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ABSTRACT

In this paper, we consider the quality of communi-
cation paths in wireless multi-hop networks. A wire-
less multi-hop network consists of wireless nodes and
wireless links. In this network, there usually exist
various candidate paths to connect a source and a
destination. We can evaluate the quality of each of
the candidate paths by using a metric for link qual-
ity, and as a result, we can choose the path with the
highest quality (best path). In this paper, we pay at-
tention to characteristics of the best path, and con-
sider how to theoretically characterize the best path
and its quality because it is an important issue from
the viewpoint of network design. We introduce some
recent results on theoretical identification of the best
path and theoretical formulas to evaluate the qual-
ity of the best path in wireless multi-hop networks
with regular structure. We explain how the best path
is identified using examples. We also introduce re-
sults on theoretical characterization of the best path
in random wireless multi-hop networks. Finally, we
describe some related issues.

Keywords: Wireless multi-hop network, routing,
communication quality, theoretical analysis

1. INTRODUCTION

In wireless multi-hop networks [1], each wireless
node has capabilities of direct communication with
other wireless nodes and relaying to connect distant
nodes that cannot be connected directly. These capa-
bilities enable wireless nodes to construct a wireless
multi-hop path (route) between two nodes. As a re-
sult, a source S can send a packet to a destination D
through a wireless multi-hop path even if S and D are
not directly connected.

In a wireless multi-hop network, a routing protocol
has to be executed to construct a multi-hop path be-
tween S and D. There have been a lot of proposals for
routing protocols [1]. In ordinary routing protocols,
the number of hops is considered as a metric to build a
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wireless multihop path, and wireless multi-hop paths
with minimum hops are usually used.

Other than the number of hops, various metrics
have been proposed to construct a multi-hop path of
high quality. For example, we have metrics called ex-
pected transmission count (ETX) [2], per-hop round
trip time (RTT) [3], medium time metric (MTM)
[4], and expected transmission time metric (ETT) [5].
These metrics are defined differently for different pur-
poses, and have different properties.

In this paper, we mainly consider ETX because it
is a simple metric reflecting the quality of a link. Link
ETX is the expected number of packet transmissions
required to successfully deliver a packet over the link,
including retransmissions. If we compute link ETX
assuming a MICA2 mote, which is a typical node for
wireless sensor networks, as a wireless node, we can
build a model of the link ETX as shown in Fig. 1. In
this model, the link ETX is represented as a function
with respect to the length of the link. To derive this
function, a model of transmission and some parame-
ters shown in [2] and [6] are used. In this example, it
is assumed that non-coherent FSK is used as modu-
lation, NRZ encoding is used, the output power is -8
dBm, and noise floor is -105 dBm.
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Fig.1: ETX function of a link.

We can also use ETX to evaluate the quality of
wireless multi-hop paths. We evaluate quality of a
wireless multi-hop path by the mean value of the total
number of packet transmissions required to success-
fully deliver a packet from S to D over the multi-hop
path. This mean value is called route ETX. A wire-
less multi-hop path usually consists of multiple links.
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Then, route ETX of a wireless multi-hop path is com-
puted as the sum of link ETXs of all links included
in the multi-hop path.

From Fig. 1, we can see that link ETX increases
as the length of a link increases in the above model
of ETX. This property can be intuitively understood
because transmission errors tend to occur more fre-
quently if we use longer links. In addition to this
fact, the lengths of links tend to be long if we use a
routing protocol that builds wireless multi-hop paths
in minimum-hop fashion. Therefore, we can easily
expect that minimum-hop routing increases the link
ETX of each link included in a multi-hop path. Con-
versely, if we use a routing protocol that selects a
multi-hop path minimizing the lengths of links, the
ETX of each link can be minimized; however, the
number of hops increases, and as a result, the route
ETX may increase because of the increase of the num-
ber of hops.

