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ABSTRACT

This paper generalizes an automatic design pro-
cess for dimensioning switched reluctance machines
using a combination between genetic and fuzzy al-
gorithms. The process considers all desired perfor-
mance, dimensions and design guidelines as optimiza-
tion objectives for determining fitness score of genetic
algorithms whereas most automatic processes neither
consider the restricted dimensions as objectives nor
use them during adjusting machine dimensions. The
processes are immediately interrupted and reject ad-
justed models in case that any dimension of these
models does not comply with the restrictions regard-
less of their performances. In this paper, all inter-
rupts are eliminated from design process. Besides,
optimization objectives from design guidelines based
on empirical experience improve the calculation ac-
curacy of analytical analysis while still satisfying the
requirements. Despite the increased number of ob-
jectives, the fitness of each objective is still normally
determined since fuzzy algorithms connect all objec-
tives together to convert model goodness into a scale
factor used for scaling the objectives before summing
into the fitness score. This formulates imprecise de-
cision of designers into fuzzy rules and compensates
the lacks of design experiences. The proposed method
demonstrates the promising results verified by statis-
tical records of model optimization from a mass sim-
ulation.

Keywords: Switched Reluctance Machine, Multi-
Objective Optimization Design, Genetic Algorithms,
Fuzzy Algorithms.

1. INTRODUCTION

In most conventional design processes, preliminary
models of switched reluctance machines (SRM) are
approximated by design guidelines and suggestions
published in [1-5]. Characteristics and performances
of the generated models are evaluated and compared
by design objectives. Afterwards, the dimensions of
the models are adjusted based on these results. By
repeating this routine, an optimal model is developed
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from time to time. The process consumes effort and
time. It also requires the great experience of design-
ers to develop a well-optimized model. In addition,
it is difficult to find globally-optimized solutions for
multi-objective problems when many design parame-
ters and design requirements are concerned. Mass cal-
culation for all models created in design boundaries
and deterministic search algorithms are practically
impossible due to extensively long computing time.
Therefore, an automatic design utilizing a stochastic
optimization algorithm is an appropriate solution for
this kind of problems.

Evolutionary computation is a search technique
that can be considered as global optimization with
a stochastic optimization algorithm. The evolution-
ary computation is mostly applied for underivable
problems. It uses iterative progress of population
development. Then, the population is selected by
the stochastic algorithms to achieve desired solu-
tion. Such processes are often inspired by biological
mechanisms of evolution [6]. Evolutionary computa-
tion mostly includes evolutionary algorithms such as
genetic algorithm (GA), evolutionary programming,
evolution strategies, genetic programming and differ-
ential evolution and swarm intelligences such as ant
colony optimization and particle swarm optimization
(PSO). To develop new individuals, GA uses three
operators; parent selection, crossover and mutation
while the operator of PSO adjusts its particles or
individuals by their flying experiences in group and
flight conditions. Regardless of the complexity of im-
plementation, the comparison of search performance
among algorithms is still a controversial topic, espe-
cially for GA and PSO.

Some papers proposed that characteristics of PSO
are somewhat between genetic algorithms and evolu-
tionary programming. Three operators of GA can be
described by the behaviors of the operator of PSO.
Crossover of GA is midway of the operator of PSO.
The selected individuals exchange their information
by the crossover to generate new individuals while
new individuals of PSO are the swarms of particles
gathering around the local optimal particles and oc-
casionally the global optimal particles. In mutation
of GA, new individuals can be created at every point
by flipping a bit of selected individuals. Similar to the
mutation, the particles of PSO can reach any point
by providing sufficient velocity. Since the particles
are intact from one generation into the next gener-
ation, the particles can go anywhere if the enough
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number of generations is given.

In the early generations, the crossover has signifi-
cant effects. The individuals are created over a rela-
tively large distance since the information of param-
eters is exchanged between randomly selected indi-
viduals over the design universe while the swarms of
particles move toward the best particle in PSO. It re-
sults in good local search ability for PSO but poor
local search ability for GA. In the late generations,
most individuals have converged and have similar in-
formation. It means that the crossover has less effect
and then the mutation plays a role instead. The vari-
ation caused by mutation can theoretically reach any
point in the design universe. However, by flipping a
bit, individuals can be changed dramatically. It can
be the destruction of invaluable individuals or the im-
portant variation. Therefore, the mutation rate must
be carefully selected. Similar to the mutation rate,
the velocity of PSO must be defined carefully since
new particles can fly far away from the direction to-
ward the best particle.

