Index (EDI)
(Byun and Wilhite, 1996), Reconnaissance Drought Index
(RDI) (Tsakiris et al., 2007), Soil Moisture Index (SMI) (Nam
et al., 2012), Integrated Surface Drought Index (ISDI) (Wu
et al., 2013), Multivariate Standardized Drought Index
(MSDI) (Hao and AghaKouchak, 2013), and Standardized
Vegetation Index (SVI) (Peters et al., 2002) etc. Among
these, drought is more severe or less dependent on many
factors, including physical, ecological, and human activity.
Precipitation is an important factor that should be used
to find correlations with these indices. In addition, in
order to study the duration of precipitation that affects
urban tree, the relationship between precipitation and
the index is an important parameter for determining
drought areas (Kogan and Guo, 2015). These indices that
correlates with physical condition of plants, water content
in plants and soil can then indicate drought condition.
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That is, growth and abundance of vegetation at different
weather conditions can be indicated by the Standardized
Vegetation Index (SVI) estimations (Peters and Walter-
Shea, 2002; Park et al., 2008). The SVI was developed

by Peters et al. (2002) that describes the probability of
variation from the Normalized Difference Vegetation
Index (NDVI) or the Enhanced Vegetation Index (EVI) over
multiple times of data. Therefore, the SVI can provide
information about the relative vegetation condition
compared to the time periods being analyzed. In this
study, the SVI was then used as the drought index for
monitoring drought impacts on urban trees.

Currently, satellite data can show details from
repetition of data recording continually and be able to
monitor areas in near real-time with multi-temporal
diversity, process of some characteristics change can
be monitored better. When satellite data are done with
image processing with mathematic equation, they show
more outstandingly what to study such as calculating
the NDVI which is estimated by determining the ratio of
red and near infrared. (Gao et al., 2016; Rimkus et al.,
2017). In fact, drought crisis is a spatial problem. Thus,
using of satellite data to analyze areas being at risk of
drought can increase efficiency in indicating problem
conditions. This study focuses on monitoring drought
impacts on urban trees that is a challenge to apply and
develop a method using remote sensing based on drought
monitoring of trees for the management of urban areas.
For the urban management, there are many studies to
attempt for monitoring and planning urban trees and
greenspaces e.g., Brune (2016) in Germany, Vaz Monteiro
et al. (2019) in United Kingdom, Intasen et al. (2016) in
Bangkok, and Jantakat et al. (2018; 2019; 2020; 2021) in
Nakhonratchasima, Thailand. These studies indicated that
urban trees and greenspaces can reduce air temperature
in the city through plant transpiration, evaporation,
shading of surfaces, and reflectance of radiation
(Kleerekoper et al., 2012; Doick and Hutchings, 2013).
Moreover, mature trees are especially important for
shading and interception of precipitation and protecting
extreme runoff (Bowler et al., 2010; Gill et al., 2014).

Due to the efficiency of satellite data in indicating drought
problem, this study uses the tool of Google Earth Engine
(GEE) to help for monitoring and evaluating drought
impacts on urban trees. The GEE is a web-platform for
cloud-based processing of remote sensing data that
dedicated to geographic data processing and analysis

and can provide massive global geospatial data and

many excellent image-processing algorithms, and all the
processing is parallel (Gorelick et al., 2017; Kumar and



Mutanga, 2018). These advantages enable
researchers to perform large-scale and
long-term analysis with minimal cost and
equipment (Hansen et al., 2013), including
population mapping (Patel et al., 2015),
land cover mapping (Huang et al., 2017),
cropland mapping (Xiong et al., 2017),
surface water mapping (Pekel et al., 2016;
Tang et al., 2016), and drought assessment
mapping (Sazib et al., 2018).

The main objective of this study is to

apply the Google Earth Engine (GEE) for
monitoring drought impacts on urban

tree with the Standardized Vegetation
Index (SVI) in Amphoe Mueang,
Nakhonratchasima Province, Thailand. The
assessment of SVl is provided for the spatial
identification of drought events including
duration, intensity, and frequency.

