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ABSTRACT

Wavelet analysis is one of the most important
methods for analyzing the surface Electromyography
(sEMG) signal. The aim of this study was to investi-
gate the wavelet function that is optimum to identify
and denoise the sEMG signal for multifunction myo-
electric control. This study is motivated by the fact
that there is no universal mother wavelet that is suit-
able for all types of signal. The right wavelet function
becomes to achieve the optimal performance. In this
study, the optimal wavelets are evaluated in term of
mean square error of two criterions, namely denois-
ing and reconstruction. Fifty-three wavelet functions
are used to perform an iterative denoising and re-
construction on different noise levels that are added
in sEMG signals. In addition, various possible de-
composition levels and types of wavelets in the de-
noising procedure are tested. The results show that
the best mother wavelets for tolerance of noise in de-
noising are the first order of Daubechies, BioSplines,
and ReverseBior but the classification results are not
recommended. The fifth order of Coiflet is the best
wavelet in perfect reconstruction point of view. Var-
ious families can be used except the third order of
BiorSplines and Discrete Meyer are not recommended
to use. Suitable number of decomposition levels is
four and optimal wavelets are independent of wavelet
denoising algorithms.

Keywords: Wavelet, Wavelet Function, Denoising,
EMG, Electromyography, Myoelectric Control

1. INTRODUCTION

Surface electromyography signal is one of the most
significant biomedical signals [1]. It is widely studied
and applied in clinic. This is owing to the fact that
the use of sEMG signal is very easy, fast and conve-
nient. In other words, sEMG signal is more advantage
than the other biomedical signal such as Electroocu-
lography (EOG), and Electroencephalography (EEG)
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signals in because of its higher amplitude and signal
to noise ratio (SNR) [2]. Feature extraction is the
method that uses to model and analyze sEMG signal.
It is an important stage to achieve the better perfor-
mance in myoelectric control. Feature extraction can
be divided into three groups [3]. Firstly, time domain
group is very easy to understand and calculate such
as mean absolute value and root mean square. Nev-
ertheless, features in time domain group were limited
successful because these methods assume that sEMG
signal is stationary, while the sEMG signal is non-
stationary. In addition, the time domain is very sensi-
tive with various noises. Thus changing trend toward
the use of information contained in frequency domain,
some characteristic variables in power spectral den-
sity are presented. Mean frequency and median fre-
quency are the most popular frequency method but it
is not usefulness in multifunction myoelectric control
[4]. Current advances in time-frequency analysis are
crucial to understand the complexity of sEMG signal
[5]. Wavelet analysis is becoming more important in
time-frequency method. Most popular in sEMG ap-
plication is Discrete Wavelet Transform (DWT) and
Wavelet Packet Transform (WPT) [6]. The most ad-
vantages of using DWT and WPT is that features can
be easily extracted and contain useful information in
both of frequency content and time domain. More-
over, DWT and WPT can perform local analysis of
sEMG signal and expose the trends of sEMG signal
[7]. DWT and WPT decomposes original sEMG sig-
nal into some multi-resolution components according
to a basis function called mother wavelet or wavelet
function. The wavelet function is both translated and
extended in time undertaking a two-dimensional cross
correlation with the time domain sEMG signal. How-
ever, the difference between DWT and WPT is that
WPT offers more range of possibilities for signal anal-
ysis than DWT.

The problem is what a high quality feature is.
Three properties of feature [4] including maximum
class separability, robustness, and computational
complexity were used to indicate the high quality
EMG feature extraction. The first property is to
guarantee that the resulting percentage accuracy clas-
sification will be as high as possible. In the previous
works, lots of researchers have successfully evaluated
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DWT to classify the sEMG signal that the optimal
wavelet function is dependent on the kind of applica-
tions [4-8]. Moreover, varieties of noises that are orig-
inated from measure instruments are major problems
in analysis of sEMG signals. The amplitude of sEMG
signal is very small. It is ranging between 50 µV-100
mV [1]. The amplitude of various noises is higher
than the amplitude of sEMG signal. As a result, anal-
ysis of sEMG signal is very difficult to get accurate
classification. Generally, sEMG signal is corrupted
with two major noises [9]. First, noises generated
by biological resources such as motion artifacts. Sec-
ond, noises generated by environment resources such
as power-line interference. Power line interference or
instability of electrode-skin contact can be removed
using typical filtering procedures but the interference
of white Gaussian noise (WGN) is difficult to remove
using previous procedures [10]. Recent advance in
wavelet denoising algorithms, an advance signal pro-
cessing method, have been received considerable at-
tention in the removal of WGN [10,11].

