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ABSTRACT
To achieve a good performance for shape retrieval,

it requires both shape representation and classifier.
In this paper, the algorithm for shape matching and
retrieval is developed by using Eigen Barycenter Con-
tour (EBcC) and Fisher Barycenter Contour (FBcC).
In our algorithm, the Signed Enclosed Area (SEA)
signature (formed by two adjacent points of con-
tour and its center point), computed at each scale
level of Barycenter contour (BcC), is utilized as the
shape representation. The BcC technique is robust
to moderate amount of noise and occlusion. Fur-
thermore, the SEA signature is invariant to gen-
eral affine transformation including translation, ro-
tation, scale and shear. Because of high dimension
of the shape representation, thus, in the matching
step, two classifiers have been studied. The first clas-
sifier, Eigen face technique, is employed for dimen-
sionality reduction while the second classifier, Fisher
face technique, is used for reducing dimension as
well and making discrimination. Then, the similarity
among shapes is measured by the normalized cross-
correlation (NCC). The performance of our technique
is evaluated onto the affine shape database and two
well-known databases, the MPEG-7 shape database
part B and the Kimia’s database. The experimental
results illustrate that our approach gives very high
retrieval efficiency over all published methods.

Keywords: Affine Transformation, Barycenter
Contour (BcC), Invariant to Starting Point, Eigen
Barycenter Contour (EBcC), Fisher Barycenter Con-
tour (FBcC), Normalized Cross Correlation (NCC).

1. INTRODUCTION

In computer vision area, several algorithms or
computer program have been developed for artificial
vision. Such a wide range of algorithms is not only
utilized for computer but also robot and other ma-
chines for their artificial vision which provides an ease
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for life and is important for industrial applications
and others.

Several properties, obtained from the objects, have
been used for recognition and categorization such
as shape, colour, texture, brightness, and others.
Of such properties, human can easily recognize and
identify a type of the objects using their geome-
tries (shape) rather than intensities (colour, texture,
brightness). That is why shape has been consid-
ered as an important visual feature and as the most
promising in a system for object recognition, match-
ing, registration, and analysis. In addition, the users
are interested in retrieval by shape rather than by the
others as indicated in [1].

In our previous work [2], BcC was utilized to de-
compose the shape contour into multi-scale levels.
Then, SEA is computed at each scale level of BcC for
shape representation. The algorithm has been done
in the frequency domain to be invariant to starting
point selection and the matching based on Principle
Component Analysis (PCA) is tested for the affine
shape database.

In this paper, we develop the algorithm for 2D
shape matching to improve the retrieval performance
using Fisher Discriminant Analysis (FDA) in the fre-
quency domain as well. A comparison study between
both classifier, PCA and FDA is done in this litera-
ture.

The paper is organized as follows: Section 2 gives
a review of the previous techniques. The proposed
method is introduced in section 3 followed by the
feature extraction in section 4 (Boundary extraction,
Barycenter contour decomposition, and Shape repre-
sentation). Then, shape matching is given in section
5. Next, the experimental results are illustrated in
section 6. Finally, conclusion is given in section 7.

2. PREVIOUS WORKS

Several techniques of shape matching and retrieval
for 2D closed boundary shape have been developed
over the past decade. Good review papers can be
found in [3]. However, we focus our review on the
multi-scale representations (for example curvature
scale space CSS, wavelet) and the classification based
on the eigen techniques [4, 5].

El Rube et al. [6] have proposed a zero cross-
ing of the triangle area representation (TAR) at
multi-scale wavelet levels (called MTAR) to construct
MTAR image. First, the wavelet transform is used
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for smoothing and decomposing the shape bound-
aries into multi-scale levels. At each scale level, then,
the TAR image is computed from each three consec-
utive and equally apart point on the shape boundary
and the corresponding Maxima-Minima lines are ob-
tained. The matching of TAR image is based on the
peaks and location of the concavity maxima in im-
ages. This scheme shows that, for the same shape,
both the MTAR image and CSS image describe con-
cavities along the contour but measure in different
way. CSS method measures the curvature as the con-
tour is smoothed by the Gaussian kernel at differ-
ent scales. On the other hand, each MTAR image
describes the location of the concavities using differ-
ent triangle side length at a specific wavelet-smoothed
scale level. For testing on the MPEG-7 dataset, the
results show that MTAR image outperform CSS im-
ages based on the precision-recall curve.