The complication of the comparison is explained
by the fact that the effects of the different algorithms
vary over the total number of generations prior to
termination. There is not any distinct proof which
method is better. However, there are strong points
for selecting GA as the search technique for this work.
GA has proven its robustness and reliability by many
previous works in machine design applications col-
lected in [7]. In addition, GA is frequently used as
the reference method to evaluate the performances of
other search techniques.

In most automatic design process presented in Fig-
ure 1, after specifying objectives, a group of individu-
als or machine models are randomly generated. After-
wards, machine capabilities are calculated. Objective
scores are evaluated and then added up into a fitness
score used for measuring their goodness. Regarding
their fitness, some models are chosen to generate new
individuals. The reproduction process of GA consists
of three steps; parent selection, crossover and muta-
tion. Their functionalities are introduced in the next
section. With the reproduction process, the evolu-
tion of GA develops the models from generation to
generation.

However, the new individuals are often invalid
since the exchanged information between two corre-
sponding individuals is inconsistent with each other
during the reproduction process. In addition, they
are not preferred by requirement of specified geome-
tries. The inconsistent and unpleasant geometries are
inevitable for all automatic design processes. For this
reason, most automatic design processes add a check-
ing step into the design cycle to assure the consistence
of all models and the existence of preferred dimen-
sions after the reproduction step as shown in Figure
1. In case that a model is considered as invalid, it
will be discarded and a new model is produced until
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Fig.1: Automatic design cycle with validation check-
ing step after reproduction step.

the required number of individuals is fulfilled.

The evolution caused by new individuals that in-
herit useful information of the chosen individuals in
previous generations through crossover process is con-
sidered as the most powerful method of GA. Instead,
the checking process denies some models formed by
the reproduction process when they merely inherit an
unpleasant geometry without regarding their fitness.
In parent selection, the probability for being selected
is given to every model and is directly proportional
to its fitness from an assumption that the model may
inherit a valuable geometry. This conflict between
the checking process and the parent selection retards
performances of the design process.

Therefore, the proposed design cycle removes this
checking step and includes the preferred dimensions
in fitness determination as the design objectives to
improve the searching performance and to decrease
the computing time of the design process. As re-
sults proposed in [8-9], the optimized models possess
the preferred dimensions whereas models inheriting
unpleasant dimensions cannot survive by means of
natural selection. It can generalize automatic design
processes of SRMs by congregating every considera-
tion into one step. However, the number of objectives
is readily increased and makes the fitness determina-
tion much complicated.

In the following section, after a brief introduction
of genetic algorithms and multi-objective genetic al-
gorithms (MOGA), fitness determination of the pro-
posed design method is described in details. Selection
of machine geometry parameters to form the machine
model and design objectives applied in this paper are
explained. Simulation results and conclusion are fi-
nally given to verify functionalities of the proposed
method.
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2. GENETIC ALGOTRITHMS AND MULTI-
OBJECTIVE OPTIMIZATION

Genetic algorithms are stochastic search method,
based on fundamental principles of natural selec-
tion and genetic evolution. The method for creating
an individual vector, biologically called chromosome,
makes it different from other stochastic search tech-
niques. GA performs search technique from genera-
tion to generation. Each generation is composed by a
group of individual vectors. A chain of design param-
eters referred as genes forms the individual vector or
chromosome. Every chromosome represents a model
in a design universe while its dimension is equal to the
number of design parameters. Similar to other design
processes, every model is evaluated into a score called
fitness. It is an important data since it is only one
measure to present model capability. The fitness is
used for selecting some individuals to reproduce new
individuals for the next generation. The reproduc-
tion process of GA consists 3 steps; parent selection,
crossover and mutation.

2.1 Parent selection

To develop new models, some models will be cho-
sen as survivals in this process called parent se-
lection. Unlike selection processes of determinis-
tic search methods that practically select the most
fits, a selection decision of GA is made by probabil-
ity. A higher reproductive chance is naturally given
to individuals having higher fitness scores but this
chance still remains for individuals having lower fit-
ness scores. It can simply explain by a roulette game
which each slot belongs to each individual but the slot
opening width is proportional to its fitness. There-
fore, the most fitness individual has the widest slot
which results in the highest chance for being selected
whereas the least fit having the narrowest slot still has
a chance for being selected as parent by this method.

It prevents this search technique from being
trapped by local optimal solutions since the design
parameters are not only copied from the most fit par-
ent but also from the least fit to their children in the
next generation.

2.2 Crossover

Crossover imitates a recombination process of nat-
ural evolution. From the parent selection, two corre-
sponding parents exchange their information or genes
to create two new individuals called children. Some
say that crossover is the most important process in
GA. Unless the operation does exist, the results are
no longer a genetic algorithm.