In the literatures, many researcher groups are at-
tending to employ wavelet denoising for sEMG signal
in myoelectric control. Jiang and Kuo [12] compared
four classical threshold estimation methods and two
threshold transformation methods with simulated sig-
nal at fixed 16-dB SNR and original sEMG signal.
The literature used signal-to-noise estimator for eval-
uation of the quality of the reconstructed signal. This
estimator can estimate the quality of denoising meth-
ods for the simulated signal but it does not work for
the sEMG signal. Subsequently, they concluded that
the denoised sEMG is insensitive to the selection of
denoising methods. The researchers apply the sec-
ond order of Daubechies wavelet (db2) with six de-
composition levels by the suggestion of [13]. Guo et
al. [14,15] compared the same denoising methods as
Jiang and Kuo but they changed real sEMG signal
from mouse clicking to normal walking on the flat.
The result of Guo et al. is similar to Jiang and Kuo.
That is, they did not show the evaluation and quality
results. The selected fifth order of Symlets wavelet
(sym5) with four decomposition levels is adopted in
[14,15]. Zhizeng and co-laboratory [16,17], and Ku-
mar et al. [7] are other researcher groups that use the
Symlets wavelet family in sEMG signal. Zhizeng et al.
[16,17] apply the eight order and four levels (sym8) to
denoise sEMG signals with hand movements. On the
other hands, Kumar et al. [7] apply the fourth and
fifth orders and eight levels (sym4, sym5) to deter-
mine muscle fatigue. In addition, the most popular
wavelet family in sEMG analysis is the Daubechies
wavelet. The various orders of Daubechies and vari-
ous levels of decomposition are used such as the forth
order (db4) with three and six levels, the fifth order
(db5) with five levels, and the tenth order (db10) with
eight levels in [18-21], respectively.

However, from the literatures, it has been shown

that all of them fixed the wavelet function and the
scale level. But in real world, there is no universal
wavelet function that is suitable for all type of signals.
This was not powerful enough to make the compar-
ison fair with respect to the variety of wavelet func-
tion and scale level. Consequently, the selection of
wavelet function becomes important stage to achieve
optimal performance in signal processing for a given
signal of interest. There are literatures on an optimal
wavelet selection for ECG signal applications [22,23]
and other applications [24] but there is no an optimal
wavelet selection for sEMG signal applications. In
this research, we evaluate most standard wavelet fam-
ilies, namely Daubechies, Symlets, Discrete Meyer,
Coiflet, BiorSplines, and ReverseBior wavelets with
different orders and decomposition levels. The opti-
mal wavelet functions are critically attended to test
the performance in robustness point of view and the
discussion in classification criterion is proposed.

This paper presents a complete comparative study
of decomposition, denoising, and reconstruction us-
ing wavelets for tolerance and removing WGN from
sEMG signal. The aims of this study were to con-
clude: 1) the suitable wavelet functions in decompo-
sition, denoising and reconstruction points of view 2)
the optimal level of wavelet decomposition 3) the ef-
fect of wavelet denoising algorithms with the optimal
wavelet functions.

The paper is organized as follows. Experiments
and data acquisition are described in Section 2. Sec-
tion 3 presents a description of wavelet analysis meth-
ods. Results and discussion are reported in Section
4, and finally the conclusion is drawn in Section 5.

