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ABSTRACT

In this paper, we examine a design method for con-
trol system to attenuate periodic input disturbances
using disturbance observers for time-delay plants.
The disturbance observers have been used to esti-
mate the disturbance in the plant. Several papers on
design methods of disturbance observers have been
published. Recently, parameterizations of all distur-
bance observers and all linear functional disturbance
observers for time-delay plants with any input dis-
turbance were clarified. If parameterizations of all
such observers for time-delay plants with any input
disturbance are used, there is a possibility that we
can design control systems to attenuate input dis-
turbances effectively. However, no paper examines
a design method for control system using parame-
terizations of all disturbance observers and all linear
functional disturbance observers for time-delay plants
with any input disturbance. In this paper, to atten-
uate periodic input disturbances effectively, we pro-
pose a design method for control system using these
parameterizations.

Keywords: Time-Delay Plant, Periodic Distur-
bance, Disturbance Observer, Parameterization

1. INTRODUCTION

In this paper, we examine a design method for
control system to attenuate periodic input distur-
bances using the parameterization of all disturbance
observers for time-delay plants with any input distur-
bance. A disturbance observer is used in the motion-
control field to cancel the disturbance or to make the
closed-loop system robustly stable [1-8]. Generally,
the disturbance observer consists of the disturbance
signal generator and observer. And then, the distur-
bance, which is usually assumed to be step distur-
bance, is estimated using observer. Since the distur-
bance observer has simple structure and is easy to un-
derstand, the disturbance observer is applied to many
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applications [1-6, 8]. However, Mita et al. point out
that the disturbance observer is nothing more than an
alternative design of an integral controller [7]. That
is, the control system with the disturbance observer
does not guarantee the robust stability. In addition,
in [7], an extended H,, control is proposed as a ro-
bust motion control method which achieves the dis-
turbance cancellation ability. This implies that using
the method in [7], a control system with a disturbance
observer can be designed to guarantee the robust sta-
bility. From other viewpoint, Kobayashi et al. con-
sider the robust stability of the control system with
a disturbance observer and examine an analysis of
parameter variations of disturbance observer [8]. In
this way, robustness analysis of control system with
a disturbance observer has been considered.

On the other hand, another important control
problem is the parameterization problem, the prob-
lem of finding all stabilizing controllers for a plant
[9-14]. If the parameterization of all disturbance ob-
servers for any disturbance could be obtained, we
could express previous studies of disturbance observer
in a uniform manner. In addition, disturbance ob-
server for any disturbance could be designed system-
atically. From this viewpoint, Yamada et al. examine
parameterizations of all disturbance observers and all
linear functional disturbance observers for plants with
any input disturbance [15]. Yamada et al. expand
the result in [15] and propose parameterizations of all
disturbance observers and all linear functional distur-
bance observers for time-delay plants with any input
disturbance [16]. If parameterizations of all distur-
bance observers and all linear functional disturbance
observers for time-delay plants with any input dis-
turbance in [16] are used, there is a possibility that
we can design control systems to attenuate input dis-
turbances effectively. However, no paper examines
a design method for control system using parame-
terizations of all disturbance observers and all linear
functional disturbance observers for time-delay plants
with any input disturbance.

In this paper, in order to show the effectiveness of
these parameterizations, we propose a design method
for control system to attenuate periodic input distur-
bances effectively using these parameterizations for
time-delay plants with any input disturbance. First,
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the disturbance observer and the linear functional
disturbance observer for time-delay plants with any
input disturbance are introduced. Next, to attenu-
ate periodic input disturbances effectively, a design
method for control system using these parameteri-
zations of all disturbance observers and of all linear
functional disturbance observers for time-delay plants
with any input disturbance is proposed. In addition,
control characteristics of control system using these
parameterizations are clarified. Note that the repeti-
tive control system [17] is well known as an effective
control system to attenuate periodic disturbances. It
is shown that the proposed method can attenuate pe-
riodic disturbances effectively without using repeti-
tive controllers. A design procedure is also given. Fi-
nally, a numerical example is illustrated to show the
effectiveness of the proposed method.