2. Materials and Methods

2.1 Study area

The study area is Amphoe Mueang
in Nakhonratchasima province,
Thailand (Figure 1) where is a district of
Nakhonratchasima province from the
total of 32 districts. The study area is
in the northeastern region of Thailand
and far from Bangkok about 255 km.
The total of the study area is 755.6 km?
that is subdivided into 25 sub-districts
(Tambon) as shown in Table 1. The climate
is temperate with a daily mean maximum
temperature varying from a minimum of
24°C in December to a maximum of 34°C
in April. The rainfall in Amphoe Muang of
Nakhonratchasima province is mainly from
the southwest monsoon with the total
annual average rainfall of about 193 mm.

Figure 1. Amphoe Mueang
with 25 sub-districts in
Nakhonratchasima province,
Thailand.
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No. Sub-districts Population Area Density Housing
(Tambon) (people) (sq.km.) (people/sq.km.) (house)
1 Nai Mueang 137,579 37.50 3,668.77 63,302
2 Pho Klang 26,174 55.23 473.9 10,742
3 Nong Chabok 12,168 23.56 516.46 4,991
4 Khok Sung 9,997 30.56 327.12 3,368
5 Maroeng 7,414 10.25 723.31 2,542
6 Nong Rawiang 11,400 54.77 208.14 3,877
7 Pru Yai 9,526 16.63 572.82 4,194
8 Muen Wai 10,296 9.76 1,054.91 4,852
9 Phon Krang 26,174 55.23 473.9 10,742
10 Nong Phai Lom 19,157 17.89 1,070.82 10,305
11 | Hua Thale 25,510 15.59 1,636.3 11,255
12 | BanKo 11,123 11.30 984.33 5,247
13 Ban Mai 17,873 19.55 914.21 6,337
14 | Phutsa 9,746 39.36 247.61 2,795
15 | Ban Pho 9,045 44.36 203.89 3,293
16 | ChoHo 12,955 26.97 480.34 4,884
17 | Khok Kruat 7,059 3.00 2,353 3,387
18 Chai Mongkhon 7,111 60.18 118.16 2,949
19 Nong Bua Sala 19,041 36.61 520.1 10,841
20 | Suranari 16,663 49.90 333.92 8,357
21 | SiMum 6,387 15.0 425.8 1,924
22 | Talat 6,606 22.20 297.56 2,798
23 | Phanao 5,008 18.16 275.77 1,530
24 Nong Krathum 7,648 18.50 413.4 3,575
25 Nong Khai Nam 5,998 43.44 138.07 1,537

The population in 2018 was approximately
455,000 people (Department of the Interior,
2020; Thai Meteorological Department,
2021). In terms of topography, the study
area is on the Korat plateau, the lower part
of northeastern plateau of Thailand. The
Lam Takhong river is as a main river flowing
through the study area. Currently, Amphoe
Mueang Nakhonratchasima is rapidly
increasing construction of buildings and
roads for business and housing has
encroached on surrounding green areas and
agricultural land (Wijitkosum and Sriburi,
2008; Chotchaiwong and Wijitkosum, 2019).
Moreover, temperatures are rising world-
wide due to greenhouse gases trapping
more heat in the atmosphere, especially
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in the urban area. As a results, droughts are
becoming longer and more extreme.

In Amphoe Mueang Nakhonratchasima,
green spaces and urban trees face
difficulties in maintenance. Thus, it is
necessary to develop an effective tool (e.g.,
GEE) that can assist in the management of
green space and urban tree.

2.2 Methodology

Figure 2 presents the flow chart of
the detailed methodology adopted in the
study. The methodology was divided into
the following main steps including 1) data
preparation and pre-processing, 2) SVI
calculation, and 3) visualization:

Table 1. 25 sub-districts
(Tambon) of Amphoe Mueang
in Nakhonratchasima province,
Thailand (Department of the
Interior, 2020).
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Figure 2. Flow chart of the
methodology in the study.