2. EXPERIMENTS AND DATA ACQUISI-
TION

In this section, we describe our experimental pro-
cedure for recording sEMG signals. The sEMG sig-
nals were recorded from flexor carpi radialis and ex-
tensor carpi radialis longus of a healthy male by two
pairs of surface electrodes (3M red dot 2.5 cm. foam
solid gel). Each electrode was separated from the
other by 20 mm. The frequency range of sEMG sig-
nal is within 0-500 Hz, but the dominant energy is
concentrated in the range of 10-150 Hz. A band-
pass filter of 10-500 Hz bandwidth and an amplifier
with 60 dB gain were used. Sampling rate was set at
1000 samples per second using a 16 bit A/D converter
board (NI, USA, IN BNC-2110).

A volunteer performed six upper limb motions in-
cluding hand open, hand close, wrist extension, wrist
flexion, pronation, and supination as shown in Fig.1.
Hand close and wrist flexion were analyzed using sig-
nals from extensor carpi radialis longus and the oth-
ers motions were analyzed using signals from flexor
carpi radialis because each motion has strong signal
depending upon electrode position. In experiment, a
subject performed six hand motions at constant force
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Fig.1: Six Upper Limb Motions.

contractions for 1 second, and switched between re-
laxation (4 seconds interval) and static contraction,
and then repeats the pattern to 10 sessions. After
recording, ten datasets of each motion were stored
for processing. The sample size of sEMG signals is
256 ms for real-time constraint that response time
should be less than 300 ms.

3. METHODOLOGY

The objective of wavelet denoising algorithm is to
suppress the noise part of the signal s(n) by discard-
ing the WGN e(n) and to recover the signal of interest
f(n). The model is basically of the following form:

s(n) = f(n) + e(n). (1)

The general wavelet based denoising procedures
are composed of three steps:
Step 1: Decomposition. Choose a wavelet function

and decomposition level J . Compute the wavelet de-
composition of the sEMG signal at level J .
Step 2: Denoising wavelet’s detail coefficients. For

each level selects a threshold value and apply thresh-
olding to the detail coefficients.
Step 3: Reconstruction. Compute the reconstruc-

tion based on the original approximation coefficients
of level J and the modified detail coefficients of levels
from 1 to J .

To achieve and optimize the above procedures,
four points must be addressed, namely selection of
the suitable wavelet function, level of decomposition,
threshold estimation, and threshold transformation.
Most wavelet based denoising literatures highlight the
thresholding techniques rather than selection of avail-
able wavelet functions [10,13-17]. The procedure of
wavelet denoising follows three steps described below.

3.1 Wavelet Decomposition

The first step of wavelet denoising procedure is
to select wavelet function. It is important of choos-
ing the right filters [22,23]. The right wavelet func-
tion determines perfect reconstruction and performs

better analysis. A total of 53 wavelet functions
are used in evaluation of the denoising performance.
The 53 wavelet functions consist of 10 Daubechies
wavelets, 7 Symlets wavelets, 5 Coiflet wavelets, 15
BiorSplines wavelets, 15 ReverseBior, and Discrete
Meyer wavelet. All of wavelet functions are presented
in Table 1.

Table 1: The 53 types of wavelet functions.
Wavelet family Wavelet function with orders
Daubechies db1 or haar, db2, db3, db4, db5,

db6, db7, db8, db9, db10
Symlets sym2, sym3, sym4, sym5, sym6,

sym7, sym8
Coiflet coif1, coif2, coif3, coif4, coif5
BiorSplines bior1.1, bior1.3, bior1.5, bior2.2,

bior2.4, bior2.6, bior2.8, bior3.1,
bior3.3, bior3.5, bior3.7, bior3.9,
bior4.4, bior5.5, bior6.8

ReverseBior rbio1.1, rbio1.3, rbio1.5, rbio2.2,
rbio2.4, rbio2.6, rbio2.8, rbio3.1,
rbio3.3, rbio3.5, rbio3.7, rbio3.9,
rbio4.4, rbio5.5, rbio6.8

Discrete Meyer dmey

Next step is the selection of the number of decom-
position levels of signal. DWT use high-pass filter to
obtain high frequency components so-called details
(D) and low-pass filter to obtain low frequency com-
ponents so-called approximations (A). Procedure of
noise reduction is based on decreasing of noise con-
tent in high frequency components (details) of signal.
The decomposition levels are varied from one (the
first level of decomposition) to eight (the maximum
dept of decomposition, J = log2N , where N is the
length in samples of time-domain signal) [6] in this
study.