2.3 Mutation

Creation of a new individual from one correspond-
ing chromosome is the mutation process. There are
also many methods of mutation purposed. The most

obvious one is alternation of characteristic of the con-
cerning genes. The mutation rate is naturally rare
and random. However, it still provides sufficient vari-
ation of genes.

Unlike single-objective optimization that its solu-
tion is an individual having the highest score of that
objective, multi-objective optimization problems in-
volve with trade-offs and competition among objec-
tives. Therefore, there is no perfect solution for such
problems but rather there is a set of solutions called
Pareto-set. Aims to improve any objective of the so-
lutions in Pareto-set further will result in degrading
other objectives. Practically, they receive an identical
fitness score. Shown in Figure 2, points M1-M5 are
members of Pareto-set coordinated by fitness scores
of objective 1 and 2. The sum of objective scores re-
sults in an identical fitness score presented by points
F1-F5. Since the fitness is a scalar quantity, it cannot
distinguish the capability of each individual. In fact,
a fitness score is the most important value since it
is the only indicator of model ability directly affect-
ing parent selection of GA. Therefore, to differentiate
the fitness for each model, the objectives must be in-
volved with fitness determination. This complicates
fitness function description.

One simple approach is made by assigning weights
to the score of each objective before determining the
fitness. It can discriminate all individuals including
the members of Pareto-set. However, it is very dif-
ficult to accurately specify the weight even having
comprehension of relative importance of each objec-
tive or knowledge of problems. Small difference in
weighting can occasionally lead to quite different so-
lutions. Besides, if the objectives are equal in term
of importance, it cannot figure out the only individ-
ual having a middle score of both objectives to be
the best fit by specifying an identical weight for both
objectives.

Regardless of relative importance, many have pro-
posed different algorithms in fitness determination
without assigning the weights of each objectives, but
by involving all objectives; for examples, the first
MOGA applied by Schaffer’s VEGA [10], Fonceca and
Fleming’s MOGA [11], Horn, Nafploitis and Gold-
berg’s NPGA [12] and a survey presented in [13].
These algorithms determine fitness of an individual
by comparing its objective scores with those of other
individuals in generation to classify the individuals
into different fitness ranks and then into different fit-
ness. However, the ranking procedures become inef-
fective for deciding good quality solutions when many
objectives are concerned [14-15]. Furthermore, the
algorithms do not take any design knowledge and de-
signer’s reasoning into consideration. It results in
very stiff decision for solutions of MOGA as the mem-
bers of Pareto-set. After all, few individuals have to
be selected from the set as the optimized solution by
designer’s reasoning at the end.
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tions in Pareto-set.

3. PROPOSED DESIGN PROCESS

On the other hand, cooperation use of objectives
and designer’s reasoning for determining different
fitness is an interesting option. Many have com-
bined decision strategies of designers in fitness assign-
ment by utilizing neural computing, machine learn-
ing, fuzzy algorithms, evolutionary algorithms and
agent-based methods. These methods give an oppor-
tunity to designers to employ both expert knowledge
and raw data of desired objectives for fitness deter-
mination, for examples, see [16-18].

In this paper, fuzzy algorithms (FA) is employed
for formulating expert knowledge of design guidelines
and decision strategies of designers for all objectives
in terms of fuzzy rule bases, IF-THEN rules. Since
human experts know which individual is good or bad,
but cannot exactly express in form of the fitness func-
tion, expert knowledge and designer’s reasoning are
therefore transformed into a set of relationships be-
tween objectives and fitness known as fuzzy rules. In
this paper, the input is objectives while the output
is not fitness score, but a factor use for scaling the
fitness named fuzzy scaling factor, kf. After scoring
design objectives, the scores are used for inferring the
fuzzy scaling factor. For example, two fuzzy rules are
exploited for inferring the scaling factor for M1-M5
in Figure 2. The rule bases are defined as:

i. IF all objectives are middle THEN scale is good.
ii. IF any objective is lower THEN scale is bad.

As result, the scaling factor is highest and equal to
one in case that both objective scores are one. Other-
wise, the factor becomes smaller than one as shown in
Figure 3. By this method, the scaling factor directly
indicates model’s goodness although it does not cal-
culate the fitness itself. After multiplying the objec-
tives with the scaling factors, the fitness scores are
different as shown by F1-F5 and M3 has the highest
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Fig.3: Fuzzy scaling factor and fitness scores after
multiplying with the scaling factors.

score as expected from the assigned fuzzy rules.