The above observation indicates that a wireless
multi-hop path is desired to have appropriately short
links and an appropriately small number of hops to
minimize route ETX. It is not difficult to build such
a multi-hop path in actual situations if routing pro-
tocol can utilize link ETX of each link as a link
cost. Actually, link ETX can be measured at wire-
less nodes and can be distributed over the network.
After exchanging information on adjacent nodes and
link ETX, nodes in the network own common infor-
mation of network topology represented as a weighted
graph as shown in Fig. 2, where the weight of a link
corresponds to link ETX. Then, routing protocol can
compute a multi-hop path with minimum cost (best
path) by executing a minimum cost algorithm.

Minimum hop path
B.4 {Route ETX=25.5

(Route ETX = 6.8)

Fig.2: Model of a multi-hop network.

Considering such a routing, we have interesting
problems from the viewpoint of theoretical network
design. For a multi-hop network with regular struc-
ture, we may be able to theoretically identify the best
path by utilizing simplicity of network topology with-
out executing minimum cost algorithms. Further-
more, such a theoretical identification may give prop-
erties of the best path in detail. In another case where

wireless nodes are randomly distributed, it is also in-
teresting to theoretically characterize the best path
and to statistically estimate route ETX from typi-
cal parameters that characterize a random network.
These theoretical analyses not only give theoretical
insights but also contribute to network planning and
optimization. For example, solutions to these prob-
lems can be applied to optimization of the network
parameters to achieve a desired route ETX.

With this as background, in this paper, we intro-
duce some recent results on theoretical identification
of the best path and theoretical formulas to evaluate
the quality of the best path in wireless multi-hop net-
works with regular structure [7]. We explain how the
best path is identified using examples. We also in-
troduce results on theoretical characterization of the
best path in random wireless multi-hop networks [8].
To obtain these results, theories of graph/network
and geometrical probability [9] [10] are utilized as
mathematical tools. Finally, we describe some related
issues.

2. ROUTE ETX IN
NETWORKS

In this section, we use ETX as a metric of link
quality, and introduce how the best path is theoret-
ically identified in two cases that are different in as-
sumptions on positions of nodes. In one case (Case
1), nodes are at constant intervals of a on a line,
and in another case (Case 2), nodes are randomly
distributed on a line obeying a Poisson distribution
with intensity A. Let u(z) be the link ETX of a link of
length z. We assume that u(z) is a convex monotoni-
cally increasing function, and «(0) > 0 as represented
in Fig. 1. Let L be the distance between S and D. Let
d be the maximum transmission range (communica-
tion range) of a node. We assume that u(z) = oo if
z > d. Let U(r) be the route ETX of path r. Let Ry,
be the set of all paths with k hops. Let ror be the
best path. Let ro ; be a path that minimizes route
ETX in Rg. Then, U(rog) is the minimum route
ETX, and is equal to ming U(ro ).

ONE-DIMENSIONAL

2.1 Case 1

In Case 1, we can construct a weighted graph us-
ing a,L,d, and u(z). In the weighted graph, there
is a link between two nodes if the distance between
them is not longer than d, and the weight of a link
is decided by substituting the distance between these
nodes into u(z). Figure 3 shows an example. In this
example, a = 8m, d = 50m, L = 88m and the ETX
function in Fig. 1 is used. Then, one way to obtain
the best path and minimum route ETX is to execute
a minimum cost algorithm with the weighted graph
as an input. Of course, this method successfully gives
the best path and minimum route ETX; however, the
minimum cost algorithm only outputs the best path,
and does not indicate properties of the best path.



Characterization of Wireless Multi-hop Paths with High Quality: Toward a Theoretical Framework 19

Also, outputs of the algorithm do not give a clear re-
lation between minimum route ETX and a, L, d, and

Fig.3: A weighted graph.

In Case 1, we showed in [7] that there is a direct
relation between the best path and the parameters
a,L,d, and u(z). Namely, we have a method to suc-
cessfully identify the best path without executing any
minimum cost algorithms owing to simplicity of the
network structure. The following are the results in
[7]: In this method, we do not have to construct any
weighted graphs for inputs, and inputs are just a, L, d,
and u(z). In Case 1, minimum route ETX is given as

U(TOJ), L S noa,
U(TOR) = ”gr_LZTi U(TOJC), L > nga, (1)

nopa)

where ng is a positive integer that minimizes ,

noa
e = Lo
s=|—|,t=|—
noa noa

means that the number of hops of the best path is s
or t. Also, we know that links included in ro j are
classified into at most two groups. For a given k, let
ny, and ¢; ; be the number of links and the length
of each link in the first group, respectively. Let ng j
and /5, be the number of links and the length of each
link in the second group, respectively. Then, we have

and k is s or t. This equation

nyr =k —na, (2)

L L
n2k = E —k LmJ , (3)

=] £ ®

627k = ka + a. (5)

The best path in Case 1 is determined by n; i, £1 k,
Na, {25, s and t.