Table 2. Data characteristics of

the Terra/MODIS product.

Characteristics

Terra/MODIS product

Acquisition date

Jan. 01, 2000 to May 31, 2021

Serie of product

MoD13Q1

Name of product

Vegetation Indices 16-Day L3 Global 250m

Used data from product

Enhanced Vegetation Index (EVI)

Swath

2,330 km (cross track) by 10 km (along track at nadir)

Spatial resolution

250 m (bands 1-2), 500 m (bands 3-7), 1,000 m (bands 8-36)

Temporal resolution

1-2 Days

2.2.1 Data preparation and pre-processing
Data of the Terra/MODIS satellite from
the USGS was used in this study. Generally,
the data is designed to track and monitor
natural resources, with a swath of about
2,330 km (cross track) by 10 km (along track
at nadir), spatial resolution of 250-1,000 m,
36 discrete spectral bands, and collecting
data for every point of the earth’s surface
every 2 days. Two set of MOD13Q1
products, including h27v07 and h28v07,
were used for estimating the Enhanced
Vegetation Index (EVI) and covered the
period since 2000 to recently in this study.
The data from the satellite was pre-
processed through the radiometric
collection and mosaic image processing to
combine the two sets of data. The value
of the data was then set under the mask
to make the cloud area and the water
area null and not used in the calculation
(Didan et al., 2015). Table 2 shows data
characteristics of the Terra/MODIS product.

2.2.2 The calculation of SVI

For calculating the SVI, the study used
monthly data from Terra/MODIS of
MOD13Q1 series with the EVI format, which
can be utilized for monitoring vegetation
dynamics. The EVI was based on a standard
score (Z-core) deviation from the mean in
units of the standard deviation, calculated
from the EVI values for each pixel location
in each season of 3 seasons in the study
area including the hot season (February to
May), the rainy season (June to October),
and the cold season (November to January).
The EVI decouples the soil and atmospheric
influences from the vegetation signal by
including a feedback term for simultaneous
correction. The EVI formula is presented as
equation 1 (Didan et al., 2015).

NIR—-Red
NIR+ CyRed— C,Blue+L

EVI=G

(e.q.1)
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where NIR, Red, and Blue are the full or partially
atmospheric-corrected surface reflectances, L is the
canopy background adjustment for correcting the
nonlinear, differential NIR and red radiant transfer
through a canopy, C, and C, are the coefficients of the
aerosol resistance term, and G is a gain or scaling factor.
The coefficients adopted for the MODIS/EVI algorithm are,
L=1, C =6, C,=7.5, and G=2.5 (Didan et al., 2015).

The Z-core can be calculated via the following
equation 2 (Peters et al., 2002; Anyamba and Tucker, 2012).

o EVIijx—EVIy,
Zijk = i) (e.q.2)
where Z,is the z-value for the pixel i during week j
for year k, EVl, is the weekly EVI value for pixel i during
week j for year k, EVT, is the mean EVI for pixel i during
week j over n years, and o,is the standard deviation of

pixel i during week j over n years.

Basically, the Z-score value from e.q.1 indicates how
many standard deviations an element is away from the
mean and how spread out the set of data is. A low
standard deviation implies that the data is closely
clustered around the mean whereas a high standard
deviation implies that the data is dispersed over a wider
range of values (Columbia Business School and Columbia
University, 2003; Trek, 2018). Therefore, the Z-score value
is consistent with a standard normal distribution with
the mean of 0 and standard deviation of 1 to examine
hypothesis from pixel locations in each season of the
years 2016, 2017, 2018, 2019 and 2020. The probability
value of the SVI of the standard score of EVI to reflect the
probability of plant conditions. The SVI can be calculated
from equation 3 (Peters et al., 2002).

_ @ijk—Zijmin)
Svi= Zijmax—ZijMIN (e-q~3)
where Z, is the z-value for the pixel i during week j for
year k, Zim is the minimum of z-value for pixel i during
week j, and Zinx is the maximum of z-value for pixel i

during week j.