Notation
R the set of real numbers.
R(s) the set of real rational functions
with s.
RH, the set of stable proper real ra-

tional functions.
u the unimodular procession in
RH.. That is, P(s) € U
means that P(s) € RHy and
P~!(s) € RH.
transpose of A.
largest singular value of {-}.
an n X n diagonal matrix with
a; as its i-th diagonal element.

AT
a({-})

diag (a1, -+, an)

an

L{-}

represents the state space de-
scription C(sI — A)™'B + D.
the Laplace transformation of

{-}

2. DISTURBANCE OBSERVER AND LIN-
EAR FUNCTIONAL DISTURBANCE OB-
SERVER

In this section, we briefly introduce a disturbance
observer and a linear functional disturbance observer
for time-delay plants with any input disturbance and
explain the problem considered in this paper.

Consider the plant written by

#(t) = Ax(t)+B(u({t—L)+d(t—L)) (1)
y(t) = Czx(t)+Du(t—L)+d(t—1L))
where x € R"™ is the state variable, u € RP is the
control input, y € R™ is the output, d € RP is the
periodic disturbance with period T'> 0 (T € R) sat-
isfying
dt+T)=d(t) (vt > 0), (2)

Ae R Be RP (C € R™*™ and D € R™*P.
It is assumed that (A, B) is stabilizable, (C, A) is de-
tectable, u(t) and y(t) are available, but d(t) is un-
available. The transfer function y(s) in (1) is denoted

by
y(s) = G(s)e *Lu(s) + G(s)e *Ld(s), (3)
where
G(s)=C(sI—A)""B+D e€R™(s). (4

When the disturbance d(t) is not available, in
many cases, the disturbance estimator named the
disturbance observer is used. The disturbance ob-
server estimates the disturbances d(t) in (1) using
available measurements. Available measurements of
the time-delay plant in (1) are the control input
u(t—9)(L > § > 0) and the output y(¢). For simplic-
ity, we select § = L, and then the general form of the
disturbance observer d(s) for (1) is written by

d(s) = Fa(s)y(s) + Fa(s)e*Fu(s), (5)

where Fi(s) € RPX™(s), Fy(s) € RP*P(s), d(s) =
L{d(t)} and d(t) € RP(t). That is, the general form
of the disturbance observer d(s) is shown in Fig. 1. In

Fig.1: Structure of a disturbance observer and that
of a linear functional disturbance observer

the following, we call the system d(s) in (5) a distur-
bance observer for time-delay plants with any input
disturbance, if

lim
t—o0

(d(t —L)- d(t)) =0 (6)

is satisfied for any initial state 2(0), control input w(t)
and disturbance d(t).

According to [16], there exists a disturbance ob-
server d(s) satisfying (6) if and only if m > p and
G(s) is biproper and of minimum phase, that is, D is
of full rank and

A—-sI B .
c D= n 4+ min(m, p)

(VR{s} > 0). (7)

rank [

In addition, when above-mentioned expressions hold,
the parameterization of all disturbance observers for
time-delay plants G(s)e™*L with any input distur-
bance is written by (5), where

Fi(s) = D(s)N*(s) + Q(s)N~(s) € RHE™ ~ (8)
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and
Fy(s) = —1 € RHEXP, (9)

respectively, where N(s) € RHJZ*P and D(s) €
RHEXP are coprime factors of G(s) on RH, satis-

fying

G(s) = N(s)D™(s), (10)

N*(s) is a pseudo inverse of N(s) satisfying

N*(s)N(s) =1 (11)
and Q(s) € RHE (m=p) i any function.

When one of following expressions:

1. m>p.

2. G(s) is of minimum phase.

3. G(s) is biproper.

does not hold, there exists no disturbance observer
for time-delay plants with any input disturbance sat-
isfying (6) [16]. Since many plants in the motion-
control field are strictly proper and of non-minimum
phase, this is a problem for the disturbance observer
for time-delay plants with any input disturbance to be
solved. When a disturbance observer for time-delay
plants with any input disturbance is used to attenuate
disturbances such as in [1-6], even if d(s) satisfying
(6) cannot be designed, the control system can be
designed to attenuate disturbance effectively. That
is, in order to attenuate disturbances, it is enough to
estimate (I — F(s))e™*Ld(s), where F(s) € RHEXP.
From this point of view, when G(s) is strictly proper
and of non-minimum phase, Yamada et al. defined a
linear functional disturbance observer for time-delay
plants with any input disturbance [16].

