
Investigation into the Effects of Channel Properties on Training-based MIMO Channel Estimation 173

Investigation into the Effects of Channel
Properties on Training-based MIMO Channel

Estimation

Xia Liu1 , Marek E. Bialkowski2 , and Feng Wang3 , Non-members

ABSTRACT

This paper reports on investigations into the ef-
fect of channel properties on training-based MIMO
channel estimation. Here, the channel’s properties
are represented by eigenvalues of the complex chan-
nel correlation matrix. The influence of these eigen-
values is assessed for two training based channel esti-
mation methods, Scaled Least Square (SLS) method
and Minimum Mean Square Error (MMSE) method.
It is shown that for a given transmitted power to noise
ratio in the training mode, the performance of the two
estimation methods is governed by the sum of eigen-
values of the channel correlation matrix. Simulation
results support this conclusion.
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1. INTRODUCTION

Recent works on multiple input multiple output
(MIMO) techniques have shown that by using mul-
tiple element antennas with suitable signal process-
ing algorithms the capacity of a wireless communi-
cation system can be significantly increased without
the need of an extra operational bandwidth.

Of paramount importance to realization of such
potential of MIMO is an accurate estimation of chan-
nel state information (CSI) at the receiver [1].

A number of channel estimation methods have
been proposed to obtain CSI. The methods that are
based on the use of known data both to the transmit-
ter and receiver (also known as the training sequence)
are the most popular. In [2] and [3], a number of
training-based methods have been studied including
the least square (LS) method, the scaled least square
(SLS) method and the minimum mean square error
(MMSE) method. It has been shown that the accu-
racy of these training-based channel estimation meth-
ods is governed by the transmitted power to noise
ratio (TPNR) in the training mode and the number
of antenna elements used at the transmitter and re-
ceiver. For a fixed length of training sequence the
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channel estimation accuracy drops when the number
of transmitting or receiving antennas increases. This
is one of the shortfalls of the MIMO technique.

In [2] and [3], it has been demonstrated that the
SLS and MMSE methods offer better performance
over the LS method. The reason is that the SLS
and MMSE estimators utilize the channel correlation
to reduce estimation errors while the LS method ne-
glects channel’s properties.

Channel properties are influenced by a signal prop-
agation environment and a resulting spatial correla-
tion (SC) that is present in antenna arrays. In this
paper, the effect of channel properties on the SLS and
MMSE channel estimation methods are investigated.
It is shown that at a fixed transmitted power to noise
ratio (TPNR) the accuracy of SLS and MMSE meth-
ods is governed by the sum of eigenvalues of the chan-
nel correlation matrix.

The rest of the paper is organized as follows. In
section 2, a MIMO system model is introduced fol-
lowed by the description of LS, SLS and MMSE
channel estimation methods. The channel estimation
analysis for these selected methods is given in section
3. The simulation set up and results are presented in
section 4. Section 5 concludes the paper.

2. SYSTEM MODEL & CHANNEL ESTI-
MATION

2.1 MIMO system model

Here, a narrow-band flat block-fading MIMO sys-
tem with Mt antenna elements at transmitter and Mr

antenna elements at receiver is considered. The rela-
tionship between the received signals and the trans-
mitted signals is given by (1):

Ys = HS + V (1)
where Ys is the Mr × N complex matrix repre-

senting the received signals; S is the Mt × N com-
plex matrix representing transmitted signals; H is
the Mr × Mt complex channel matrix and V is the
Mr×N complex zero-mean white noise matrix. N is
the length of transmitted signal sequence.

2.2 Training-based MIMO channel estimation

For a training based channel estimation method,
the relationship between the received signal and the
training sequence is given by (2):



174 ECTI TRANSACTIONS ON ELECTRICAL ENG., ELECTRONICS, AND COMMUNICATIONS VOL.8, NO.2 August 2010

Y = HP + V (2)

where the transmitted signal S in (1) is replaced by
P representing the Mt × L complex training matrix.
L is the length of the training sequence. The goal is
to estimate the complex channel matrix H from the
knowledge of Y and P .

The transmitted power in the training mode is con-
strained by the following expression

‖P‖2F = P (3)

where P is a given power constant and ‖.‖2F stands
for Frobenius norm.

The training sequences are assumed to be orthog-
onal [2] [3] and the transmitted power to noise ratio
(TPNR) in the training mode is set to the value of ρ.