N. Alajlan et al. [7] have developed a multi-scale
approach for 2D closed shape matching and retrieval.
In their algorithm, TAR is utilized in order to derive
the multi-scale representation for 2D closed bound-
ary shapes. Then, this triangle area normalization
is made locally per scale, which is employed in the
matching via dynamic programming (DP). The DP
algorithm (called dynamic space warping DSW) is
employed to find the best alignment between two
shape representations. For the MPEG-7 CE-shape-
1 database retrieval test, this method achieves high
retrieval accuracy of 85.03% without corporation of
the global parameters (circularity, eccentricity, aspect
ratio) while combining with the global parameters,
the retrieval efficiency is of 87.23%. The author also
demonstrates that TAR provides useful information
about shape feature such as the convexity and con-
cavity at each boundary point. Moreover, it is robust
to affine invariant and against noise and moderate
amount of deformations.

M.S. Drew et al. [8] have introduced the Eigen-
CSS search for shape retrieval. A new feature vector
for shape representation has been created and called
the marginal sum feature vector which is composed
of row-sum and column-sum of the raw CSS image.
Then, the PCA (called as Eigen-CSS) is used in the
matching stage.

B. Wang and J.A. Bangham [9] have presented
an enhanced principal component descriptor (EPCD)
for shape based image retrieval. The authors have
claimed that this descriptor outperforms the other
descriptors including Fourier, Wavelet, and CSS de-
scriptor.

3. THE PROPOSED METHOD

The diagram of the proposed technique for shape
matching and retrieval is depicted in Fig. 1. In our
algorithm, we have proposed a new multi-resolution
technique to decompose shape boundary into multi-
scale level, called Barycenter contour (BcC) decom-

Fig.1: The Diagram of Our Algorithm

position, as detailed in section 4.2. Then, the SEA
at each scale level of BcC is computed to repre-
sent shape. Mathematically, the shape is represented
as 2D matrix whose column and row represent the
scale level of BcC and the location index, respec-
tively. After that, Discrete Fourier Transform (DFT)
is computed for the SEA at each level to be in-
variant to starting point selection. In the matching
stage, two frequently used classification techniques
for face recognition system are utilized as classifier.
They are PCA and FDA, called the Eigen Barycen-
ter Contour (EBcC) and Fisher Barycenter Contour
(FBcC) respectively in this paper. Finally, the Nor-
malized Cross Correlation (NCC) is considered for
similarity measure which is different for both con-
ventional techniques, PCA and FDA, using Euclidian
distance. This technique gives higher retrieval perfor-
mance than all the published algorithms tested on the
MPEG-7 database CE-1 and the Kimia’s database.

4. FEATURE EXTRACTION

In order to compute the shape representation, the
features are extracted from the segmented shapes by
performing three steps as follows:

4.1 Boundary Extraction

The shape boundary is extracted from the binary
image by using one of the conventional techniques, for
example chain code [10] and then presented into 1-D
sequences of x(k) and y(k). The contour sequences
are re-sampled into N points and shifted about its
center point. The appropriate number of sampling
points for the experiment is 128 points.

4.2 Barycenter Contour Decomposition

The BcC [11], defined in Eq. (1), is applied onto
the shifted shape contour in order to obtain the dif-
ferent scale levels of shape boundary.

In geometry, Barycenter of a set of coordinate
points is the average of this set of coordinate points.
Based on this concept, the shape boundary can be de-
composed into different scale levels of BcC in which
the first level have been adopted from [12] and is de-
termined from the coordinates of Barycenter of tri-
angle composed of (0, 0), (xi, yi), and (xi+1, yi+1) as
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Fig.2: The Barycenter Contour of Bird Contour at
the First Level.

depicted in Fig. 2. The second level is determined
from the coordinates of Barycenter of points (0, 0),
(xi, yi), (xi+1, yi+1), and (xi+2, yi+2) as depicted in
Fig. 3. Just follow this process; thus, the next level
is created by adding one adjacent point more to the
previous level. Mathematically, if (x̃i, ỹi) is a coor-
dinate of Barycenter contour where i ∈ 〈1, N〉, it is
computed as:

BcC(i, m) =

{
x̃m

i = xi+xi+1+xi+2+...+xi+m

m+2

ỹm
i = yi+yi+1+yi+2+...+yi+m

m+2

(1)

where (xi, yi) is coordinate of shifted point; (x̃i, ỹi)
is coordinate of Barycenter point; and m is level of
BcC.