For any initial state x(0), control input u(t) and
disturbance d(s), we call d(s) the linear functional
disturbance observer for time-delay plants with any
input disturbance if

e *ld(s) — d(s) = F(s)e *Fd(s) (12)
is satisfied, where F(s) € RHZEXP [16]. Available

measurements of the time-delay plant in (1) are the
control input u(t — §)(L > 6 > 0) and the output
y(t). For simplicity, we select 6 = L, and then the
general form of the linear functional disturbance ob-
server for time-delay plants with any input distur-
bance is written by (5), where Fy(s) € RP*™(s) and
F5(s) € RP*P(s). That is, the general form of the lin-
ear functional disturbance observer d(s) is shown in
Fig. 1. When m = p holds and the time-delay plant
G(s)e L is stable, the system d(s) in (5) is a linear
functional disturbance observer for stable time-delay
plants with any input disturbance if and only if F; (s),
F5(s) and F(s) are written by

Fy(s) = —G(s) = Q(s)G(s)

and

F(s) = I-Fi(s)G(s), (15)
respectively, where Q(s) € RHEXP is any function.
On the other hand, when m = p holds and the time-
delay plant G(s)e™*L is unstable, the system d(s) in
(5) is a linear functional disturbance observer for un-
stable time-delay plants with any input disturbance

if and only if Fy(s), F»(s) and F(s) are written by

Fi(s) = D(s)+Q(s)D(s), (16)
Fy(s) = —N(s)—Q(s)N(s) (17)

and
F(s) = I-Fi(s)G(s), (18)

respectively, where N(s) € RH™*? and D(s) €
RHT*™ are coprime factors of G(s) on RH,, sat-
isfying

G(s) = D7 (s)N(s) (19)

and

D(s)N(s) — N(s)D(s) =0 (20)
and Q(s) € RHEXP is any function.

The problem considered in this paper is to pro-
pose a design method for control system to attenuate
periodic input disturbances effectively using the pa-
rameterizations of all disturbance observers and all
linear functional disturbance observers for time-delay
plants with any input disturbance.

3. DESIGN METHOD FOR CONTROL
SYSTEM FOR MINIMUM-PHASE AND
BIPROPER PLANTS

In this section, we propose a design method for
control system to attenuate periodic input distur-
bances effectively using the parameterization of all
disturbance observers for time-delay plants with any
input disturbance.

When G(s) is of minimum-phase and biproper, we
propose a control system using the parameterization
of all disturbance observers for time-delay plants with
any input disturbance as shown in Fig. 2. Here,
C(s) € RP*™(s) and C(s) € RP*P(s) are controllers,
L > 0 is chosen as

L = nT-1L, (21)
n is the smallest positive integer that makes L in (21)
nonnegative, and F} (s) and F5(s) are given by (8) and
(9), respectively.

Next, we clarify control characteristics of the con-
trol system in Fig. 2. First, the input-output char-

acteristic of control system in Fig. 2 is shown. The
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Fig.2: Control system using the parameterization of
all disturbance observers

transfer function from the reference input r(s) to the
output y(s) and that from the reference input r(s) to
the error e(s) = r(s) — y(s) are written by

y(s) = (I + G(s)e " C(s))

and

- G(s)e *LC(s)r(s) (22)

-1

r(s), (23)

respectively. Therefore, the input-output character-
istic in Fig. 2 is specified using C(s).