Figure 4 presents the design procedure of the pro-
posed method generalizing automatic design process
of SRMs. Unlike almost of classical automated de-
sign cycles, the checking condition from preferred ge-
ometries and design suggestions is removed and con-
gregated into the fitness assignment as optimization
objectives.

The proposed algorithm simplifies the complex-
ity of fitness determination by separating one com-
plicated task into two simple steps. The score of
objectives is normally described by linear relation-
ships of the performance and requirement without
any boundaries or conditions that are normally set to
prohibit fitness compensation. After that, the scores
from these objectives are used for inferring the fuzzy
scaling factor according to the fuzzy rule base. The
objective scores are scaled and then summed up to-
gether to determine the fitness. As results, all indi-
viduals are discriminated by their own fitness.

In this paper, it presents the uses of FA to deter-
mine the scaling factor, not the fitness directly. Then,
the factor differentiates the fitness. The proposed
method is focused on simplification of design process.
Even the fuzzy rules are neither complicated nor spec-
ified for design of SRMs. Only three fuzzy rules are
established by basic reasoning to verify that expert
knowledge and design experiences are not necessary
for construction of fuzzy rule base. The knowledge
and experiences can be used as optimization objec-
tives. Hence, the proposed algorithm can be simply
adapted for optimizing other electrical machines.

4. DESIGN PARAMETERS

A model of SRMs is presented by geometries as
shown in Figure 5. For standard types of multi-phase
SRMs, a cross-section is composed of 9 parameters,
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shaft radius, rotor inner radius and outer radius, air
gap, stator inner radius and outer radius, stator pole
arc and rotor pole arc Rgp, Ro, R1,aq, Ra, R3, Bs
and g respectively, including stack length, Lgrk.

In automatic design processes, the design param-
eters are adjusted in a boundary of each parameter.
The most advantage of this format is that desired
geometries can be prescribed from the beginning and
are kept constant during the design process. However,
a situation that inner radii are larger than outer radii
frequently occurs after reproducing the design param-
eters since the boundaries are usually overlapped. In
this case, the design cycle will be interrupted as men-
tioned in the previous section.

Figure 5 also presents an additive chromosome for-
mat to avoid the mentioned problem. Geometries
YR, hr, hs and yg are rotor yoke thickness, stator yoke
thickness, rotor pole depth and stator pole depth.
This additive format is utilized for the highest de-
gree of freedom for generating models. It assures the
consistence of every individual. Including phase num-
ber, Npy and pole number, Np , the chromosome is
described as:

@ = [Rsu,yr, hr,aa, hs,ys, Bs, Br, Lstk, Npu,Np] (1)

5. IMPLEMENTATION OF THE PROPOSED
METHOD

To determine a fitness score for each model, ma-
chine performances are scored by objective functions,
f1 to fo and then weighted by weights of objective
importance, wy to wg. In this paper, all weights are
equal to one. The difference of objective importance
can be interpreted into fuzzy rules. Finally, the sum

Fig.5:
SRMs.

Cross-section and geometry parameters of

of the objective scores is scaled by a fuzzy scaling fac-
tor, k¢ to determine the fitness score of a model as
expressed in (2).

f=kp-(fi-wi+fo-w2+ fz-wz+ ...+ fo-wo) (2)
5.1 Objectives assigned by required perfor-
mances

Torque is usually the most important characteris-
tic of a machine. A desired value of torque, Trpr is
typically specified by the relationship of torque and
speed. For SRMs, machine torque, Tco is calculated
by a flux-linkage curve as shown in Figure 6. The
fitness function of torque objective is described as:

_ Tco
TrREF

f (3)
The enclosed area in the flux-linkage curve is elec-
trical energy called co-energy, W o which can be con-
verted into electrical torque in one stroke. In one
revolution, the number of strokes is the product of
phase number, Npy and rotor pole number, Nr. An
average torque in one revolution is determined as:

Npp - Nr

W
o co

Teo = (4)

If the phase current supplied to a machine is kept
constant from unaligned to aligned position, the co-
energy and average torque are at their maximum for
that current. By calculating the maximum torque
for the certain current, torque capacity of a ma-
chine can be specified as presented by the dashed
line of Figure 7. Subsequently, the current value is
converted into current density of a stator winding
which must be suitable for power ranges, applications
and especially cooling methods described in [4]. For
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the rectangular-shaped pulse current having the peak
current, Ippag, the current density, Jrars is calcu-
lated as:

0.707 - Ipgak
JrMSs = 5
RMS =05 Asror - krivL 5)

where Agror is the area of stator slot and kprrp is
fill factor of conductors in the stator slot. The second
objective is described by current density, Jrass at the
required torque. The fitness is determined by:

JRrus
—9- 6
=2 Jts ©)

where Jrgr is current density specified by the cooling
methods and machine applications. In contrast to the
torque objective, this objective gives higher scores for
machines with a lower current density at the required
torque.