3.2 Wavelet Denoising

Four classical threshold estimation methods were
applied in this study, namely universal threshold,
SURE threshold, hybrid threshold, and minimax
threshold, to observe the effect with optimal wavelet
function. Four methods were described in the follow-
ing.

1. Universal thresholding method: This method
was also proposed in [25]. It used a fixed form thresh-
old, which can be expressed as

THRUNI = σ
√

2 log(N), (2)

where σ is noise variance. It can be estimated using
median parameter which can be calculated as

σ =
median(|cDj |)

0.6745
, (3)

where cDj is the detail wavelet coefficients at scale
level j and 0.6475 is a normalization factor.
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2. SURE thresholding method: This method used
a threshold selection rule based on Stein’s Unbiased
Estimate of Risk. It gets an estimate of the risk for
a particular threshold value THRSURE , where risk
is defined by Stein’s unbiased estimate of risk [26].
Minimizing the risk in THRSURE gives a selection of
the threshold value.

3. Hybrid thresholding method: This method at-
tempts to overcome the limitation of SURE thresh-
olding. It is a mixture of the universal thresholding
method and the SURE thresholding method. It im-
proved the limitation of SURE thresholding method.
The exact conditions of this algorithm are described
in [27].

4. Minimax thresholding method: This method
was also proposed in [26]. It used a fixed threshold
chosen to yield minimax performance for mean square
error against an ideal procedure.

Level dependent thresholding is applied in this
study. σ is calculated for each decomposition level.
Therefore, the threshold values are different in each
level.

After threshold values are determined, threshold-
ing can be done using hard and soft transformation.
In addition, two modified threshold transformations,
namely hyperbolic and non-negative garrote were ap-
plied for this study to observe the effect same as the
threshold estimation. The methods were described in
the following.

1. Hard Thresholding: This transform can be de-
scribed as the usual process of zeroing all detail co-
efficients whose absolute values are lower than the
threshold (THRj), and then keeping other detail co-
efficients. It can be expressed as [25]

cDj =
{

cDj , if |cDj | > THRj

0 , otherwise . (4)

2. Soft Thresholding: This transform is an exten-
sion of hard thresholding. First all detail coefficients
whose absolute values are lower than the threshold
is zeroed and then the other coefficients are shrinked
towards zero. It is defined as [?, ]

cDj =
{

sgn(cDj)(cDj − THRj) , if |cDj | > THRj

0 , otherwise.
(5)

3. Hyperbolic Thresholding: This transform is simi-
lar to soft thresholding. It is achieved to address the
limitation of soft thresholding. It is shown as [?, ]

cDj =

{
sgn(cDj)

√
(cD2

j − THR2
j ) , if |cDj | > THRj

0 , otherwise.
(6)

4. Non-negative Garrote thresholding: This trans-
form is composed of hard and soft thresholding. It
provides a good compromise between hard and soft

thresholding. It is given by [?, ]

cDj =

{
sgn(cDj)(cDj − THRj

cDj
) , if |cDj | > THRj

0 , otherwise.
(7)

The response of four threshold transformation
functions is presented in Fig.2. We suppose thresh-
old value (THR) to 0.4 and diagonal dashed line
indicates the input signal. The third aim is eval-
uated with various wavelet denoising procedures as
described above.

Fig.2: The response of threshold transformation
functions with 0.4 threshold value (THR).

3.3 Wavelet Reconstruction

After denoising procedure, the reconstructed sig-
nal computes wavelet reconstruction based on the
original approximation coefficients of level J and the
modified detail coefficients of levels from 1 to J .