Next, the disturbance attenuation characteristic of
control system in Fig. 2 is shown. The transfer func-
tion from the disturbance d(s) to the output y(s) is
given by

= (I+G(s)e *LC(s))

y(s) = (I+G(s)e*LC(s)) ™ G(s)e *F

(1 - é(s)efsnT) d(s). (24)
From (24), if C(s) is set satisfying
5{1—6‘(3@)} ~0 (i=1,...,n4), (25)

then the periodic disturbance d(s) with frequency
component w; (i = 1,...,n4) written by

27

w; = —1

T (i:l,...,nd),

(26)

is attenuated effectively, where wy,, is the maximum
frequency component of the periodic disturbance d(s)
with period T'. To satisfy (25), C(s) is set according
to

C(s)
= o { Ty Ty )

where ;, e R(i=1,...,p),and o;; (i = 1,...
arbitrary positive integers satisfying

o |I — dia 1 1
5lr—
5 (14 jwim)™ (14 jwymy)™

~0 (i=1,...,n

When C(s) is settled as (27), we have

y(jwi)
= (I+G(jw)67j°”LC(jwv'))

o e )
1+ jwim)® (14 jw;m,)”
d(jw;) (i = s M) (29)
Under the condition in (28),

o {y(jw)} =0 (i=1,...

- G(jw)e*j“

y nd) (30)
hold true. This implies that when C(s) is chosen

s (27), the control system in Fig. 2 can attenuate
periodic input disturbances effectively without using
repetitive controllers in [17].

From (22) and (24), the role of C(s) is different
from that of C(s). C(s) specifies the input-output
characteristic, while C (s) specifies the disturbance at-
tenuation characteristic. That is, the control system
in Fig. 2 has one of two-degree-of-freedom structures.

Finally, the condition that the control system in
Fig. 2 is stable is clarified. From (22) and (24), it is
obvious that the control system in Fig. 2 is stable if
and only if following expressions hold.

1. C(s) makes the unity feedback control system in

G(s)e *Lu(s)

—C(s) (81)

p—N—
S
—~
»w »
-
I

stable.
2. Q(s) € RHE (™),
3. C(s) € RHEXP.

4. DESIGN METHOD FOR CONTROL
SYSTEM FOR NON-MINIMUM-PHASE
AND/OR STRICTLY PROPER PLANTS

In this section, we propose a design method
for control system to attenuate periodic input dis-
turbances effectively using the parameterization of
all linear functional disturbance observers for non-
minimum-phase and/or strictly proper time-delay
plants with any input disturbance.

Even if G(s) is of non-minimum-phase and/or
strictly proper, we can design a control system using
the parameterization of all linear functional distur-
bance observers for time-delay plants with any input
disturbance in Fig. 2. Here, C(s) € RP*™(s) and
C(s) € RP*P(s) are controllers, L > 0 is chosen as
(21), n is the smallest positive integer that makes L
in (21) nonnegative. When G(s) is stable, F(s) and
F5(s) are given by (13) and (14), respectively. When
G(s) is unstable, Fi(s) and Fy(s) are given by (16)
and (17), respectively.

Next, we clarify control characteristics of the con-
trol system in Fig. 2. First, the input-output char-
acteristic of control system in Fig. 2 is shown. The
transfer function from the reference input r(s) to the
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output y(s) and that from the reference input 7(s) to
the error e(s) = r(s) — y(s) are written by

y(s) =

and
—1

e(s) =r(s) —y(s) = r(s), (33)

respectively. Therefore, the input-output character-
istic in Fig. 2 is specified using C(s). For example,
the output y(t) follows the step reference input r(t)
without steady state error if

-1

(I+G(s)e*EC(s))  G(s)e *=C(s)r(s) (32)

(I+G(s)e™*=C(s))

(I +GO)Cco) ' =o. (34)

Next, the disturbance attenuation characteristic of
control system in Fig. 2 is shown. The transfer func-
tion from the disturbance d(s) to the output y(s) is
given by

y(s)
= (I+G(s)e*tC(s))  G(s)e*F
{1=C() 1 +Q(s) Ns)eT }ds)
(I+G(s)e™C(s) " D (s)e™*"

{1 ~ N(s)C(s) (I + Q(s)) e*S”T} N(s)d(s).
(35)

-1

From (35), if C(s) is set satisfying
o {1 = N(jw)Cjwi) (I + Q(jwi)) | = 0
(i = :l,...,TLd)7

then the periodic disturbance d(s) with frequency
component w; (i = 1,...,n4) written by

(36)

