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ABSTRACT

In this paper, a method for identifying the chaotic
state of duffing oscillator is proposed where the duff-
ing oscillator is used for weak signal detection. This
method is based on frequency spectrum analysis and
filtering. Some relative aspects of this method for
practical using are studied in details too. The pro-
posed method has three properties; reasonable cal-
culation complexity, robustness to moderate noise
amount, and capability of detection with short sig-
nal sequence. The proposed approach has good ro-
bustness, which is successfully shown in this paper.
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1. INTRODUCTION

Weak signal detection is a challenging task in sig-
nal detection and also in fault detection cases. In the
fault detection cases, there will be some abnormal sig-
nals before a fault breaks out but the signal to noise
(SNR) is very low, due to relatively weak character-
istic signals as well as effects of transmission path,
transmission media, reflection, refraction, etc. It is of
great value to study how to detect harmonic signal of
a given frequency in noise.

Chaos has potential application outlook in weak
signal detection, because of the properties which are
sensitive to certain signal and immune to noise at
same time. Because of a tiny perturbation of a pa-
rameter might cause an essential change of the state
in a non-linear chaotic system, a large number of re-
searchers used chaotic oscillations to detect weak sig-
nal in a noisy environment. The duffing oscillator is
frequently used to detect weak signals [1-3]. In this
method the key is to identifying the state of the oscil-
lator. There are several methods for identifying the
chaotic character. Common theoretical indications of
the duffing state are Lyapunov coefficients. However,
Lyapunov coefficients are not practically applicable
since their evaluation requires very large signal se-
quence [4]. In addition Lyapunov coefficients are very
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sensitive to noise influence [5-6]. These drawbacks
force the recent advance in development of reliable
chaos detection measures some of them are observa-
tion of time- history, phase plane, Fourier spectrum
and autocorrelation, Poincare maps, fractal dimen-
sions and so on [5]. However, with these methods, ei-
ther the complex calculation is necessary, or it is not
convenient for automatic identification by computer,
or it is can not be used when the system involves
noise.

In this paper, we use a method based on the analy-
sis of the frequency spectrum of the duffing oscillator.
The main advantages of this approach are reasonable
calculation complexity and robustness to moderate
noise amount. Also its application for evaluation of
the measure requires a short signal sequence.

2. FUNDAMENTAL PRINCIPLES FOR US-
ING DUFFING OSCILLATOR IN SIG-
NAL DETECTION

Generally, a nonlinear dynamic system has four
states: The fixed point, the small periodic motion,
the chaotic motion and the quasi-periodic motion
(large periodic motion). When the system is in the
critical state, a small perturbation of the system pa-
rameters may lead to the qualitative change of the
system state [1]. The basic idea of the signal detec-
tion scheme based on chaotic oscillator is that a small
periodic signal in noise can be detected by duffing os-
cillator via a transition from chaotic motion to peri-
odic motion as a classic nonlinear system [2]. Gener-
ally, the chaotic system is constructed by the duffing
oscillator. The normal form of the duffing equation
is shown as:

d? d
ﬁf—kéd—j—x—&—x‘?:vcos(t) (1)
Where ¢ is the ratio of damping, 7 cos(t) is the
periodic driving force and —x + 2 is the nonlinear

restoring force. Assuming y = Z—f = &, then we have:

T = vy
y —0y 4+ & — 23 + y cos(t) (2)

If we keep ¢ fixed then as -y varies from small to big,
the system state varies from small periodic motion
(Fig. 1), to chaotic motion (Fig. 2), and, at last, to
great periodic motion (Fig. 3).
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Fig.1: (a) phase plane diagram of small periodic

motion (b) time series diagram of small periodic mo-
tion
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Fig.2: (a) phase plane diagram of chaotic motion

(b) time series diagram of chaotic motion
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Fig.3: (a) phase plane diagram of great periodic mo-
tion (b) time series diagram of great periodic motion

If we fix v = 7. (7. refers to the critical value),
so the system is put into the critical state (chaos,
but on the verge of changing to the periodic motion).
The to-be-detected signal can be viewed as a pertur-
bation of the main sinusoidal deriving force -y cos(t)
(the reference signal). Although noise may be inten-
sive, it can only affect the local trajectory on phase
plane diagram, without causing any phase transition.
To detect weak signals with different frequencies by
applying (2), we must do some frequency transforma-
tion. Defining ¢t = wr , we obtain:

z(t) = z(wt) =2"(t)

de(t)  ldx(wr) 1dx*(7)

d  — w dr  w dr )
Pz(t) 1 dx(wr) 1 dPx*(7)

2 w? drz Ww? dr?