3.4 Myoelectric Control-based on Wavelet
Transform

Wavelet coefficients provide information related to
time-frequency variation of sEMG signal [7]. In prac-
tice, it has been found that lots of applications used
wavelet coefficients to extract the useful information
parameters. To extract the effective features from
wavelet denoising or wavelet decomposition, we can
extract features based on three types: wavelet co-
efficients of wavelet decomposition (Type I), modi-
fied wavelet coefficients of wavelet denoising (Type
II), and modified sEMG signal of wavelet denoising
(Type III). From the experiments in [11] and [30], we
can conclude that the trends of robustness in Type
I and II are similar. Therefore, this paper presents
only results of denoising (Type II) and the robustness
result of Type III is presented. Type III is consid-
ered only the suitable wavelet in denoising criterion
because feature is calculated based on reconstructed
sEMG signal. The classification result is not directly
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dependent on the selected wavelet function in wavelet
denoising procedure. However, Type II should be
considered in both robustness and classification cri-
terions because the result of classification is directly
dependent on the selection of optimal wavelet func-
tion. The block diagrams of three type’s extractions
are shown in Fig.3.

Fig.3: Feature extraction based on wavelet trans-
form.

3.5 Evaluation

In this research, the robustness criterion is evalu-
ated by mean square error (MSE). MSE of modified
wavelet coefficients and reconstructed sEMG signal
is used to evaluate three types of extraction (Type
I-III). MSE is a standard statistical criterion that
presents the same results as SNR and Root mean
square (RMS) difference (compare the results of [11]
and [31] as will be discuss in Section 4.2). MSE of
modified wavelet coefficients (MSEW ) can be given
by

MSEW =
∑N

i=1(ci − cei)2

N
, (8)

where ci represents the modified wavelet coefficients
of original sEMG signal and cei is the modified
wavelet coefficients of noisy sEMG signal.

In addition, MSE of reconstructed sEMG signal
(MSER) are used to evaluate the quality of robust-
ness function that determines perfect reconstruction.
It is calculated by

MSER =
∑N

i=1(fi − fei)2

N
, (9)

where fi represents the original sEMG signal and fei

is the estimated signal obtained from the modified
wavelet coefficients or reconstructed sEMG signal.

The optimal performance of wavelet function is the
best when both of MSEs are the smallest. To guar-
antee the best wavelet function optimized for sEMG

Fig.4: Original sEMG signal and noisy sEMG sig-
nal at 0 dB SNR from extensor carpi radialis longus
in wrist extension motion.

Fig.5: Power spectrum of original sEMG signal and
noisy sEMG signal at 0 dB SNR from extensor carpi
radialis longus in wrist extension motion.

signal, we calculate MSE averages for each motion
with ten datasets. WGN with various SNR was
added to the original sEMG signal as shown in Fig. 4
and is used to evaluate the performance of robust-
ness. SNR of each datasets was varied from 20 to 0
dB. SNR is calculated by

SNR = 10 log
PXclean

PXnoise
, (10)

where PXclean is the power of the original sEMG sig-
nals and PXnoise is the power of the WGN. Power
spectrum of original sEMG signal and noisy sEMG
signal at 0 dB SNR is shown in Fig. 5. It shows that
WGN spreads in every frequency scale.
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Fig.6: MSEW of five wavelet functions with four
classical wavelet threshold estimations at 0 dB SNR.

Fig.7: MSEW of five wavelet functions with four
classical wavelet threshold transformations at 0 dB
SNR.

4. RESULTS AND DISCUSSION

4.1 Optimal Wavelet Based on Decomposition
and Denoising (Type I and II)

The critical point in wavelet denoising is the se-
lection of right wavelet function which depend on
the application and characteristics of signal. Differ-
ent wavelet functions were investigated to optimize
wavelet denoising procedure. Firstly, the effects of
variety wavelet denoising algorithms with the optimal
wavelet function are discussed. In Fig. 6, we found
that MSEW of each wavelet is not dependent on the
different type of wavelet estimation. Also MSEW of
each wavelet does not change when wavelet transfor-
mation is changed as shown in Fig. 7. These results
answer the third aim. Secondly, Fig. 8 (a) and Fig. 8
(b) present the effects of scale levels for each wavelet
functions. We found that the third level has the best

(a)

(b)

Fig.8: MSEW of five wavelet functions with eight
decomposition levels. (a) 20 dB SNR.(b) 0 dB SNR.

performance, close by the forth level for low noises
(20-10 dB SNR). On the other hand, the fourth lev-
els are better than other scales for high noise (10-0
dB SNR). From experimental above, effect of de-
composition level with optimal wavelet is a little bit.
Hence, the decomposition level 4 is suggested (the
second aim).