In the LS method, the estimated channel matrix
can be written as [4],

ĤLS = Y P † (4)

where {.}† stands for pseudo-inverse.
The mean square error (MSE) of the estimated

channel matrix in the LS method is given as

MSELS = E{‖H − ĤLS‖2F } (5)

in which E{.} denotes a statistical expectation. Ac-
cording to [2] and [3], the minimum value of MSE for
the LS method is given as

MSELS =
M2

t Mr

ρ
(6)

From equation (6) one can see that the optimal
performance of the LS estimator is influenced by the
number of antenna elements is at the transmitter and
the receiver. The channel matrix has no effect on the
minimum value of MSE.

The SLS method further reduces the estimation er-
ror that is obtained in the LS method. The improve-
ment is given by a scaling factor γ which is defined
as [2][3]

γ =
tr{RH}

MSELS + tr{RH} (7)

The SLS estimation mean square error is given as
[2][3]

MSESLS = (1− γ)2tr{RH}+ γ2MSELS (8)

Here, RH is the channel correlation matrix defined
as RH = E{HHH} and tr{.} implies the trace oper-
ation. The minimized value of MSE can be written
as [2][3]

MSESLS =
MSELStr{RH}

MSELS + tr{RH} (9)

In the MMSE method, the estimated channel ma-
trix and the minimized MSE are given as (10) and
(11) [2][3], respectively.

ĤMMSE = Y (PHRHP + σ2
nMrI)−1PHRH (10)

MSEMMSE = tr{(Λ−1 + σ2
nM−1

r QHPPHQ)−1}
(11)

In equation (10) and (11), σ2
n is the noise power;

Q is a unitary eigenvector matrix of RH and Λ is a
diagonal matrix with eigenvalues of RH , which are
given through the eigenvalue decomposition of RH as

RH = QΛQH (12)

3. CHANNEL ESTIMATION ACCURACY
ANALYSIS

3.1 SLS method

By taking into account expression (6), the mini-
mized MSE of the SLS method (9) can be rewritten
as

MSESLS = [(tr{RH})−1 +
ρ

M2
t Mr

]−1

= [(tr{Λ})−1 +
ρ

M2
t Mr

]−1 (13)

= [(
n∑

i

λi)−1 +
ρ

M2
t Mr

]−1

where n = min(Mr,Mt) and λi is the i-th eigenvalue
of the channel correlation matrix RH .

If ρ is fixed then the following relationship can be
derived

MSESLS = [(
n∑

i

λi)−1 +
ρ

M2
t Mr

]−1 <

n∑

i

λi (14)

It can be seen from (14) that MSESLS is smaller
than the sum of the eigenvalues of the channel cor-
relation matrix RH . Therefore, MSE decreases when
the sum of eignvalues of RH decreases.

This property shows that the MSE in the SLS
method is influenced by the number of antenna el-
ements at both transmitter and receiver. The MSE
becomes smaller and the estimation accuracy is im-
proved for a reduced number of transmitting and re-
ceiving antenna elements. When the number of an-
tenna elements on the two sides of communication
link drops to one, the system becomes the conven-
tional SISO system. In this case, the channel estima-
tion using a fixed-length training sequence becomes
most accurate. This confirms the expectation that it
is easier to estimate the SISO channel which is char-
acterized by a single transfer coefficient between two
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antennas than the MIMO channel which is described
by a matrix of transfer coefficients between many an-
tenna elements.

The derived expression shows that when the num-
ber of transmit and receive antennas is fixed, MSE
can be minimized by minimizing the sum of eigenval-
ues of RH .

3.2 MMSE method

The expression (11) for the minimized value of
MSE can be rewritten using the orthogonality prop-
erties of a training sequence P and the unitary matrix
Q, as shown by [2][3](15):

MSEMMSE = tr{(Λ−1 + ρM−1
r I)−1}

= tr




(λ1
1+ρM−1

r )−1 0 · · · 0

0 (λ1
2+ρM−1

r )−1 . . .
...

...
. . . . . . 0

0 0 · · · (λ1
n+ρM−1

r )−1




(15)

=
n∑

i

((λ−1
i + ρM−1

r )−1)

Assuming that ρ in (15) is fixed, the upper bound
for MSE can be expressed by (16)

MSEMMSE =
n∑

i

(λ−1
i + ρM−1

r )−1 <

n∑

i

λi (16)

The expression (16) shows that similarly as in the
SLS method, a smaller sum of eigenvalues of the chan-
nel correlation matrix RH leads to a smaller estima-
tion error in the MMSE method. Also, as in the SLS
method, the MSE is influenced by the number of an-
tenna elements. The smaller sum of eigenvalues of the
channel correlation matrix leads to the more accurate
channel estimation in the MMSE method.