(37)

is attenuated effectively. When G(s) is of minimum
phase, that is N(s) is of minimum phase, there exists
N,(s) € RHZ*™ satisfying
N (S)N »(8)
= Q(s)
— di 1 ... _ 1
= ding { T T}
(38)
where o; (i = 1,...,m) are arbitrary positive integers

to make N,.(s) proper and 7; € R (i = 1,...,m) are
any positive real numbers satisfying

1
o |1 —di —_—
0'|: lag {(1+jwi7_1)a1

)
(1+jwi7—m)am
~ 0 (i=1,...,nq).

o {l - Q(jw)} =

(39)

Using N,.(s), if C(s) is selected as

No(s) (T+Q(s)) ™

where Q(s) is selected so that (I + Q(s)) € U, then
we have

C(s) = (40)

y(jw:)
= (I +Gw)e 7 C(jwn) " D™ (et

{I-Q(jw }NjwZ )d(jw;) (t=1,...,n4q).
(41)
Under the condition in (39),
5{y(jwi)} ~ 0 (i=1,...,nd) (42)

hold true. That is, the periodic input disturbances
with frequency components w; (i = 1,...,nq) is
attenuate effectively without using repetitive con-
trollers in [17]. On the other hand, when G(s) is of
non-minimum phase, that is N (s) is of non-minimum

phase, there exists N,.(s) € RH7*™ satisfying

N ()N, (5)

Q)N
{ 1—|—7'15 ar (1+T}n3)am}

(43)

where Nl(s) € RH. is an inner function satisfying
N;(0) = I, a; (¢ = 1,...,m) are arbitrary posi-

tive integers to make N, (s) proper and 7; € R (i =
1,...,m) are any positive real numbers satisfying

{I Q(jwi) N (M)}

_ . 1
- |- (i
e | i)

(1 jwitm)

~ 0 (i=1,...,n4). (44)
Using ]\Zfr(s), if C(s) is selected as
Cs) = No(s) (1 + Q)" (45)

where Q(s) is selected so that (I + Q(s)) € U, then
we have

y(jw:)
= (I+Gljw)e 7 C(jw;)) " D™ (juy)e 7 *
{1= QUw)Ni(juos) } N (e )d(jer)

(i=1,...,n4q). (46)
Under the condition in (44),
{y(jwi)} =0 (t=1,...,nq) (47)
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hold true. That is, the periodic input disturbances
with frequency components w; (i = 1,...,nq) is
attenuate effectively without using repetitive con-
trollers in [17].

Note that N,(s) € RH*™ satisfying (38) can be
designed using the method in [18]. N,.(s) € RH?*™
satisfying (43) can be designed using the method in
[19-22]. The method in [19] makes N;(s) in (43) be
not necessarily a diagonal functional matrix, but the
method in [21,22] makes N;(s) in (43) by a diagonal
functional matrix. Therefore, in order to attenuate
the periodic disturbance d(s) effectively, we had bet-
ter design N,(s) using the method in [21,22].

From (32) and (35), the role of C(s) is different
from that of C’(s) C(s) specifies the input-output
characteristic, while C(s) specifies the disturbance at-
tenuation characteristic. That is, the control system
in Fig. 2 has one of two-degree-of-freedom structures.

Finally, the condition that the control system in
Fig. 2 is stable is clarified. From (32) and (35), it is
obvious that the control system in Fig. 2 is stable if
and only if following expressions hold.

1. C(s) makes the unity feedback control system in

{ y(s) G(s)e " u(s)
u(s)
stable.

—C(s)
2. Q(s) € RHDXP,
3. C(s) € RHDXP,

(48)

5. DESIGN PROCEDURE

In this section, a design procedure of control sys-
tem using the linear functional disturbance observer
in Fig. 2 is presented.

A simple design procedure of control system using
the linear functional disturbance observer in Fig. 2 is
summarized as follows:

1. Obtain coprime factors N (s), D(s), N(s) and D(s)
of the plant G(s) on RH, satisfying (10), (19) and
(20). A state space description of N(s), D(s), N(s)
and D(s) of the plant G(s) satisfying (10), (19) and
(20) are obtained using the method in [23].

2. Design C(s) to attenuate periodic input distur-
bance d(s) effectively using the method described in
Section 4.

3. Design C(s) to stabilize the unity feedback control
system in (48). Such controller C(s) can be designed
using the parameterization of all stabilizing modified
Smith predictors for multiple-input/multiple-output
plants in [24].