Let us observe the above formula using an exam-
ple. Figure 4 shows an example of the best path be-
tween S and D, where a = 8m, d = 50m, L = 88m
and the ETX function in Fig. 1is used. In the follow-
ing, we call the routing method that selects the best
path Optimum Routing (OR). Namely, OR minimizes
route ETX. In this example, after some calculations,
we have ng = 3, s = 3 and t = 4. This means that the
number of hops of the best path is 3 or 4. Namely, the
best path is 7o 3 or 70 4. Then, we have to consider
ro,3 and 7o 4 to find the best path. We have n; 3 =1,
ng 3 = 2, €173 =3a = 24, and 6273 = 4da = 32; there-
fore, rp 3 consists of one link of length 24m and two
links of length 32m. In the same manner, we can see
that 7o 4 consists of one link of length 16m and three
links of length 24m. Then, from the link costs shown
in Fig. 3, route ETX of ro 3 is u(24) 4+ 2u(32) = 7.1,
and that of ro 4 is u(16) + 3u(24) = 5.6. From these
values, we can see that the best path is 70 4, and the
minimum route ETX is 5.6. As can be seen from this
example, the best path can be clearly identified, and
minimum route ETX can be computed very easily in
Case 1. Also, we can clearly know what length each
link should be set to and what number of hops should
be selected to construct the best path. In this exam-
ple, the link lengths should be 16m and 24m, and the
number of hops should be four.

d
SOC8500 050005009500
011 1.5 1.5 15 L

Fig.4: FEzxzample of the best path in Case 1.

In Fig. 5, we show minimum route ETX for dif-
ferent values of a as functions of L. Here, ¢~ means
the density of nodes. From Fig. 5, we can see that
as the density of nodes increases, the minimum route
ETX tends to decrease for a given L. This is be-
cause we have more candidate paths as the density
increases. Also, as L increases, the minimum route
ETX increases for a given a because more hops or
longer links are needed to construct a multi-hop path
with high quality between S and D.

For reference, we consider routing methods called
Shortest Path Routing (SPR) and Longest Path
Routing (LPR). Figures 6 and 7 show examples of
multi-hop paths selected by SPR and LPR, respec-
tively. Parameters used in these figures are the same
as those used in Fig. 4. SPR selects a path with min-
imum hops. In Fig. 6, S and D can be connected by
a two-hop path because d = 50m and L = 88m. The
lengths of the first and second links are 48m and 40m,
respectively. Then, link ETXs of the first and second
links are u(48) = 15.4 and u(40) = 6.2, respectively.
Therefore, the route ETX of the multi-hop path se-
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Fig.5: Minimum route ETX in Case 1.

lected by SPR is 21.6 in this case. In Fig. 7, LPR
is considered. This method selects a multi-hop path
consisting of the shortest links. Namely, the multi-
hop path in Fig. 7 consists of eleven links of length
a = 8m. The link ETX of each link is u(8) = 1.0.
Therefore, the route ETX of the multi-hop path se-
lected by LPR is 11.0 in this case. From the above
three examples, we can see that the route ETX de-
pends on how to determine the length of each link and
the number of hops, and that it is important to know
what length each link should be set to and what num-
ber of hops should be selected to minimize the route
ETX.
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Fig.6: FEzxzample of a multi-hop path selected by
Shortest Path Routing in Case 1.
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Fig.7:  Ezample of a multi-hop path selected by
Longest Path Routing in Case 1.