Based on the equation 2, the probability of each pixel
was expressed as the SVI, to present the greenness of the
vegetation in terms of the probability of each pixel during
different seasons of different periods. In this study, the
long-term period of 20 years (2000-2021) was conducted
and compared the high-level drought and low-level
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drought during such a period by seasons. The range of the
SVl value of more than zero but less than one (0<SVI<1)
described that 0 was the lowest standard deviation of the
EVI at the pixel in that period over a period of 20 years
and 1 was the highest standard deviation of the EVI at the
pixel in that period over a period of 20 years.

For the spatial analysis of drought intensity in this study,
it was classified by critical levels of vegetation in each
month of the years 2016, 2017, 2018, 2019 and 2020.
The drought levels of the SVI were classified into 5 levels
based on SVI values of the standard deviation including
very low drought or very high vegetation (1.50 to 2.50),
low drought or high vegetation (0.50 to 1.50), moderate
drought or moderate vegetation (-0.50 to 0.50), high
drought or low vegetation (-1.50 to -0.50), and very
high drought or very low vegetation (-2.50 to -1.50) as
presented in Table 3.

2.2.3 The visualization in Google Earth Engine

In this study, Google Earth Engine (GEE) (more
information on the website: https://developers.google.
com/earth-engine/guides/playground) was used for the
analysis and visualization of drought levels. One major
advantage of GEE is the accessibility of global time series
data which are already loaded on Google’s servers and
contained a certain type or quality of data. The GEE code
can be found in the recommended practice of the United
Nations Office for Outer Space Affairs (2020). After the
calculations, the GEE can display the latest SVI image in
the map section, the latest EVI image, and the mean EVI
image of the whole timescale in the layers. The GEE can
also show the charts of the EVI and SVI overtime by taking
the mean of all pixels in the study area for each season.
Moreover, the results of the SVI jpg and geotiff files were
provided for downloading from the GEE.

3. Results and Discussion

3.1 Spatial Drought monitoring through the SVI

The SVI was used as the drought index since 2000 to
recently for more than 20 years to access drought impacts
on urban tree in this study. For analyzing the spatial
drought monitoring with the SVI, the study used satellite
data from 2016 to 2020 for examining hypothesis from
pixel locations in each season of the years 2016, 2017,
2018, 2019 and 2020. In this study area, there are 3
seasons including cold season (November to January),
summer season (February to May), and rainy season (June
to October). Thus, this study estimated the mean monthly
SVI for each season with the SVI values from -2.5 (high



Table 3. The classification of SVI

and drought levels.

Level SVI value SVI category Drought category
1 1.50 to 2.50 Very high vegetation Very low drought
2 0.50 to 1.50 High vegetation Low drought
3 -0.50 to 0.50 Moderate vegetation Moderate drought
4 -1.50 to -0.50 Low vegetation High drought
5 -2.50 to -1.50 Very low vegetation Very high drought

drought) to 2.5 (low drought). The results
show that the SVI values (-2.50 to -1.50)

in the condition of very high drought were
found mostly in 2019, especially in summer
season. In addition, there is an increasing
trend of higher drought in the middle of
the study area (Tambon Nai Mueang) and
in the south part of the study area (Tambon
Nong Chabok, Pho Klang, and Nong Bua
Sala) as shown in Table 4.

Table 4. Analyzing the spatial drought monitoring with the SVI in each season in Amphoe Mueang of Nakhonratchasima province, Thailand.