Fig. 4 shows the example of Barycenter contour
decomposition of bird’s and device9’s contour into
different scale levels.

From Fig. 5, we found that level 125 is a reverse
and scale version of level 1. Thus, they look very
similar and the choice of the number of scale level
of BcC is constrained by the implied periodicity of
the closed boundary and the scale coefficient. More
specifically, for a closed contour of N points:

BcC(i,m) =



−N−m
m+2 .BcC(i + m + 1, N − 2−m),

if m = 1, . . . ,
⌊

N−2
2

⌋
1
N (xi+N−1, yi+N−1) , if m = N − 2
0, if m = N − 1

1
N+2 (xi, yi) , if m = N

(2)

where
⌊

N−2
2

⌋
is the floor value of N−2

2 and the
limit value of BcC. The first line in Eq. (2) shows

Fig.3: The Barycenter Contour of Bird Contour at
the Second Level.

Fig.4: Example of the BcC Decomposition of (a)
Bird’s and (b) Device9’s Contour at Level 1, 5, 10,
20, 30, 40, and 60.

the symmetry property including the scale version of
BcC versus the level of BcC m. Also, at m = N − 1,
there is only one point of BcC, i.e., at point (0, 0).

Affine Transformation : The general affine
transform is mathematically defined by:

{
xa = ax + by + e

ya = cx + dy + f
(3)

From Eq. (3), we can write in a matrix form as
follows: 


xa

ya

1


 =




a b e
c d f
0 0 1







x
y
1


 (4)
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Fig.5: The BcC of Bird Contour (a) at Level 1; (b)
at Level 125; (c) A Normalization of Both Levels in
Both Horizontal and Vertical Axes Where Level 125
is plotted in Reverse Direction.

where (x, y) is the pixel coordinates of given im-
age; (xa, ya) is the pixel coordinates of the distorted
version of given image under general affine transfor-
mation. Translation is represented by e and f while
scale, rotation, and shear are reflected in the remain-
ing four parameters a, b, c, d.

Property : If BcCa(i, m) =
(
x̃m

a,i, ỹ
m
a,i

)
is the

transformed version of the BcC(i,m) = (x̃m
i , ỹm

i )
under general affine transformation, there is a
one-to-one correspondence between BcC(i,m) and
BcCa(i,m).

Proof : From Eq. (1), the affine version of BcC is
written as:




x̃m
a,i

ỹm
a,i

1


 =

1
m + 2




xa,i xa,i+1 xa,i+2 . . . xa,i+m

ya,i ya,i+1 ya,i+2 . . . ya,i+m

1 1 1 . . . 1







1
1
1
...
1




(5)

By Eq. (4), we can write:




xa,i xa,i+1 xa,i+2 . . . xa,i+m

ya,i ya,i+1 ya,i+2 . . . ya,i+m

1 1 1 . . . 1




=




a b e
c d f
0 0 1







xi xi+1 xi+2 . . . xi+m

yi yi+1 yi+2 . . . yi+m

1 1 1 . . . 1


 (6)

By substituting Eq. (6) into Eq. (5), thus, we get:




x̃m
a,i

ỹm
a,i

1


 =

1
m + 2




a b e
c d f
0 0 1







xi xi+1 xi+2 . . . xi+m

yi yi+1 yi+2 . . . yi+m

1 1 1 . . . 1







1
1
1
...
1




(7)

Then, we have



x̃m
a,i

ỹm
a,i

1


 =




a b e
c d f
0 0 1







x̃m
i

ỹm
i

1


 (8)

By Eq. (8), we can conclude that BcC decomposi-
tion technique is affected by the same affine distortion
when the shape is subjected by the affine transforma-
tion.

4.3 Shape Signature

The computation of the signed enclosed area sig-
nature at each scale level of BcC is taken into account
as given in Eq. (9) and these features are presented
into 3D format as the shape representation as shown
in Fig. 6 where x is represented the sampling point
location; y is represented the level of BcC; and z is
represented the value of SEA and its DFT coefficients.