Through the above mathematical analysis, one can
see that if ρ is fixed, the accuracy of a training-based
MIMO channel estimation is governed by the sum of
eigenvalues of the channel correlation matrix RH .

It has to be noted that the eigenvalues of RH rep-
resent the channel properties that are governed by a
signal propagation environment and antenna spatial
correlation.

The next section presents the simulation results
that support the findings obtained from expressions
(14) and (16). A suitable signal propagation envi-
ronment model is introduced. The effects of channel
properties on the estimation accuracy are assessed in
terms of angle spread (AS) and Rician factor K, which
are shown to be related to the sum of eigenvalues of
the channel correlation matrix.

4. SIMULATION

4.1 Simulation settings

In undertaken computer simulations, the signal
propagation environment is considered to be repre-
sented as a combination of line of sight (LOS) and
non-line of sight (NLOS) conditions. Therefore the
MIMO channel matrix is represented by two compo-
nents, as shown in (17)[5].

H =

√
1

1 + K
HNLOS +

√
K

1 + K
HLOS (17)

where HLOS denotes the LOS part and HNLOS de-
notes the NLOS part. K is the Rician factor that
is given as the ratio of power in LOS and the mean
power in the NLOS signal component. The elements
of HLOS matrix can be written as [5]

Hrt
LOS = exp(−j

2π

λ
Drt) (18)

where Drt is the distance between the t-th trans-
mit antenna and the r-th receive antenna. Assuming
that the components of NLOS are jointly Gaussian,
HNLOS can be written as

HNLOS = R
1/2
R HgR

1/2
T (19)

where Hg represents a matrix with i.i.d. Gaussian
entries.

Fig.1: Jakes model: an uplink case

In the undertaken simulations, the Jakes fading
model [7][8] is applied to represent the signal prop-
agation conditions. An uplink case between a base
station (BS) and a mobile station (MS) is assumed.
The model is illustrated in Figure 1. This model is
used to obtain the receive RR and transmit RT spa-
tial correlation matrices that are required to obtain
the NLOS component of the channel matrix, as given
by (19). As seen in Fig.1, the BS antennas are posi-
tioned at a large height above the ground where there
are no scattering objects. In turn, MS is assumed to
be surrounded by many scatterers distributed within
a “circle of influence”. For this case, the signal corre-
lation coefficients at the receiver BS and transmitter
MS, ρBS

R and ρMS
T , can be obtained from [8] and are

given as:
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ρMS
T (δMS

ij ) = J0[2πδMS
ij /λ]

ρBS
R (δBS

ij ) = J0[
2π

λ
γmax cos(θ)] exp(−j

2π

ij
sin(θ)) (20)

where, δMS
ij and δBS

ij are the spacing distances be-
tween i-th and j-th antenna at MS and BS, respec-
tively; λ is the wavelength of the carrier; γmax is the
maximum angular spread (AS); θ is the AoA of LOS
and J0 is the Bessel function of 0-th order. Using
ρBS

R (δBS
ij ) and ρMS

T (δMS
ij ), the correlation matrices

RR and RT for BS and MS links can be generated,
as shown in (20) and (21).

RBS
R =




ρBS
r (δbs

11) · · · ρBS
R (δBS

1Mr
)

...
. . .

...
ρBS

r (δbs
Mr1) · · · ρBS

R (δBS
MrMr

)


 (21)

RBS
T =




ρBS
T (δbs

11) · · · ρBS
t (δBS

1Mt
)

...
. . .

...
ρBS

T (δbs
Mt1

) · · · ρBS
R (δBS

MtMt
)


 (22)

4.2 Simulation results

Using the above described signal propagation
model, a 4 × 4 MIMO system including 4-element
linear array antennas at the transmitter and receiver
sides is simulated. The distance between the trans-
mitter and the receiver is 1000λ, where λ is the signal
wavelength. An Angle of Arrival (AoA) of LOS is set
to 0◦. The training sequence length L is assumed to
be 4. The default antenna element spacing at both
BS and MS is set to be 0.5λ. This assumption allows
for neglecting mutual coupling between the antenna
elements.