Year November to January February to May June to October
Cold Season Summer Season Rainy Season

2020

2019

2018

Juntakut, P, Jantakat, Y., Jantakat, C.
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Table 4. Analyzing the spatial drought monitoring with the SVI in each season in Amphoe Mueang of Nakhonratchasima province, Thailand. (Continue)

Year November to January

February to May

June to October

Cold Season

Summer Season

Rainy Season

2017

2016

3.2 Timeseries of Drought monitoring with
the SVI and EVI
Data satellite from year 2000 to recently
were collected and calculated for the mean
of SVI and EVI values in the study area.
Figure 3 and 4 presented the timeseries
of the mean of SVI and EVI, respectively.
Based on the SVI timeseries, the condition
of high drought (-1.5 to -0.5) was obviously
found in years of 2002, 2005, 2015, 2016,
and 2019 in accordance with the mean of
EVI timeseries in Figure 4.

3.3 Drought monitoring through Google

Earth Engine

Figure 5 and 6 present the results of
drought monitoring in the study area
through Google Earth Engine (GEE) app.
The GEE can display the SVI, EVI, and mean
EVI image of the whole timescale in the
map section and can receive a pixel value
from the visualized images by clicking on

48 BUILT 18,2021

a location within the study area. The charts,
which display the EVI and SVI values over
time by taking the mean of all pixels in the
study area for each acquisition date. Briefly,
a positive SVl indicates a good vegetation
condition and a negative SVl indicates a
worse vegetation condition. The GEE script
can be found and used in the available
website of https://code.earthengine.
google.com/ and https://juntakut37.users.
earthengine.app/view/drought-monitoring-
in-amphoe-mueang-nakhonratchasima-
province. For assessing of accuracy of

the study results, according to field
surveying based on the research project of
geospatial technology along street trees

in Nakhonratchasima City Municipality
(https://www.gis-streettreets.ibuddyweb.
com) and Google View Street, urban trees
during 2014 to 2020 in the study area were
shown to compare with the SVI results in
Table 5.




Figure 3. Timeseries of drought
monitoring with the mean of
SVl in the study area.

Figure 4. Timeseries of the
mean of EVI in the study area.
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4, Conclusions

In this study, the GEE was applied to
monitor drought impacts on urban tree with
theSVlinAmphoeMueang,Nakhonratchasima
Province, Thailand. The data of Terra/
MODIS satellite from 2000 to recently was
analyzed and accessed drought impacts on
urban tree in the study area. For analyzing
the spatial drought monitoring with the SVI,
the study used satellite data from 2016 to
2020 for examining hypothesis from pixel
locations in each season of the years 2016,
2017, 2018, 2019 and 2020. The results
of the study indicated that the SVI values
(-2.50 to -1.50) in the condition of very high
drought were found mostly in 2016 and

2019, especially in summer season and with
an increasing trend of higher drought in

the middle of the study area (Tambon Nai
Mueang) and in the south part of the study
area (Tambon Nong Chabok, Pho Klang, and
Nong Bua Sala), probably due to the less
precipitation rate in 2016 and 2019. Based
on the SVI timeseries, the condition of high
drought (-1.5 to -0.5) was obviously found
in years of 2002, 2005, 2015, 2016, and
2019 in accordance with the mean of EVI
timeseries, especially in the beginning of
summer season. As a result, urban trees
should be carefully maintained during and
after the summer season to aid in the
recovery of trees in the study area, such as
by watering and fertilizing them on a regular
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Table 5. Urban tree conditions during 2014 to 2020 on Jomsurangyard Rd. and Sueb Siri Rd. in the study area.

Jomsurangyard Rd. (Tambon Nai Mueang, Amphoe Mueang,
Nakhonratchasima Province)

Sueb Siri Rd. (Tambon Nong Chabok, Amphoe Mueang,
Nakhonratchasima Province)

Low drought

Year Month Urban Trees Year Month Urban Trees
2014 March 2014 February
(SVI=-1.2) (SVI=-0.7)
High drought High drought
2017 April 2018 September
(SVI=+0.7) (SVI=+0.7)

Low drought

2018 September
(SVI = +0.5)
Low drought

2018 October
(SVI = +1.0)
Low drought

2020 September
(SVI=+0.2)
Moderate drought

2020 September
(SVI=+2.2)
Very low drought

basis. After years of severe drought, it is
likely that new trees should be planted.
According to the study, the GEE can display
the SVI, EVI, and mean EVI image of the
whole timescale in the study area, which
can help keep urban trees healthy and less
vulnerable to drought stress. Conclusively,
the application of the GEE for monitoring
drought impacts on urban tree with the SVI
can be an efficiency tool for urban planning
and taking care urban tree health in near
real-time period. For further research, the
study will use data from the results of this
study to run a model and predict a future
drought trending in the study area.