Let us compare the route ETX of OR (minimum
route ETX) with those of SPR and LPR in more de-
tail. Figure 8 shows the ratio of the route ETX of
SPR to the minimum route ETX, and the ratio of
the route ETX of LPR to the minimum route ETX
as functions of L. In this figure, @ = 5m. From this
figure, we can confirm that for a small L, the ratios
are close to 1, namely, OR is not so different from SPR,
and LPR. For a large L, the ratios are greater than
1. From these results, we can see that OR greatly
reduces ETX compared with SPR and LPR, if L is
relatively large.
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Fig.8: Ratio of route ETX of SPR to minimum

route ETX and ratio of route ETX of LPR to mini-
mum route ETX in Case 1.

As explained in this section, we can successfully
identify the best path in Case 1. The results in [7]
enable us to know all links included in the best path,
as well as the number of hops in the best path, with-
out executing any minimum cost algorithms like the
Dijkstra algorithm. While this result is considered
to be interesting from a theoretical point of view, it
can be applied to optimization problems of multi-hop
networks as well as estimation of the minimum route

ETX.

2.2 Case 2

In this subsection, we consider the route ETX of
the best path in Case 2, and introduce approximate
methods to analyze the minimum route ETX in a
one-dimensional random network [8]. If nodes are
randomly distributed as assumed in Case 2, inputs
for analysis of the route ETX will be

B Density of nodes.

B Distribution that represents statistical proper-

ties of positions of nodes.

B Distance between source and destination.

B Communication range.

B Function of link ETX.

Here, we assume that the distribution of nodes obeys
a Poisson distribution of intensity A. As can be seen
from the above list, in Case 2, input is not given as a
weighted graph. Furthermore, in this case, we should
evaluate the route ETX using the statistical property
of the minimum route ETX. Hence, output of the
analysis should be a statistical value. Then, we use
the mean of the minimum route ETX. In this subsec-
tion, we consider how to theoretically compute the
mean of the minimum route ETX using the above
listed inputs.

In Case 2, it is difficult to precisely compute the
mean of the minimum route ETX using theoreti-
cal methods, and an approximate method is needed.
Then, in [8], we considered a simple routing policy
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to select a multi-hop path, denoted by Policy 1 here.
This policy is an approximation of Optimum Routing.
After defining Policy 1, we theoretically compute the
mean route ETX of Policy 1 using the theory of geo-
metrical probability [9] [10]. The simplicity in Policy
1 enables us to theoretically compute the mean route
ETX in random multi-hop networks with Policy 1.

The following is Policy 1: Policy 1 tries to choose
a multi-hop path with links close to a constant d op:
and an appropriately small number of hops. Define
that ds op: is a real number that satisfies u(ds opt) =
2u(ds opt/2). Then, Policy 1 chooses a link whose
length is not longer than ds op¢ and is the closest to
ds opt, as the next link. If there is no link whose length
is not longer than d; op¢, then Policy 1 chooses a link
whose length is longer than d; ., and is the closest
to ds, opt, as the next link.

Figure 9 is an example of route selection based on
Policy 1. In this example, S has three nodes within
ds opt and chooses the farthest node, denoted by A,
in these three nodes as a relay node. Next, node A
has no node within dy ;. Then, node A chooses the
closest node, denoted by B, as the next relay node.
Node B has three nodes within dg ., and chooses
node C. Because the distance between node C and
destination D is not longer than ds p¢, they are di-
rectly connected. Consequently, Policy 1 chooses the
multi-hop path S-A-B-C-D.

In [8], we showed that the mean route ETX of
Policy 1 is at most double the mean of the minimum
route ETX for a large density of nodes. Also, for a
small density of nodes, there are a small number of
candidate paths in nature; therefore, it is expected
that paths selected by Policy 1 are not so different
from the best path, and that the mean route ETX of
Policy 1 can approximate the mean of the minimum
route ETX. Also, this expectation is supported by
the result in Case 1 because the difference between
the lengths of links included in the best path is at
most a in Case 1.

d

ds,og ds,gﬂ
ds,om ds,ogt
A B

S Q- 90——0 08050

D
0 C L
Fig.9: FExample of Policy 1.