According to [24], when G(s)e*L is stable, the pa-
rameterization of all stabilizing modified Smith pre-
dictors C(s) for stable plants G(s)e™*F is written as

C(s) = Qu(s) (I — G(5)Qe(s)e™T) ™", (49)

where Q.(s) € RHT*™ is any function and settled to
specify the input-output characteristic. For example,

in order for the output y(¢) to follow the step reference
input r(t) without steady state error, Q.(s) must be
settled to satisfy

G(0)Q(0) = 1. (50)
On the other hand, when G(s)e™*F is unstable and
unstable poles s;(i = 1,...,n) of G(s) satisfies s; #
sj(i #j;i=1,...,n;5 =1,...,n), the parameteriza-
tion of all stabilizing modified Smith predictors C(s)
for unstable plants G(s)e™ L is written as

C(s) = Cy(s) (I - G(s)Ca(s)e™T) ™", (51)
where C'(s) is given by
Ci(s) = D(s) (Guls) + G (5)Qels)) , (52)
G.(s) € RHTX™ is a function satisfying
N(si)Gu(si)e st =T (Vi=1,...,n), (53)
Guls) = L re Rmim(s, ()
1_[1(8 — 5i)

f(s) is a Hurwitz polynomial with n-th degree and
Qc(s) € RHZZ*™ is any function and settled to spec-
ify the input-output characteristic. For example,
when G(s) has a pole at the origin, the output y(s)
follows the step reference input r(s) without steady
state error, independent from Q.(s) € RHTZ*™ in
(52). On the other hand, when G(s) has no pole at
the origin, for the output y(t) to follow the step ref-
erence input r(t) without steady state error, Q.(s)
must be settled to satisfy

N©O) (Gul0) + C 0)Qu0) = 1. (55)

6. NUMERICAL EXAMPLE

In this section, we show a numerical example to
illustrate the effectiveness of the proposed method.

We consider the problem to design a control sys-
tem in Fig. 2 for the output y(¢) to follow the step
reference input r(¢) written by

(56)

and to attenuate periodic input disturbance d(t) with
period T = 2[sec] written by

| di(®) | | sin(mt)
d(t) = { da(t) ] - { 2sin(7rt) (57)
effectively for the time-delay plant G(s)e™* written
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s—1 —1

) s(s+25)
5—3

) s(s+25)

0 O 0 | —0.04

0 0 0 0.04 —-0.12

0 =25 0 1.04 0.04

0

0

1

6—1.25

—0.04

0 -—25|-004 112 |¢
1 0 0 0
0 1 0 0

—0.04
—0.12
0.04

112 |59

and

L = 1.2[sec]. (60)

G(s) in (59) is unstable and of non-minimum phase,
since poles of G(s) in (59) are in (0,0) and (—25,0)
and invariant zeroes of G(s) are in (2,0) and (2,0).
The smallest positive integer n that makes L in (21)
nonnegative is n = 1, and then L in (21) is obtained
as

L = 0.8][sec]. (61)

C(s), C(s), Fi(s) and Fy(s) in Fig. 2 are designed
using the method described in Section 5. Coprime
factors N(s) € RHu, D(s) € RHo, N(s) € RHy
and D(s) € RHy, of the plant G(s) in (59) on RH
satisfying (10), (19) and (20) are given by

N(s) i
= N(s)
s—1 —1
_ (s+ 2)%8 +25) (s+ §)£s3+ 25) (62)
(s+2)(s+25) (s+2)(s+25)
and
—D(s)= | s —f— 2 0
D(s)=Dis)= | TEZ (63)
s+2

Q(s) is selected as Q(s) = 0. C(s) in Fig. 2 is given
by (45), where N,.(s) is designed satisfying (43), 71 =

0.001, 79 = 0.001, ay =1, as =1 and

Nz(s) _ | s°+4s+4 ) (64)
O ra

Next, we design C(s) as (51) in order for the out-
put y(t) to follow the step reference input r(t) in (56)
without steady state error. One of G, (s) € RH, in
(52) satistying (53) is given by