52 BUILT 18,2021




References

Anyamba, A., & Tucker, C. J. (2012). Historical perspective
of AVHRR NDVI and vegetation drought monitoring.
Remote Sens Drought: Innovative Monit Approaches,
23.

Bowler, D.E., Buyung-Ali, L., Knight, T. M., & Pullin, A.S.
(2010). Urban greening to cool towns and cities: A
systematic review of the empirical evidence. Landscape
and Urban Planning, 97(3), 147-155.

Brune, M. (2016). Urban trees under climate change.
Potential impacts of dry spells and heat waves in three
German regions in the 2050s. Report 24. Climate
Service Center Germany, Hamburg.

Byun, H. R., & Wilhite, D. A. (1996). Daily quantification of
drought severity and duration. J. Clim.; 5, 1181-1201.

Chen, T., van der Werf, G. R., de Jeu, R. A. M., Wang, G., &
Dolman, A. J. (2013). A global analysis of the impact of
drought on net primary productivity. Hydrol. Earth Syst.
Sci.17: 3885-3894.

Chotchaiwong, P., & Wijitkosum, S. (2019). Relationship
between land surface temperature and land use in
Nakhon Ratchasima City, Thailand. Engineering Journal;
Vol.23(4): 1-14.

Columbia Business School and Columbia University. (2003).
Statistical Sampling and Regression: t-Distribution.
Retrieved from: http://ci.columbia.edu/ci/premba_
test/c0331/s7/s7_4.html.

Department of the Interior. (2020). Statistics, population,
and house statistics for the year 2019.

Didan, K., Munoz, A. B., Solano, R., & Huete, A. (2015).
MODIS Vegetation Index User’s Guide. Vegetation
Index and Phenology Lab. The University of Arizona.
Retrieved from https://Ipdaac.usgs.gov/documents/
103/MOD13_User_Guide_V6.pdf

Doick, K., & Hutchings, T. (2013). Air temperature regulation
by urban trees and green infrastructure, Farnham:
Forestry Commission (UK). 1-10 pages. Available at:
http://www.forestry.gov.uk/PDF/FCRNO12.pdf/SFILE/
FCRNO12.pdf [Accessed January 8, 2015].

Gao, Y., Markkanen, T., Thum, T., Aurela, M., Lohila, A.,
Mammarella, I., Kdmardinen, M., Hagemann, S., & Aalto,
T. (2016). Assessing various drought indicators in
representing summer drought in boreal forests in
Finland. Hydrology and Earth System Sciences; 20,
175-191.

Gill, S. E., Handley, J. F., Ennos, A. R., & Pauleit, S. (2014).
Adapting The Role Cities for Climate of the Green
Change: Infrastructure. Built Environment, 33(1),
115-133.

Gorelick, N., Hancher, M., Dixon, M., llyushchenko, S., Thau,
D., & Moore, R. (2017). Google Earth Engine: Planetary-
scale geospatial analysis for everyone. Remote Sens.
Environ.; Vol. 202, 18-27.

Hansen, M. C., Patel, N. N., Joshi, A. R., Huang, H., & Xiong,
J. (2013). High-resolution global maps of 21st-century
forest cover change. Science; Vol. 850: 2011-2014.

Hao, Z. C., & AghaKouchak, A. (2013). Multivariate
Standardized Drought Index: A parametric multi-index
model. Adv. Water Resour.; 57, 12—-18.