It should not be confused that the first and the sec-
ond objective functions can be included as one objec-
tive. The aim of this optimization is to find a machine
satisfying the torque constraint, but not to find a ma-
chine generating the greatest possible torque. The
second objective is to indicate the margin between
the specified current density and the actual one at
the required torque.

Besides torque and current density, a ratio between
torque and current density is also a very important
objective which represents the machine utilization. It
presents how good the winding slot area and the flux
distribution in a machine are managed. The slot area
is directly related to the current density whereas the
flux is distributed in lamination. It is the trade-off be-
tween current density and torque producing flux. The
solid line in Figure 7 presents the ratio of torque and
current density of well-designed machines typically
having their nominal operating point at the maximal
ratio or slightly lower ratios since many machines are
usually operated at 30-80% of their power rating in
most applications. The fitness is determined by:

Tco
JREF

7T) (7)

max
ar (JRMS

fs =

5.2 Objectives assigned by dimension restric-
tions

As mentioned in the design process, dimension
restrictions and preferred dimensions are treated as
objectives. The most restricted dimensions are the
outer diameter and axial length. Therefore, the fit-
ness function is used for selecting machines with the
specified diameter, not for minimizing the diameter.
The fitness function is described by:

Rrer — R3

= 1 —
fa | RRrer

| (8)
The triangle-shaped function gives the highest score
only to machines having the radius, R3 equal to the
specified radius, Rrpr. Unlike the outer diameter,
the axial length of lamination steel or stack length
is usually set as a limitation. As the length of ma-
chines is fixed, the stack length is limited by types of
winding-end, position sensors and a propeller on one
side of air-cooled type machines. It can be shorter,
but not longer. The fitness function is described by:

f5={ (1)

The fitness will be zero in case that stack length,
LsTK islonger than limitation, Lrgr. For machines
with shorter length than Lrpp , the fitness is not in-
creased since the effect of axial magnetic flux at both
ends or end-effect has much influence on shorter ma-
chines. In practice, the end-effect causes the reduc-
tion of unsaturated inductance ratio between aligned
and unaligned positions. It directly reduces machine
torque capacity and in addition, the accuracy of the
calculated flux-linkage curves. The unaligned induc-
tance calculated by 2-dimension finite element anal-
ysis (FEA) is about 15% different from the existing
machine when Lsrx = 4 x Rz [19]. To minimize
the end effect, the objective is not obliged to shorten
machine length, but to stay with its limit.

iLstxk < Lrer (9)
i Lstr > Lrer
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5.3 Objectives assigned by design guidelines

In automatic offered design process, plenty of mod-
els are created and then evaluated for developing an
optimized one. The essence of such process is short
computing time taken to calculate each model. Fi-
nite element analysis is accepted for its accuracy,
but extremely long computing time is its most draw-
backs. Analytical analysis is very fast in computing.
Its accuracy is still acceptable but much dependent
on shapes of machines. Some assumptions are made
to simplify calculating methods such that magnetic
saturation occurs in poles before in yokes or a mu-
tual flux between simultaneously conducting phases
is negligible [20].

Stator and rotor poles are assumed to be saturated
before stator and rotor yokes. Therefore, most of an-
alytical analysis is focused on magnetic parts in the
poles. For 3-phase SRMs stator yoke and rotor yoke
thickness, ys and yr must be at least half of sta-
tor pole and rotor pole width bg and bp since the
magnetic flux at pole is divided by half into yoke.
Because of this, some suggestions for ratios of stator
and rotor yoke thickness and pole width as rgr and
ar rEF are made. Since the overlap of excitation be-
tween two phases is only 5% for 3-phase SRMs, the
ratio is about 0.7-1. For 4 or higher phase numbers,
the excitation overlap is about 30%. The suggested
ratio is about 1-1.2. The fitness function is described
as:

ys
fo = —=— (10)
AS,REF

YR
fr=—tE— (11)

QR,REF
The other objective is provided by unsaturated in-
ductance ratio between alighed and unaligned posi-
tion, apqry. The ratio directly affects volt-ampere
rating required for selecting a converter [21]. For
well-designed models, the inductance ratio reference,

arer 1s about &-10.

f8 _ QLauLuu (12)

QREF
The last objective is about acoustic noises and vi-
bration of SRMs since one of their major drawbacks is
high acoustic noise emission. For preliminary model
design, the stator is considered as a cylindrical shell
with an outer radius, stator yoke thickness and stack
length. For axial vibration nodal, m = 0, natural fre-
quencies of radial vibration, f, are obtained by [22]:

fo = 1 b Ys n(n? —1)
"ooom \p(l—p?)  VI2RE nZt 1
—_— —m\
Material property Geometry Vibration modw
n=23,4,..