Finally, the evaluation of the robustness in Type I
and Type II are described in Fig. 9. MSEW in Fig. 8
(a-c) are plotting in log-lin type of a semi-log graph,
defined by a logarithmic scale on the y axis, and a lin-
ear scale on the x axis. The figures present the results
of MSEW at 20 dB, 10 dB, and 0 dB SNR as consider
as the low, medium, and high noise, respectively. The
results of wavelet functions in each SNR level are the
same trend. As SNR increases, the MSEW of each
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wavelet function increases. The smallest MSEW is
db1, bior1.1, and rbio1.1. The MSEW averages are
0.00407, 0.01242, 0.04090, 0.12739, and 0.41242 at
SNR value of 20, 15, 10, 5, 0 dB, respectively. It
also produces the best robust wavelets. The db2,
db7, sym2, bior5.5, and rbio2.2 provide marginally
better performance than other candidates. Further-
more, the various orders of Daubechies (db1-db10),
Symlets (sym2-sym8), BiorSplines (bior1.1-bior1.5,
bior4.4, bior5.5, and bio6.8), Coiflet (coif1-coif2), and
ReverseBior (rbio1.1-rbio3.9, rbio6.8) can be toler-
ated with WGN. The most terrible wavelet function
is bior3.1. Its MSEW is as much as seven of the
minimum MSEW . The third order of decomposi-
tion of BiorSplines (Bior3.3, bior3.5, bior3.7, and
bior3.9) and Discrete Meyer (dmey) are worse per-
formance. Its MSEW is as much as two of the mini-
mum MSEW . Moreover, in high noise, the second or-
der of decomposition of BiorSplines (bior2.2-bior2.8)
and the fifth order of decomposition of ReverseBior
(rbio5.5) are not good. Therefore, these functions are
not recommended to use for providing EMG features.

If we consider only optimal wavelets for denois-
ing, we can conclude that db1, bior1.1, and rbio1.1
are best. The db2, db7, sym2, bior5.5, and rbio2.2
are prospective to have good performance. It means
these wavelets suitable for extracted feature in Type
I. Results are in agreement with our previous work
[11] and the results of Hussain et al. [31]. In [11],
we compare five wavelet functions from the litera-
tures review in sEMG denoising, namely db2, db5,
sym5, sym8, and coif5, with MSEW measure. The
results show that db2 is better than other functions.
In [31], the researchers evaluate eight mother wavelets
that commonly used in biomedical signals include the
Daubechies db2, db4, db5, db6, and db8 wavelets and
the orthogonal Meyer wavelet (dmey). The results
show db2 is the best using SNR value and RMS dif-
ference measures. The second order of Daubechies is
the optimal wavelets in both of [11] and [31]. How-
ever, the results of [11] and [31] are compared with
a few wavelets that db1, bior1.1 and rbior1.1 are not
contained.

Furthermore, Type II extraction must be consid-
ered the classification results to find the optimal
wavelet. We did not report the classification re-
sults in this work because the suitable wavelet func-
tions depended on the classifier type (neural network,
fuzzy logic, neuro-fuzzy classifier, probabilistic clas-
sifier etc). However, the effective wavelet functions
for classification are proposed by Englehart [8]. Var-
ious types of wavelet function are used in classifica-
tion tasks (Type I). Wavelet coefficients are subjected
to dimensionality reduction and the classification er-
rors are reported. Within the Daubechies, Coiflet,
and Symlet families, the best performance is 18, 4
and 8, respectively. Interesting trend is the improve-
ment of classification performance tends to increas-

ing of wavelet’s order. Thus, for Type II, the balance
between class separability and robustness should be
considered. Db7, sym5 or coif 4 are some compromise
wavelets.