Huang, H., Chen, Y., Clinton, N., Wang, J., Wang, X,, Liu, C.,
Gong, P., Yang, J., Bai, Y., Zheng, Y., & Zhu, Z. (2017).
Mapping major land cover dynamics in Beijing using
all landsat images in Google Earth Engine. Remote Sens.
Environ.; Vol.202: 166—-176.

Intasen, M., Hauer, R. J., Werner, L. P, & Larsen, E. (2016).
Urban forest assessment in Bangkok, Thailand. Journal
of Sustainable Forestry; Vol. 36(2).

Jantakat, Y., Juntakut, P., & Kranka, S. (2018). Applied Geo-
Informatics Technology to Urban Green Space
Management on Role of Stormwater Runoff Reducing
and Increasing of Subsurface Water. 2" Conference on
Geoinformatics, Feb. 1-2 in Bangkok, Thailand; 15-24.

Jantakat, Y., Juntakut, P., Plaiklang, S., Arree, W., & Jantakat,
C. (2019). Spatiotemporal Change of Urban Agriculture
using Google Earth Imagery: A Case of Municipality of
Nakhonratchasima City, Thailand. The International
Archives of the Photogrammetry, Remote Sensing
and Spatial Information Sciences, Vol. XLII-2/W13. ISPRS
Geospatial Week 2019, 10-14 June, Enschede, The
Netherlands; 1301-1306.

Jantakat, Y., Juntakut, P., Kisanthia, P., & Udom, K. (2020).
Application of Geographic Information System via Web
for Class of Local Resource and Environmental
Management. The Journal of Spatial Innovation
Development; Vol. 1(2): 70-82.

Jantakat,Y.,Hudkhuntod, T.,Muankhamla, A.,Mangkalanan,
S., Garcia, L. E., Srithumma, K., Rengprapan, S., &
Juntakut, P.(2021). ArcGIS Web-based Rapid Application
Development for Presenting Urban Street Trees on
Sidewalks. International Journal of Building, Urban,
Interior and Landscape Technology (BUILT), 17, 29-40.
Retrieved from https://ph02.tci-thaijo.org/index.php/
BUILT/article/view/244005

Kleerekoper, L., van Esch, M., & Salcedo, T. B. (2012). How
to make a city climate-proof, addressing the urban
heatislandeffect.Resources, ConservationandRecycling,
64, 30-38.

Kogan, F. N. (1995). Droughts of the late 1980s in the
United States as derived from NOAA polar-orbiting
satellite data. Am. Meteorol; 76: 655—668.

Juntakut, P, Jantakat, Y., Jantakat, C.

53



Kogan, F., & Guo, W. (2015). Agricultural Drought Detection
and Monitoring Using Vegetation Health Methods. In
Remote Sensing of Water Resources, Disasters, and
Urban Studies; THENKABAIL P.S., Ed.; CRC Press: Boca
Raton, FL, USA: 339.

Kumar, L., & Mutanga, O. (2018). Google Earth Engine
applications since inception: Usage, trends, and
potential. Remote Sens.; Vol. 10(10).

McKee, T. B., Doesken, N. J., & Kleist, J. (1993). The
relationship of drought frequency and duration to time
scales. In Proceedings of the Eighth Conference on
Applied Climatology, Boston, MA, USA, 17-22 Jan.:
179-184.

Nam, W. H., Choi, J. Y., Yoo, S. H., & Jang, M. W. (2012).

A decision support system for agricultural drought
management using risk assessment. Paddy Water
Environ.; 10, 197-207.

Palmer, W.C. (1965). Meteorological Drought. White R.M.,
Ed.; U.S. Weather Bureau: Washington, DC, USA.

Park, J. S., Kim, K. T., & Choi, Y. S. (2008). Application of
Vegetation Condition Index and Standardized
Vegetation Index for Assessment of Spring Drought in
South Korea, in IGARSS 2008-2008 IEEE International
Geoscience and Remote Sensing Symposium, 3: 774.