(13)

Where n is mode number. The equation illustrates
distinct relationship among material property, geom-
etry and vibration mode. The most interest belongs
to yoke thickness since outer radius is predefined. The
natural frequency will increase if the yoke becomes
thicker. Consequently, acoustic noise emission will be
reduced. Thus, the yoke thickness plays an important
role for this constraint. This objective is described by:
Ys

Jo= - (14)

where yrpr is yoke thickness reference calculated for
a certain frequency related with the switching fre-
quency of converter and the rotational speed of rotor.

5.4 Fuzzy scaling factor

This section explains the implementation of the
fuzzy algorithm for determining the scaling factor kg
presented in (2). Two membership functions (MF)
are applied for this work. The first MF is composed
of three fuzzy sets; low, medium and high. It is as-
signed to the objectives of machine performances for
torque fi, current density fo and inductance ratio
fs and geometries related with flux distribution fg
and f7 and acoustic noises fg as shown in Figure 8
(left). The machine performances and geometries are
expected for the better values than their reference
values based on the requirements and empirical val-
ues. The second MF is composed of two fuzzy sets;
bad and good. It is assigned to the constraint of the
maximum point f3 and the limitation of geometries
fa and f5 in Figure 8 (right). The fitness for the ratio
of torque and current density cannot be higher than
one since it is compared with its maximum value, and
the constraints of geometries are aimed to limit the
stack length and to have the preferred outer radius.
Therefore, the evaluation of the fitness gives only two
results which are bad or good.

Since the fuzzy algorithm is applied for minimiz-
ing the compensation of fitness among objectives, not
directly for determining the fitness value, the lower
numbers of fuzzy sets are appropriate for this work.
In addition, the lower numbers of fuzzy sets minimize
the number of fuzzy rules. Consequently, the fuzzy
rules are simple. For this reason, any intelligence al-
gorithm for defining the MFs and constructing the
fuzzy rules is not necessary.

For defining the fuzzy set, a trapezoidal shape
function is selected due to its flat top. It represents
no degree difference of membership for a certain range
of fitness scores. Within this range, the fuzzy scale
will be identical and the fitness itself differentiates
the model ability. For this reason, the trapezoidal
shape is well matched for this purpose. To construct
the trapezoidal MF, it means to set values of bottom
points called feet and top points called shoulders.

Many publications proposed methods for automat-
ically defining MFs and constructing fuzzy rules. The
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methods can be applied for other forms as well. How-
ever, it is the fact that the automated adjustment
methods require training which makes the created
MF much dependent on the limited applications even
design for the same type of machine. Convention-
ally, the feet and shoulders are set by trial and error
based on experiences and empirical values. Although
it consumes time and effort but for this level of work,
it is practically suitable. The shoulders are defined
by £10% of the reference or requirements (0.9-1.1)
while the feet are defined by 10% of the reference
over half of reference (0.6) and 10% below one and
half of reference (1.4). As a rule of thumb, +10%
of reference should be the minimum acceptable limit.
This will also demonstrate the simplicity of utilizing
fuzzy algorithms for managing the fitness function de-
scription that results in the promising performances
for designing SRMs.

Afterward, the fuzzy sets are aggregated by Mam-
dani’s fuzzy inference method according to rule bases.
In this paper, the rule bases are constructed by ba-
sic reasons for prohibiting high fitness scores of an
individual due to the compensation. Therefore, the
construction of fuzzy rule bases does not require any
knowledge of machine design or designer’s experi-
ences. The three rules are created as follows:

i. IF any objective is low or bad THEN ky is low.

ii. IF all objectives are medium or good THEN k¢
is medium.

iii. IF all objectives are high or good THEN £kj is
high.

The membership functions of the output also con-
sist of three fuzzy sets; low, medium and high as
shown in Figure 8 (left). The scaling factor is nor-
mally determined by weighted average method of the
output areas.

6. VALIDATION OF THE PROPOSED ME-
THOD

To verify the functionalities of the proposed
method, optimization of SRM was conducted to as-
sure whether it can find the optimized model out of a
design universe. After presenting the construction of
the design universe and its boundaries, the simulation
results show the quality of the proposed method.