Figure 2 presents a relationship between MSE and
the sum of eigenvalues of the channel correlation ma-
trix for both MMSE and SLS methods. Both sub-
figure A and sub-figure B show that for MMSE and
SLS methods channel estimation errors are smaller
for smaller sums of eigenvalues. When the sum of
eigenvalues increases, estimation accuracy becomes
worse. This result confirms that it is easier to es-
timate a more correlated MIMO channel than a less
correlated MIMO channel.

Figure 3 presents the effects of maximum angle
spread (AS), antenna spacing and Rician factor K
on the sum of eigenvalues of the channel correlation
matrix. The obtained results are given in three sub-
figures A, B and C.

Sub-figure A reveals the relationship between the
sum of eigenvalues of RH and the maximum AS,
which is linked to the level of spatial correlation. It
can be observed that the sum of eigenvalues increases

Fig.2: Relationship between MSE and Sum of eigen-
values of RH for MMSE and SLS methods

Fig.3: Relationship between angle spread (AS), an-
tenna spacing, Rician factor K and Sum of eigenval-
ues of RH showing the effect of AS, antenna spacing
and K.
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when AS becomes larger. Larger values of AS corre-
spond to a lower level correlation while smaller AS
corresponds to higher levels of correlation. There-
fore, a higher spatial correlation leads to a smaller
sum of eigenvalues of RH . This helps to improve the
accuracy of the training based MIMO channel estima-
tion. The obtained result agrees well with the finding
presented in [9].

Sub-figure B gives the relationship between the
sum of eigenvalues and the MS transmitter antenna
spacing. One can see that the sum of eigenvalues be-
comes smaller when the spacing distance is less than
0.2λ. When the transmitter and receiver antenna ar-
ray spacing drops to 0λ the MIMO system collapses
to the SISO system with only one transmitting and
one receiving antenna. The obtained result proves
again that for a fixed-length training sequence sent
over a noisy channel it is easier to estimate a SISO
channel than a MIMO channel. This is because there
are more unknowns that have to be determined.

The relationship between the sum of eigenvalues
and the Rician factor K is illustrated in sub-figure C.
It is apparent that the sum of eigenvalues is smaller
for higher values of K. This case occurs when a LOS
component dominates. In this case, the sum of eigen-
values becomes reduced and the estimation accuracy
becomes improved.

Figure 4 and 5 are plotted in three dimensions (3D)
to provide a further insight into the results shown in
Figure 3. The relationship between MSE, ρ and K
for both MMSE and SLS methods are presented at
three different values of maximum AS. One can see
that when ρ is increased to 30dB the estimation error
decreases almost to zero. When the value of Rician
factor K is increased, the MSE decreases. This is
consistent with the trend observed in Figure 3 that a
stronger LOS component results in better estimation
accuracy. The presented results also show that for
both SLS and MMSE methods MSE provides the best
performance at the smallest AS, which corresponds to
the highest spatial correlation level.

The simulation results in this section demonstrate
that it is easier to estimate a more correlated MIMO
channel. This finding reveals a trade off met in de-
signing of MIMO systems. Uncorrelated channels of-
fer higher capacity for MIMO. However, the improve-
ment in capacity is obtained only under the condition
that MIMO channel is estimated accurately. This
poses the challenge to the MIMO system designer.
They have to pay a special attention to the accurate
estimation of MIMO channel to obtain the promised
benefits of increased capacity or signal transmission
quality offered by the MIMO technique.

5. CONCLUSIONS

In this paper, the effect of channel properties on
a training-based MIMO channel estimation has been
investigated. The presented mathematical analysis

Fig.4: 3D plot of MSE vs ρ vs K for different values
of AS for MMSE method

Fig.5: 3D plot of MSE vs ρ vs K at different values
of AS for SLS method

and simulation results have shown that for a fixed
transmitted power to noise ratio assumed in the train-
ing mode, the accuracy of the training based MIMO
channel estimation is governed by the sum of eigen-
values of the channel correlation matrix. Specifically,
a smaller value of the sum of eigenvalues leads to
a more accurate channel matrix estimation. It has
been shown that large values of Rician factor K and
a higher level of spatial correlation lead to a reduced
value of the sum of channel correlation eigenvalues.
Therefore, the channel estimation accuracy is im-
proved for such conditions. The obtained findings
clearly show that the MIMO system designer faces an
increased challenge of accurate estimation of uncorre-
lated channels before the benefits of MIMO technique
such as the improved capacity or signal transmission
quality are achieved.
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