—3750 1250
_ s+100 s+100
Gu(s) = (65)
—1250 _—=1250
s+100 s+ 100
Gu(s) € R(s) in (54) is set as
. s+2 0
Gu(s) = g s+ 9 (66)
s

In order for the output y(¢) to follow the step refer-
ence input 7(t) in (56), Q.(s) € RH is set as

100 0
Qc(s) = S+O 100 ] . (67)
s+ 100

Note that G(s) in (59) has a pole at the origin, the
output y(t) follows the step reference input r(¢) in
(56) without steady state error, independent from
Qc(s) in (67). Substitution of above mentioned pa-
rameters for (51) gives C(s).

Using the designed control system in Fig. 2, when
the initial state x(0) and the disturbance d(t) are
given by

2(0) = [01, 01, —0.1, —0.1]" (68)
and d(t) = [ 0, 0 ]T, respectively, the response of
the output y(t) = [ y1(t), y2(t) |7 for the step ref-
erence input r(¢) in (56) is shown in Fig. 3. Here, the
broken line shows the response of the reference input
r1(t), the dotted line shows that of the reference in-
put ro(t), the solid line shows that of the output y; (¢),
and the dotted and broken line shows that of the out-
put y»(¢). Figure 3 shows that the output y(t) follows
the reference input r(t) without steady state error.

Next, the disturbance attenuation characteristic is
shown. When the initial state 2(0) and the reference
input r(t) are given by

2(0) = [01 01 —01 —0.1]" (69)
and 7(t) = [ 0, 0 ], respectively, the response of
the output y(¢) = [ y1(t), w2(t) ]* for the periodic
input disturbance in (57) is shown in Fig. 4. Here,
the broken line shows the response of the periodic
input disturbance d;(t), the dotted line shows that
of the periodic input disturbance dy(¢), the solid line
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Fig.3: Response of the output y(t) = [y1(t), y2(t)]"
for the step reference input r(t) in (56)

X Tz m = & Tz = Tz T

0o 2 4 6 8 10 12 14 16 18 20
t[sec]

Fig.4: Response of the output y(t) = [11 (t)7y2(t)]T
for the periodic input disturbance d(t) in (57)

shows that of the output y;(¢) and the dotted and
broken line shows that of the output yo(¢). Figure
4 shows that the periodic input disturbance d(t) is
attenuated effectively.

In this way, it is shown that using the proposed
method, we can easily design control system to fol-
low the reference input r(¢) and to attenuate periodic
input disturbance d(t) effectively.

7. CONCLUSIONS

In this paper, we proposed a design method for
control system to attenuate periodic input distur-
bances effectively using the parameterizations of all
disturbance observers and all linear functional distur-
bance observers for time-delay plants with any input
disturbance. Results obtained in this paper are as
follows:

1. For minimum-phase and biproper time-delay
plants with periodic input disturbance, a design

method for control system to attenuate periodic input
disturbance effectively using the parameterization of
all disturbance observers is proposed. It is shown that
the disturbance observer works in only the case that
disturbances exist.

2. Control characteristics of proposed control system
for minimum-phase and biproper time-delay plants
are clarified. We have shown that the proposed con-
trol system can attenuate periodic disturbances effec-
tively without using repetitive controllers. A design
method of controller to attenuate periodic input dis-
turbance effectively is given.

3. For non-minimum-phase and/or strictly proper
time-delay plants with periodic input disturbance, a
design method for control system to attenuate peri-
odic input disturbance effectively using the param-
eterization of all linear functional disturbance ob-
servers is proposed.

4. Control characteristics of proposed control system
for non-minimum-phase and/or strictly proper time-
delay plants are clarified. A design method of con-
troller to attenuate periodic input disturbance effec-
tively is given.

5. Proposed control system includes three parameters
to be designed, C(s), C(s) and Q(s). It is shown that
the role of C(s) is different from that of C(s) and
Q(s). The role of C(s) is to specify the input-output
characteristic. The role of C(s) and Q(s) is to specify
the disturbance attenuation characteristic.

6. A design procedure of control system using linear
functional disturbance observer is presented.

7. A numerical example is shown to illustrate the ef-
fectiveness of the proposed method.
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