6.1 Design universe and boundaries

Consequently, the design universe of SRM models
was created within boundaries of design parameters
as shown in Table 1. A mass simulation was made
for every model created by varying design geometry
against each others. Calculation of machine perfor-
mances and characteristics are recorded as machine
database. Every model is scored by the objective
functions and then the fitness function. The comput-
ing time for collecting the machine data took almost
2 mounths for all 2,097,152 models (approx. 2.5s for
each model).

For boundaries, the first design parameter, shaft
radius, is practically predefined according to required
stiffness based on material’s strength and standard
sizes of shaft coupler. Similar to shaft radius, air gap
is also practically prescribed. Some said that smaller
air gap produce better performances but it requires
more precision for machine production. Hence, the
air gap is also fixed by a standard value for the re-
quired power class. Finally, for the other parameters,
the boundaries are defined as follows:

i. Phase and pole numbers are selected from the
most frequently used ones for standard applica-
tions.

ii. Pole arc angles are determined by feasible trian-
gle for each combination of phase and pole num-
bers.

iii. Pole depth and yoke thickness are varied in a
proper range based on the pole arc angles.

iv. Stack length is varied by the relationship with a
range of outer diameter.

Table 2 presents the reference values of each ob-
jective specified as the requirements of optimization.
The values are based on the design guideline in [1-
4]. Alongside, the performances of the best model in
the design universe are presented. The comparison
presents that the requirements are challenging and
are not easy for finding the optimal models of the
design problem since the requirements and the best
model’s performances are closed. Otherwise, the de-
sign problem can be considered as very easy in case
that the references are much lower than those of the
best fit since there is not much trade-offs among ob-
jectives.

6.2 Calculation results

Out of the design universe, there are 280 models
that satisfy all constraint references, excepting the
ratio of torque and current density. The best fit
is a 3-phase/l-pole SRM and its characteristics are
presented in Table 2. To verify its performances by
the statistical record, the proposed process was per-
formed 1,000 times with the GA-parameters as shown
in Table 3.

The most fit from each optimization was compared
by those 280 models of the design universe. The num-
ber of optimal model for each rank is counted and pre-
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Table 1: Design parameter and boundaries

Parameter Boundary
Phase 3 3 4 4
pole 1 2 1 2
Rsy in mm 10
Yr in mm 15-22 | 34-41 30-37 | 41-48
hpr in mm 12-19 | 9-12.5 10-17 | 7-10.5
ag in mm 0.5
hs in mm 12-19 | 9-12.5 10-17 | 7-10.5
Ys in mm 12-19 | 9-12.5 10-17 | 7-10.5
Bs in ° 16-31 | 10-17.5 | 12-19.5 | 8-15.5
Br in ° 16-31 | 10-17.5 | 12-19.5 | 8-15.5
Lsrk in mm 85-105

Table 2: References of optimization objectives com-
pared with the best fit

Constraint and guide line | Reference Best fit
Torque at 10 A/mm? 15 Nm 15.83 Nm
Current density at 15 Nm 10 A/mm? | 9.6 A/mm?
Outer radius 80 mm 80 mm
Stack length <105 mm 105 mm
Torque per current density 1 0.90
at 10 A/mm?
Ratio of aligned and 9 9.96
unaligned inductance
Ratio of stator yoke 0.85/3ph. 0.9
thickness and pole width 1.0/4ph.
Ratio of rotor yoke 1.9 154
thickness and pole width
Stator yoke thickness > 10 mm 13 mm

Table 3: References of optimization objectives com-
pared with the best fit

GA-parameter
Number of individuals | 500
Number of generations | 100

Crossover rate 95%
Mutation rate 5%

sented by the solid line as shown in Figure 9 while the
accumulated number of optimal model is presented by
the dashed line. The most fit was found 28 times out
of 1000 or 2.8% while the 10 best models and 100
best models were found by 23.2% and 94.3%, respec-
tively. It confirms that the probability to obtain the
model in 100 best designs out of the extremely large
design universe is higher than 90%. This can verify
promising performance of the proposed method.