Let Uy be the mean route ETX of Policy 1. If
L < ds opt, then Uy = u(L) because source and desti-
nation are directly linked by Policy 1. For L > dg opt,
we have

2[L/ds,opt]_1
Up = Pr(H = k)Uy, (6)
k=[L/d]

where H is a random variable representing the num-

ber of hops of a multi-hop path selected by Policy
1, and Uy is the mean route ETX of a multi-hop
path selected by Policy 1, given that H = k. In [8],
Pr(H = k) and Uy, were derived by the theory of ge-
ometrical probability. This theory can be applied to
analysis of properties of geometrical patterns whose
positions are random [9][10]. Study of the minimum
route ETX using the geometrical probability is a new
topic in the field of performance analysis of wireless
multi-hop networks. In the same manner, in [8], we
derived the mean route ETXs of SPR and LPR in
Case 2 using geometrical probability.

We can approximately compute the minimum
route ETX in Case 2 for given A, L, d, and u(z) using
the formula for Policy 1. In Fig. 10, we show some
numerical results the mean route ETX of Policy 1 to-
gether with the simulation results of the mean of the
minimum route ETX, where d = 50m, and the ETX
function in Fig. 1 is used. This figure shows that the
numerical results of the approximate method agree
with the simulation results. From this result, we can
confirm that Policy 1 well approximates OR in Case
2, and that it is important to construct a multi-hop
path consisting of links whose lengths are close to
ds opt to minimize the route ETX. This result indi-
cates that even in random multi-hop networks, we
can characterize the best path and can know what
kind of path minimizes the route ETX.

Figure 11 shows the ratio of the mean route ETX
of SPR to the mean of the minimum route ETX, and
the ratio of the mean route ETX of LPR to the mean
of the minimum route ETX as functions of L. In
this figure, A = 0.2. For the theoretical values, the
means of route ETXs of SPR and LPR are obtained
by equations in [8]. Figure 11 shows that OR signif-
icantly reduces route ETX compared with SPR and
LPR if L is relatively large in the same manner as in
Case 1.
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Fig.10: Minimum route ETX in Case 2.
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3. ROUTE ETX IN TWO-DIMENSIONAL
NETWORKS

In the preceding section, we briefly introduced the-
oretical characterizations of the best path in two cases
in one-dimensional multi-hop networks. Of course,
the topology of multi-hop networks is not limited to
one-dimension. The above results should be extended
to the same problems in two-dimensional multi-hop
networks.

In [7], a lattice network shown in Fig. 12 was con-
sidered. The inputs to computation are as follows.

B Distance between adjacent nodes: a.

B Position of source node: (0,0).

B Position of destination node: (L, Ly).

B Communication range: d.

B Function of link ETX: u(z).

To theoretically identify the best path, the following
assumptions are made in [7].

B u(z) is a convex monotonically increasing

functiorll/.

< zu/ (2)

' (z)
u'’(z) are the first and second derivatives of
u(z), respectively.
d

B u(d) >2 < \@>
The last two assumptions are made to simplify the
identification of the best path. Again, let 7o be
a multi-hop path that minimizes route ETX in Rj.

L, L
Let m; and m, be {kJ and {y
a

< bfor 0 < z < d, where v/(z) and

ka
define n3 i, na i, N5 ; and ng i as follows:

J , respectively. We

n3r =k —nap — N5k — N6k, (7)

s

Ny = f — kmg — ne ks (8)

L
N5k = Zy — kmy — ne ki, (9)

L+ L
”—kmw—kmy—k}. (10)

ng,k = MAT {0,
Let ro) be a path consisting of ngj links, 74y
links, ms ) links and mej links represented as vec-
tors (mga,mya), (mgza + a,mya), (mgya,mya + a),
and (mga + a, mya + a), respectively. The following
are the results in [7]: Under the above assumptions,
it was shown that ro x = 7o if U(rex) < oo . Also,
if Ly >0 or Ly >0, we have

(11)

z+
1<k =1 U(ra,1) <00

U(TOR) = U(T27k).

From this equation, we can compute the minimum
route ETX. Also, the best path can be characterized
by r2 . The best path in the lattice network can be
theoretically identified although some restrictions on
the link ETX function are needed.