SEA(i,m) =
1
2

(
x̃m

i .ỹm
i+1 − x̃m

i+1.ỹ
m
i

)
(9)

The shape signatures are further transformed by
the Discrete Fourier Transforms (DFT) in order to
be invariant to starting point selection. Then, all the
DFT coefficients at each scale level are normalized
by dividing with their corresponding DC component
coefficients. Finally, they are concatenated into single
feature vector as a new shape representation.

5. SHAPE MATCHING

In this section, we examine two classification tech-
niques, the Eigen Barycenter Contour (EBcC) and
the Fisher Barycenter Contour, for 2D shape classifi-
cation.

Let {x1, x2, . . . , xNs} be a set of column vec-
tors of the shape representations taking value
in n-dimensional space and suppose that each
shape representation belongs to one of C classes
{X1, X2, . . . , XC}.

5.1 Eigen Barycenter Contour

The total covariance matrix Cov can be formed by:

Cov =
1

Ns

Ns∑

j=1

(xj − µ) (xj − µ)T (10)
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Fig.6: (a) The Shape Silhouette, Its 90o Rotation and Its Reflection Transformation; (b) The Corresponding
of SEA at All Levels of BcC as 3D Plot; (c) DFT Coefficients of SEA at All Levels of BcC as 3D Plot.

where µ = 1
Ns

∑Ns
j=1 xj is the mean of all training

sample sets.
Let Q = [x1 − µ, x2 − µ, . . . , xNs − µ], so the total

covariance can be expressed as follows:

Cov =
1

Ns
QQT (11)

The objective is to find the projection axes which
are the eigenvectors of the total covariance Cov. The
direct finding of the eigenvectors of Cov is quite
expensive computation and consumes much time.
To avoid the time-consuming calculation, the singu-
lar value decomposition (SVD) technique is applied.
The results from SVD are the required eigenvector
U = [u1, u2, u3, . . . , uNs] of Cov corresponding to the
eigenvalue λ1 ≥ λ2 ≥ λ3 ≥ . . . ≥ λNs.

The optimum eigenvector Uopt is chosen corre-
sponding to the r largest eigenvalues where the index
value r is calculated as the minimum index value of
the ratio below:

λ1 + λ2 + λ3 + . . . + λr

λ1 + λ2 + λ3 + . . . + λr + . . . + λNs
≥ 0.95 (12)

Then we can obtain the jth projected feature yj

from the sample xj onto the optimum eigenvector
Uopt:

yj = UT
opt (xj − µ) (13)

5.2 Fisher Barycenter Contour

This method is similar to the EBcC above for di-
mensionality reduction by finding the optimum pro-

jection axes. The difference between the algorithms
is that the eigenvectors are found by the separated
matrix derived from Fisher’s linear discriminant func-
tion instead of the covariance matrix. The separated
matrices are the between-class scatter matrix SB and
the within-class scatter matrix SW .

Let the between-class scatter matrix be defined as:

SB =
C∑

c=1

(µc − µ) (µc − µ)T (14)

and the within-class scatter matrix be defined as

SW =
C∑

c=1

∑

xj∈Xc

(xj − µc) (xj − µc)
T (15)

where µc is the mean shape representation of class
Xc.

The objective is to find the optimum projection
axes Wopt which maximizes the Fisher’s ratio below:

J(W ) =
WT SBW

WT SW W
(16)

The solution of finding the maximum value of the
Fisher’s ratio is the eigenvectors of the matrix S−1

W SB .
Due to very expensive computation of directly

finding the eigenvector from S−1
W SB matrix with too

large dimensional space, the result of the projected
vectors from EBcC are applied to FBcC. So the eigen-
vectors from S−1

W (EBcC)SB(EBcC) are obtained.
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The top eigenvectors are selected corresponding to
the (C − 1) largest eigenvalues of that matrix. A
new projected feature zj of the given feature xj is
computed as follows:

zj = WT
optU

T
opt (xj − µ) (17)

5.3 Similarity measure

The similarity between the unknown shape (query
shape) sunknown and all shapes in the database sj is
measured by the normalized cross correlation value
computed as follows:

sunknown.sj

‖sunknown‖‖sj‖ (18)

Then, these values are ranked in decreasing order
in which the most similar shape corresponds to the
highest value of the normalized cross correlation.