Substituting (3) into (2), omitting the superscript
of z* | and adding the input signal we obtain:

*

T = wy
g = w(y+2z—a>+ycos(wt) + Input) (4)

where Input = s(7) + o(7) + acos((w + Aw)T +
¢) + o(1) ,0(7)is the Gaussian noise, Aw is the fre-
quency difference and ¢ is the primary phase differ-
ence. By changing the value of w in (4) the weak
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signal with different frequencies can be detected us-
ing above mentioned principles.

In this paper, we used the fourth-order Runge-
Kutta algorithm to solve the duffing equation. There-
fore, the system is a discrete dynamic system by na-
ture, slightly different from the original continues sys-
tem based on the chosen step size. As we know,
there is truncation error (also known as discrimina-
tion error) involved in a Runge-Kutta algorithm [1].
Truncation error depends on the step size used, and
the dependence is especially distinct when the sys-
tem is strongly non-linear. As far as our system is
concerned, if the step size used is different, the trun-
cation error will bring about a distinct discrepancy
of the critical value .. Whatever the value of step
size is, the phase transition itself is clear and distinct;
what makes the different is just the value of ~.. The
truncation error dose not means that the step size is
required to be very small to detect chaos onset accu-
rately.

In this paper, we choose § = 0.5 and h = 0.0002
(step size) fixed. The value of . is different, depends
on the system conditions and the reference signal fre-
quency.

3. QUANTITATIVE DESCRIPTION OF DUFF-

ING OSCILLATOR STATE

The duffing oscillator state has been described by
observing the trajectory (phase plane diagram) which
is not suitable for automatic recognition. Hence,
we need to quantitatively judge the duffing oscillator
state using the method based on frequency spectrum
and filtering.

Analyzing the frequency spectrum of the output of
the duffing system, we found that in periodic motion,
it only includes the fundamental wave and its odd
harmonics, while in chaotic motion; various compo-
nents are in the spectra of the output of the duff-
ing system, especially the components with the fre-
quency lower than fundamental component. The fre-
quency spectrum of the output of the duffing system
0.825 cos(1007t) is shown in Fig.4.

As Fig. 4 indicates, information on the system
state can be extracted from the frequency spectrum
of the output of the duffing system. Therefore, we
designed a low pass filter (its cut-off frequency is
lower than the reference frequency) to filter the out-
put of the duffing oscillator, and then with the use
of the Root Mean Square (RMS) value of the re-
maining components; we estimate the state of the
duffing oscillator. The specifications of this filter for
above oscillator are Fyqss = 35Hz and Fy,p = 45H 2

After using the desired filter and calculating the
RMS value of the output of the duffing oscillator in
a specific range (RMSy<50 ), we can see, in chaotic
motion, RMSf.50 = 0.6055 and in periodic motion
RM S50 = 0.0662. Therefore RM S50 in the out-
put of the oscillator can be considered as a distinct

criterion for identifying the state of the duffing oscil-
lator.
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Fig.4: (a) frequency spectrum of chaotic motion (b)
frequency spectrum of periodic motion

4. FURTHER DISCUSSION

In this section we discuss problems related to so-
lutions of the duffing equation and propose a method
for detecting the weak signal based on the character-
istics of the solutions. Assume that our purpose is the
detection of a weak signal with frequency by duffing
oscillator. Then we obtain:

&+ 0.58 — x + 2° = 0.825 cos(wT) (5)

At this moment the system is in critical state.
Now if an external weak signal (for example s(7) =
0.001cos(wt)), with the same frequency as the refer-
ence signal, is merged into duffing oscillator, we ob-
tain:

#40.50 —x+2® = 0.825 cos(wr) +0.001 cos(wr) (6)

The ultimate state of the oscillator is the peri-
odic (Fig. 5). Although the weak signal (such as
0.001 cos(1007t)) can be detected but in practice we
must first solve a series of problems.
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4.1 The Influence of the Noise

If the external exciting signal is Gaussian noise
S(t) = e(t), then the solutions of Eq. (6) will be
as shown in Fig. 6. The orbits are chaotic, means
the orbits can keep the state of the motion steadily
under the influence of the noise.
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Fig.5: (a) phase plane diagram before merging the
input signal (b) time series diagram after merging the
input signal

4.2 Influence of to-be-Detected Signal Padded
Noise

It is assumed that the exciting signal consists of
the noise and weak signal with the same frequency as
the reference signal (S(t) = 0.01cos(10077) + oe(t)),
where o is 0.03, 0.05, 0.08, 0.1land 0.2 respectively.
The results show that only when o < 0.08 the weak
signal is identified reliably (Fig.7). Therefore, we can
conclude that the threshold of the signal to noise ratio
of the weak signal should be greater than:

SNR

a® 0.012

—21.0721db

Otherwise, it is not detectable by the mentioned
method.

phase space

Fig.6: (a) phase plane diagram o = 1 (b) phase
plane diagram o = 4
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Fig.7: (a) phase plane diagram o = 0.08 (b) phase
plane diagram o = 0.02
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4.3 Influence of the Different Frequency Sig-
nal

When the frequency of the external signal is dif-
ferent from that of the reference signal, for ex-
ample S(t) = 08cos((w £ Aw)r) and Aw =
[3.1416 6.2832 62.8319 94.2478] we again solve Eq
(6). The result shows that the orbits keep chaotic
state and the state of motion isn’t shifted (Fig.8).

phase space

Fig.8: (a) phase plane diagram Aw = 94.2498 (b)
phase plane diagram Aw = 3.1416

4.4 Influence of the Initial Phase

To consider the difference of initial phase between
the external signal and the reference signal, assuming
the reference signal be 7, a cos(wr+6)) and the weak
signal be a cos(wr + ¢)) , then we can write the total
periodic exciting force as:

A(t) Ye cos(wT + 0) + acos(wT + ¢)

Yelcos(wT) cos(0) — sin(wT) sin()] (8)
+ alcos(wT) cos(p) — sin(wT) sin(p)]

(1): if # = 0 then:

A(t) [ve + acos(p)] cos(wT) — asin(p) sin(wT)

= () cos(wr + (7)) 9)

V(1) = /72 + a2 + 2y.acos(p) (10)

asin(p) )

acos(¢) + Ye (11)

It can be seen that the phase shift is related to the
difference of phase between the external signal and
the reference signal.

When 7w — arccos(%) < 4 < 7T +

(1) = arctan (

arccos (%),% > ~(7) the orbit transition will not
occur. (2): if then:

A(t) = [—7ve+ acos(p)] cos(wT) — asin(p) sin(wT)
(7) cos(wr + (7)) (12)
(1) = V72 + a2 — 2ycacos() (13)
_ arctan ( —250()
otr) =arctn (20) o

When 7w — arccos(ﬁ) < 4 < 7T +

arccos (ﬁ),’yc > ~(7) the orbit transition will oc-

cur. The results of theoretical computation show
that if S(7) = 0.01cos(wT + ¢) and the referenced
signal is 0.825 cos(wT), w = 1007[rad/sec|, then the
phase transition from chaos to orbit will occur when
©e[1.5769,4.7063. In practice, because of the dis-
cretization error, range of the ¢, which in it the phase
transition will occur, is narrowed (pe[1.67,4.61] ).

5. CONCLUSION

This paper presented a simple method for signal
detection, based on identifying chaos in duffing os-
cillator. The advantages of this method are: evalu-
ation of the measure requires short interval (window
width); reasonable calculation complexity; robustness
to moderate noise amount. Furthermore the related
problems that may occur when we use the duffing os-
cillator for weak signal detection have been discussed.
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