To illustrate the searching performances, develop-
ment of some objectives is pointed out. Figure 10
presents the average number of model in each gener-
ation that satisfies the crucial constraints of torque,
current density and outer dimensions. In the first

Number of optimal model
N
o
1
Summation of frequency in %

0 T T T T T
20 40 60 80 100
Fitness rank in design universe
Fig.9: Statistic record of the best fit from simula-

tion within the best 100 rank of design universe and
summation of frequency.
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Fig.10: Number of model that fulfils torque, current
density, outer radius and stack length requirement in
each generation.

generation, there was less than one from 500 models
that satisfy the objectives. After the 20th genera-
tion, it frequently presents the number higher than
one. Figure 11 and 12 present the increasing number
of model that satisfies for each objective separately.
The number is around tens for the torque and cur-
rent density objective but it is around hundreds for
the stack length, ratio of stator yoke thickness and
pole width and ration of the unsaturated aligned and
unaligned inductance. It can present the speed of
the process for optimizing each objective through the
difficulty in finding one globally-optimized model.
To verify the accuracy of machine characteristics
of the optimized model, comparison of flux-linkage
curve calculated by finite element analysis (FEA) was
made. The difference of flux-linkage curves are less
than 1% at aligned position and less than 3% at un-
aligned position as shown in Figure 13. The compari-
son results can refer to an acceptable accuracy of the
other performances of the optimized model. To em-
phasize the benefit gaining from the proper ratios be-
tween yoke thickness and pole width, another model
having low scores of these objectives was examined.
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The difference of the flux-linkage curves is about
5% at both positions as shown in Figure 14. It can be
concluded that the objectives of the design guidelines
directly improve machine performances and indirectly
support, the accuracy of analytical calculation.

Figurelb illustrates the ratio of torque and current
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Fig.14: Comparison of flux-linkage curves between
analytical and finite element calculation of the model
unsatisfied by design guidelines.
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Fig.15: Torque per current density for different in-
ductance ratios.

density in relationship with current density. The best
model gives a good result of machine utilization since
the ratio at the nominal current density (10A /mm?)
is near at its maximum as shown by the solid line.
In comparison to the best fit, another model has a
slightly higher ratio of torque and current density at
10A/mm?, but it is far from its maximum as pre-
sented by the dashed line. The higher ratio is traded
by the reduction of the inductance ratio. As a re-
sult, this model generates the slightly higher torque
at nominal current density, but it takes higher current
density over the lower torque range which is normally
used in most applications.

Besides the machine performances, the computing
time of the design cycle is of essence. 50,000 models
(100 generations x 500 individuals) were simulated for
the design process. It takes about 36 hours or 40
times faster than those of the mass simulation of 2
months. Since the most fit models were frequently
found out by generation 70 as shown in Figure 16,
it can be pointed out that the computing time can



Multi-Objective Design for Switched Reluctance Machines Using Genetic and Fuzzy Algorithms i

A
140

130

120

110

100 ]

90

Number of optimal model

80

S O O © O & O O s &
A LG M ~MRANI S
N EXIE SRR SRR S

Generation
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tions to find the optimal models.

be shortened by reducing the number of generations
or by terminating the design process in case that all
constraints are already satisfied.

7. CONCLUSION

The proposed method simplifies design procedures
for sizing preliminary models of SRMs by combining
the uses of genetic and fuzzy algorithms. All require-
ments and design guidelines are treated as optimiza-
tion objectives. It eliminates all undesired interrupts
violating the reproduction process and then main-
tains the continuous flow of genetic algorithms. The
design process was performed by 1,000 times and the
results validate its functionalities. 94.3% of the best
fits from the proposed method stay in the 100 best
models of over 2 million models in the design uni-
verse. It assures the promising search performance
while the statistical record presents its reliability. In
addition, the objectives based on design guidelines
profit to higher accuracy of the flux-linkage curves
calculated by analytical analysis. This directly im-
proves the accuracy of machine performances which
are verified by the calculation results from finite ele-
ment analysis.

The difficulty for defining the fitness function is
simplified by fuzzy algorithms. Compensation among
objective scores is prohibited by the fuzzy rule base.
The results demonstrate the effectiveness of the most
standard membership functions and the simple fuzzy
rules which can be quickly and comfortably adapted
for any special optimization purposes.

However, the operators used by genetic algorithms
are conventional. The adaptation of crossover and
mutation can be improved for shortening the com-
puting time and increasing the resolution of the de-
sign parameters. For the crossover, it does not have
much of action near the end of optimization and vice
versa for the mutation. For the improvement, the
crossover and mutation rates can be self-modified by
considering variances and convergence of individuals

so that the optimal solution will be found out sooner.
In addition to the modification of operators, the res-
olution of design parameters can be modified by re-
ducing the bit-resolution of the converged parameters
and increasing the resolution of the others. In this
case, if the termination is specified by the number
of generation, the optimized parameters will result in
highly-resolute quantities.

Regards of search methods, the uses of other
stochastic search algorithms such as adapted GAs,
PSO and ant colony optimization can be implemented
for the future work as options for specified design ap-
plications.
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