An example of the best path is shown in Fig. 12,
where a = 8m, d = 50m, (Lg, L,) = (96,32) m, and
the ETX function in Fig. 13 is used. In this example,
the number of hops in the best path is five. Let us
observe what kinds of links are included in the best
path. In this case, m, = 2 and m, = 0. Then, links
included in the best path are represented by four vec-
tors (2a,0)=(16,0), (3a,0)=(24, 0), (2a, a)=(16, 8),
and (3a,a)=(24, 8). Also, we have ng5 =0, na5 = 1,
ns5 = 3 and ngs = 1. Therefore, (16, 0) is not in-
cluded in the best path, and the best path consists
of a vector of (24, 0), three vectors of (16, 8) and a
vector of (24, 8). As a result, the best path consists of
three kinds of links as shown in Fig. 12. Link ETXs
of vectors (24, 0), (16, 8) and (24, 8) are 1.5, 1.1 and
1.6, respectively. Therefore, minimum route ETX is
6.4. Note that although we have to compare U(ra 1)
for different k£ in Eq. (11) to obtain the above best
path, the range of k for comparisons is 3 < k < 16 in
this case.

In Fig. 14, we show the minimum route ETX for
different destinations in a lattice network, where the
source node is at (0,0), a = 8m, d = 50m, and the
ETX function in Fig. 13 is used. In this figure, route
ETX at (z,y) is the minimum route ETX for a des-
tination at (x,y).

4. RELATED ISSUES

Thus far, we have introduced how to characterize
the best path and how to theoretically compute the
minimum route ETX in three cases. In this section,
we consider other issues related to characterization
of the best path in wireless multi-hop networks. As
mentioned, in some cases, we can know the direct
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Fig.13: ETX function of a link.

relations between typical parameters of the network
and the quality of the best path; however, these re-
sults are obtained only for limited cases, and there
will be many cases in which similar analyses are pos-
sible. For example, we have the same problem for
a random two-dimensional network. Furthermore,
we have regular structures other than line structure
and lattice structure. We have distributions of nodes
other than a Poisson distribution. It is important to
consider the same problems for these structures.
Also, in this paper, we introduced just analyses
of route ETX. As mentioned in the introduction, we
have other metrics for link quality, and analyses of
path quality for these metrics should be also stud-
ied. In particular, we utilized an assumption that
link ETX is a convex monotonically increasing func-
tion. Analysis of path quality for the metrics that do

Route ETX

O == N W b 0O

Fig.14: Minimum route ETX.

not satisfy this assumption is more difficult than that
of ETX. For example, if we use medium time metric
(MTM) [4] as cost of a link, MTM is no longer a
convex monotonically increasing function because it
is defined as the medium time consumed in a link in
a multi-rate environment as represented in Fig. 15.
Hence, the results in Secs. 2 and 3 are no longer
applicable to the networks with MTM. In addition
to analysis of MTM, analyses of metrics other than
ETX and MTM will be challenging research issues.
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Fig.15: MTM function of a link.

The results introduced in this paper can be applied
to other kinds of problems. We have a lot of network
problems. For example, we have load balancing, con-
struction of disjoint paths, and channel assignment.
These issues can be considered together with commu-
nication quality. For example, we can consider bal-
ancing a load on each node while guaranteeing path
quality. For this purpose, the results explained in this
paper can be utilized because we can know what kind
of paths achieves the highest quality. From this infor-
mation, we can obtain candidate of paths that achieve
the highest quality, and can consider load balancing
using these candidates.

In this paper, we assumed static nodes and paid
attention to communication quality of a path. We
should also analyze effects of mobility and interfer-
ence on communication quality.

5. CONCLUSIONS

In this paper, we considered quality of communica-
tion paths in wireless multi-hop networks, and intro-
duced some results on identification and characteri-
zation of the best path. Using the results, we could
precisely identify the best path and estimate the min-
imum route ETX in regular multi-hop networks. In
a random multi-hop network, although some kinds of
approximations are needed, we have some approxi-
mate methods that successfully described the char-
acteristics of the minimum route ETX. We also con-
sidered some extensions and applications of these re-
sults. We still face many other interesting problems
related to characterization of the best path as sum-
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marized in Sec. 4.
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