Patel, N. N., Angiuli, E., Gamba, P., Gaughan, A., Lisini, G.,
Stevens, F. R., Tatem, A. J., & Trianni, G. (2015).
Multitemporal settlement and population mapping
from Landsat using Google Earth Engine. Int. J. Appl.
Earth Observ. Geoinf.; Vol.35: 199-208.

Pekel, J. F., Cottam, A., Gorelick, N., & Belward, A. S. (2016).
High-resolution mapping of global surface water and
its long-term changes. Nature; Vol.540(7633): 418-422.

Peters, J. A., Walter-Shea, E. A, Ji, L., Andres, V., Michael,
H., & Svoboda, M. D. (2002). Drought Monitoring with
NDVI-Based Standardized Vegetation Index.
Photogrammetric Engineering & Remote Sensing, 68(1):
71.

Rimkus, E., Stonevicius, E., Kilpys, J., Maciulyte, V., &
Valiukas, D. (2017). Drought identification in the eastern
Baltic region using NDVI. Earth System Dynamics; 8,
627-637.

Sazib, N., Mladenova, L., & Bolten, J. (2018). Leveraging
the Google Earth Engine for Drought Assessment Using
Global Soil Moisture Data. Remote Sens; 10(8), 1265.

Thai Meteorological Department. (2021). Climatological
Center. Retrieved from http://climate.tmd.go.th/map/
thailand

Trek, S. (2018). Statistics and probability. Retrieved from:
https://stattrek.com/

54 BUILT 18,2021

Tsakiris, G., Pangalou, D., & Vangelis, H. (2007). Regional
drought assessment based on the Reconnaissance
DroughtIindex(RDI). WaterResour.Manag.;21,821-833.

United Nations Office for Outer Space Affairs. (2020).
Knowledge Portal. Retrieved from https://www.un-
spider.org/advisory-support/recommended-practices/
recommended-practice-drought-monitoring-using-
standard

Vaz Monteiro, M., Handley, P., Morison, J. I. L., & Doick,

K. J. (2019). The role of urban trees and greenspaces in
reducing urban air temperatures. Forest Research. ISBN:
978-0-85538-984-0.

Vicente, S. S. M., Begueria, S., & Lopez-Moreno, J. |. (2010).
A multiscalar drought index sensitive to global warming:
The Standardized Precipitation Evapotranspiration
Index. J. Clim; 23: 1696-1718.

Wang, J. J., & Meng, Y. B. (2013). An analysis of the drought
in Yunnan, China, from a perspective of society drought
severity. Nat. Hazards, 67: 431-458.

Wang, Q. F., Wu, J.J., Lei, T.J., He, B., Wu, Z. T., Liu, M., Mo,
X.Y., Geng,G.P., Li,X.H.,&Zhou, H. K. (2014). Temporal-
spatial characteristics of severe drought events and
their impact on agriculture on a global scale. Quat. Int.
349: 10-21.

Wijitkosum, S., & Sriburi, T. (2008). Impact of urban
expansion on water demand: The case study of
Nakhon Ratchasima city, Lam Ta Kong Watershed.
Nakhara: Journal of Environmental Design and Planning;
Vol.4: 69-88.

Wu, J. J., Zhou, L., Liu, M., Zhang, J., Leng, S., & Diao, C. Y.
(2013). Establishing and assessing the Integrated Surface
Drought Index (ISDI) for agricultural drought monitoring
in mid-eastern China. Int. J. Appl. Earth Obs.; 23, 397-
410.

Xiong, J., Thenkabail, S., Gumma, M. K., Teluguntla, P.,
Poehnelt, J., Congalton, R. G., Yadav, K., & Thau, D.
(2017). Automated cropland mapping of continental
Africa using Google Earth Engine cloud computing.
ISPRS J. Photogramm. Remote Sens.; Vol.126: 225-244.

Zhang, Z. X., Chen, X., Xu, C. Y., Hong, Y., Hardy, J., & Sun,
Z. H. (2015). Examining the influence of river-lake
interaction on the drought and water resources in the
Poyang Lake basin. J. Hydrol. 522: 510-521.