6. EXPERIMENT AND RESULTS

The performance of our algorithm is demonstrated
using three different databases, the affine shape
database, the MPEG-7 CE-shape-1 part B and the
Kimia’s database. For the shape matching and re-
trieval test, all shapes in the database are used as the
test query.

The retrieval performances of our method are as-
sessed using the precision-recall curves, where the
precision value at a certain recall is the average of
the precision value of all database shapes at that re-
call. The precision and recall can be defined by:

Precision =
Number of retrieved relevant shape

Total number of retrieved shape
(19)

Recall =
Number of retrieved relevant shape

Total number of relevant shape
(20)

6.1 Affine Shape Database

The affine invariant shape database [2, 11] consists
of 40 categories of shapes chosen from MPEG-7 con-
tour shape database CE-1. Each category has 14 dif-
ferent distorted shapes including the original shape.
So there are in total 560 affine distorted shapes in
this database. The sample shape in each class and
the sample of affine distorted shape for class butter-
fly is shown in Fig. 7 and Fig. 8, respectively.

The retrieval performance is assessed by the
precision-recall curve as depicted in Fig. 9. We
found that the FBcC method outperforms the EBcC
method for both cases. For the square of SEA signa-
ture in frequency domain have been done better than
the SEA signature in frequency domain classified by
FBcC method, but in contrast with EBcC method.

Fig.7: The Sample Shape in Each Class of the
Affine Shape Database.

Fig.8: Sample of Affine Distorted Shape of Class
Butterfly

6.2 MPEG-7 Database CE-Shape-1

The MPEG-7 CE-shape-1 database has been
widely used for shape matching and retrieval. It con-
sists of 1400 images classified into 70 classes and con-
tains a mixture of natural and artificial objects under
various rigid and non-rigid deformations. The sample
shape of each class in MPEG-7 database is shown in
Fig. 10.

The retrieval performance is assessed by the
precision-recall curve as depicted in Fig. 11. We
found that the FBcC method outperforms the EBcC
method.

Additionally, we use the standard test called Bulls-
eye test for the evaluation in which each shape are
used as the test query. Retrieval is counted as cor-
rect if it is in the same class as the query. The
number of correct retrievals in the top of 40 ranks
is counted, including the self-match (which corre-
sponds to the first rank). Retrieval rate for each
method is reported as a ratio of the number of cor-
rect retrievals to the maximum possible number of
correct retrievals, i.e. 2800 (1400 shapes * 20 cor-
rect retrievals). We have compared our results with
the published results by the MPEG-7 database. Ta-
ble 1 lists the Bullseye rate of some exiting tech-
niques such as the Accurate Retrieval based on Phase
(WARP) [13], shape similarity measure based on cor-
respondence of Visual Parts (VP) [14], Curve Edit
Distance (CED) [15], Curvature Scale Space (CSS)
[16], Beam Angle Statistics (BAS) [17], Multi-scale
Convexity Concavity representation (MCC) [18], In-
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Fig.9: The PR Curve of EBcC and FBcC Methods
Tested for the Affine Shape Database.

Fig.10: The Sample Shape in Each Class of the
MPEG-7 Database CE-Shape-1 Part B.

ner Distance Shape Context(IDSC+DP) [19], sym-
bolic representation [20], Triangle area representation
with dynamic programming (DWS+Global) [7], Hi-
erarchical deformable shape tree [21], and Contour
flexibility [22]. All the published techniques in Table
1, the best result are reported in [22] using contour
flexibility with the retrieval rate of 89.31%.

For our methods, they achieve the retrieval rate
of 66.50% and 89.60% when matched by EBcC and
FBcC methods, respectively. As stated early, in [6],
the author have improved the performance of shape
retrieval by combining with global parameters (cir-
cularity, eccentricity, aspect ratio) while our method
have improved the performance by using the spec-
trum of squared signal of the SEA signature. In this
case, they achieve the retrieval rates of 72.42% and
98.62%, respectively, when classified by EBcC and
FBcC methods. We found that our FBcC method
gives high retrieval performance over all published
methods except EBcC method but its results are ac-
ceptable. Fig. 12 depicts the retrieval rate of each
class for the MPEG-7 CE-shape-1 database. The re-
trieval rates of shapes in some classes are lower than
the others such as hat, cup, Device9, and Device6.
However, the retrieval accuracies of those classes are
more than 50% in which the retrieval rate of class

Fig.11: The PR Curve of EBcC and FBcC Methods
Tested for the MPEG-7 Shape Database.