4.2 Optimal Wavelet Based on Reconstruc-
tion (Type III)

Table 2: Mean square error of reconstructed signals
(MSER(×10−3)) at various SNRs.
SNR Most wavelets coif5 dmey
20 dB 4.073816376 4.073816374 4.073840024
15 dB 12.42650749 12.42650748 12.42657928
10 dB 40.90699400 40.90699300 40.90723200
5 dB 127.3962764 127.3962762 127.3970231
0 dB 412.4266599 412.4266591 412.4290643

In the view point of perfect reconstruction signal,
the results of MSER show that the fifth order of
Coiflet (coif5) is the best wavelet function. Its MSER

at low noise, 20 dB SNR, is less than the other can-
didates about 2×10−12. The MSER of other wavelet
functions is approximately 4.073816376× 10−3 at 20
dB SNR. In addition, dmey is the worst wavelet
in reconstruction that MSER is more than the oth-
ers about 3 × 10−8. By comparing MSER in every
noise levels, results of wavelet functions in each SNR
level is the same trend. Table 2 shows the MSER

of most wavelet functions, coif5 and dmey. From
the above experimental results, we can conclude that
most wavelet functions have the same performance of
reconstructed signal.

From the experimental results in Section 4.1 and
4.2, the interesting result is the wavelet functions that
have the complex shape and high frequency of decom-
position wavelet. It is not optimized for robustness.
For example Fig. 10 (a-b) shows the scaling functions
and wavelet functions in time domain of bior3.1 re-
spectively which was found to be worse performance
in robustness. The simple shape and low frequency
of wavelet functions are optimized for morphological
sEMG signal. For example Fig. 8 (c-d) shows respec-
tively the scaling functions and wavelet functions in
time domain of db2. Moreover, the results of WPT
are not reported because it has the same trends with
WT. We can observe the behavior of optimal wavelet
function of WPT from the WT’s trends.

5. CONCLUSIONS

Wavelet analysis is a significant tool to analyze the
surface Electromyography signal. The objective of
this paper was to select suitable wavelet function of
DWT and WPT that is robust to varieties of noises.
We can summarize the optimal mother wavelets into
three points:

1. For Type I extraction, the best wavelet func-
tions are db1, bior1.1, rbio1.1. The db2, db7, sym2,
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bior5.5, and rbio2.2 provide marginally better perfor-
mance than other candidates.

2. For Type II extraction, the balance between
class separability and robustness should be consid-
ered. Db7, sym5 or coif 4 are some compromise
wavelets. In practice, we can adapt wavelet function
to be suitable for each application.

3. For Type III extraction, coif5 provides the best
reconstruction for sEMG signal.

4. Bior3.1, bior3.3, bior3.5, bior3.7, bior3.9, and
dmey are not recommended to use in each Type I-III.

5. DWT and WPT have the same trends of opti-
mal wavelet functions.

The advantage of this result is possibility to re-
ceive good quality EMG wavelet functions that in-
vestigate the best correlation with sEMG signal and
suitable for multifunction myoelectric control system.
Future work is recommended to find the new wavelet
functions, such as Morlet and Mexican Hat, to be
tested and used the optimal robust wavelet function
with some characteristics parameters to extract use-
ful information features as inputs to the EMG pattern
recognition.
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(a)

(b)

(c)

Fig.9: MSEW of all 212 possible combinations
of wavelet functions and threshold transformations
(mother wavelet numbers refer to the wavelets in Ta-
ble I, i.e. ] 1-Daubechies order 1, ] 2-Daubechies or-
der 2,. . ., ] 11-Symlets order 2,. . .,] 18-Coiflet order
1,. . ., ] 53-Discrete Meyer) (a) at 20 dB SNR. (b) at
10 dB SNR. (c) at 0 dB SNR.

(a)

(b)

(c)

(d)

Fig.10: Scaling functions and wavelet functions in
time domain of (a-b) bior3.1. (c-d) db2.