Table 1: Comparison of the Bullseye Test for Dif-
ferent Algorithms on the MPEG-7 database

Methods Retrieval
Accuracy (%)

WARP [13] 58.50
VP [14] 76.45
CED [15] 78.17
CSS [16] 81.12
BAS [17] 82.37
MCC [18] 84.93
IDSC + DP [19] 85.40
Symbolic Representation [20] 85.92
DSW + Global [7] 87.23
Shape tree [21] 87.70
Contour Flexibility [22] 89.31
EBcC + SEA Spectrum 66.50
EBcC + (SEA)2 Spectrum 72.42
FBcC + SEA Spectrum 89.60
FBcC + (SEA)2 Spectrum 98.62

’hat’ is the lowest one, around 73%.

6.3 Kimia’s Database

This database consists of 99 shapes from nine cate-
gories in which most of shapes are partially occluded.
All the shapes in this database are shown in Fig. 13.

The precision-recall curve in Fig. 14 shows that
the retrieval performance using the FBcC technique
is better than that using the EBcC technique for both
representations. A comparison of performances be-
tween different algorithms is summarized in Table 2,
showing the correct retrievals from the top 10 closet
match. Notice that the maximum number of correct-
ness for each category is 99. We found that the EBcC
method can retrieve in 10 cases of 735 shapes which
is low performance comparing with other algorithms.
However, the FBcC method achieves a good result of
100% when the spectrum of the squared SEA signa-
ture is utilized as the representation.
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Fig.12: The Retrieval Accuracy for Each Class of the MPEG-7 Database Using FBcC+(SEA)2 Spectrum

Table 2: Comparison of the Retrieval Rate for Different Algorithms on Kimias Database

Methods 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th Total
Shape context [23] 97 91 88 85 84 77 75 66 56 37 756
Shock graph [15] 99 99 99 98 98 97 96 95 93 82 956
MDS+SC+DP [19] 99 98 98 98 97 99 97 96 97 85 964
DSW+Global [7] 99 99 99 98 98 97 98 95 96 94 956
Symbolic representation [20] 99 99 99 98 99 98 98 95 96 94 975
EBcC + SEA Spectrum 99 94 87 82 76 73 65 60 54 45 735
EBcC + (SEA)2 Spectrum 99 94 94 92 82 84 82 77 67 57 828
FBcC + SEA Spectrum 99 99 99 99 97 98 98 95 97 94 975
FBcC + (SEA)2 Spectrum 99 99 99 99 99 99 99 99 99 99 990

Fig.13: All Shapes in the Kimia’s Database.

7. CONCLUSION

We present the technique for 2D closed boundary
shape matching and retrieval using Eigen Barycen-
ter Contour (EBcC) and Fisher Barycenter Contour
(FBcC).

The proposed algorithm is robust to affine trans-
formation including translation, rotation, scale and
shear. In our algorithm, the BcC decomposition has
been employed for decomposing the shape into mul-

Fig.14: The PR Curve of EBcC and FBcC Methods
Tested for the Kimia’s Database.

tiscale levels in order to reduce the noise and small
boundary distortion.

Because of the high dimensionality of data, two
classification techniques, EBcC and FBcC, are used
for dimensionality reduction. The results show that
the retrieval accuracy experimented by EBcC tech-
nique is acceptable over three databases. While us-
ing FBcC technique, it does not only outperform the
EBcC method but also achieves high retrieval rate
over the existing methods, based on the Bullseye test,
which is tested on the two well-known database, the
MPEG-7 database and the Kimia’s database. Fur-
thermore, the performance of our algorithm has been
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improved using only the spectrum of the squared SEA
signature as the shape representation which is differ-
ent from the algorithm in [7] using the global parame-
ters (circularity, eccentricity, aspect ratio) to improve
their performance.
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