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ABSTRACT

A block-based Gaussian mixture model (GMM) is
used to model the distribution of the transform au-
dio data encoded using spherical vector quantization
and lossless coding. The expectation-maximization
algorithm is used to design the GMM to model the
marginal density of the transform coefficients and the
block energy density. A GMM-based rate-distortion
function is derived and shown to closely match the
observed spherical VQ performance.
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1. INTRODUCTION

Transform coding is an effective approach to au-
dio coding. Such transformations include the discrete
Fourier transform (DFT) [1, 2], the discrete cosine
and modified discrete cosine transforms, and subband
decomposition [3]. One recent example is DFT-based
transform coded excitation (TCX) used in the adap-
tive multi-rate wideband audio coding algorithm [1].
The transform coding consists of three steps. First,
the data sequence is divided into frames of size N
and then a given transformation is performed on each
frame. The second step is quantizing the transformed
sequence subject to a fixed rate per frame constraint.
The final step is encoding the quantized transformed
sequence into a binary bitstream [4].

Spherical vector quantization (SVQ) has been
shown to be an efficient way to quantize audio trans-
form data [5, 6] and has been used in an audio coding
standard [1, 2]. SVQ can be structured as a type of
multi-rate, classified vector quantizer [7] that uses a
product code to encode lattice codevectors as binary
codewords. The product code consists of 1) a code for
representing the codevector energy (squared radius),
and 2) a code for representing a lattice codevector,
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conditioned on the codevector energy. The product
code partitions the lattice codevectors into concentric

Fig.1: Empirical density of transform coefficients
compared to that of memoryless Gaussian and Lapl-
cian random variable with the same mean and vari-
ance.

“shells” of codevectors. SVQ construction is moti-
vated by the spherical geometry of the high probabil-
ity volume of a memoryless Gaussian source proba-
bility density function [8, 9]. The lattice SVQ in [5, 6]
is relatively simple to implement and remarkably ef-
fective, with an observed operational rate-distortion
performance (for encoding audio transform data) sig-
nificantly better than the memoryless Gaussian rate-
distortion function.

As shown in Fig. 1, the audio transform coeffi-
cients are reasonably well modeled as having marginal
Gaussian or Laplacian densities [5, 6]. However,
memoryless Gaussian and Laplacian rate-distortion
functions [10] are poor estimators of actual SVQ per-
formance in transform audio coding, as will be shown
later in this paper. This is due to the strong energy
dependence in transform audio coefficient data. This
can be seen in Fig. 2, which compares the empirical
probability density function (pdf) of audio transform
coefficient block squared radius (the block energy)
to the block squared radius of memoryless Gaussian
data, and Laplacian data, for block sizes L = 4, 8,
16, and 32. Clearly, for every block size the empirical
density of the transform audio block squared radius
differs significantly from that of memoryless Gaus-
sian or Laplacian data of the same mean and variance.
Since the correlation between coefficients is small, the
empirical density is indicative of non-linear (energy)
dependence in the transform coefficient data.

A Gaussian mixture model (GMM) [11, 12] is used
in this paper to model vectors of audio transform co-
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efficients. It is shown in [13] that any continuous pdf
can be approximated by a Gaussian mixture density.

Fig.2: Empirical density of transform coefficient
vector energy compared to that of memoryless Gaus-
sian and Laplacian vector.

A GM model has been successfully employed in
several areas, e.g., speech recognization [14], speech
coding [1517], image coding [18], etc. In [19], a gener-
alized Gaussian (GG) mixture model is used to model
image subband coefficients. A lattice VQ encodes lat-
tice codevectors partitioned in “shells” matched to
the GG shape parameters [20]. The experimental re-
sults in [19] focus on a mixture of Laplacian densi-
ties and report GG mixture modeling average relative
mean squared error distortion within 6 to 20 percent
of empirical rate-distortion LVQ performance, with
maximum relative error as large as 32 percent.

In this paper, we focus on modeling the perfor-
mance of lattice spherical vector quantization (SVQ)
in transform audio coding. This is done in two
steps. First, we model the transform audio coeffi-
cient data using a Gaussian mixture model. Then,
a rate-distortion function based on the GM model is
developed and used to estimate the performance of
SVQ. GM model parameters are estimated using the
Expectation-Maximization (EM) algorithm [11, 12,
22] and two alternative methods to estimate model
parameters are proposed. As an application exam-
ple of the proposed method, the model developed is
shown to accurately describe the RE8 lattice SVQ
performance used in [1].

The outline of this paper is as follows. The Gaus-
sian mixture model and EM algorithm are described
in Section 2. In Section 3, a rate-distortion function
based on the GM model is developed. The effective-
ness of the model is evaluated in Section 4 by compar-
ing the GM-based rate-distortion model to the cubic
lattice SVQ performance, and to the RE8 lattice VQ
performance used in the AMR-WB+ standard. Con-
clusions are discussed in Section 5.

2. GAUSSIAN MIXTURE MODEL

A K-class Gaussian mixture pdf for L-dimensional
random vector U is a parameterized function of the
form

fmix(u|Θ) =
k∑

k=1

P (k)fU|Θ(u|θk) (1)

where P (k) denotes the prior probability or the prob-
ability that U is generated by the kth class, and the
component distribution, fU |Θ(u|θk), is a multivariate
Gaussian distribution defined as

fU|Θ(u|θk) =
1

(2π)L/2|Ck|1/2
e{−

1
2 (x−µk)T C−1

k (x−µk)}

(2)
where µk and Ck are the mean vector and covari-
ance matrice of the kth class, respectively. The mix-
ture models parameters are defined as the set Θ =
{P (1), . . . , P (K), θ1, . . . , θK}, where θk = µk,Ck, for
k = 1, . . . , K.

2.1 Gaussian mixture model for audio trans-
form coefficients

Let X be a real-valued sequence of length N to
be quantized and encoded, formed from consecutive
transform coefficients. Assuming L divides N , parti-
tion X into N/L real-valued vectors (blocks) of size
L, denoted as Y .The transformation is assumed to re-
move the linear dependence in X, and hence also in
Y . Also, it is clear from Fig. 1 that X has zero mean.
We further assume a stationary property in each com-
ponent class. So, now θk = {0, σ2

k}. Therefore, a K-
class, L-dimensional Gaussian mixture model in (1)
for vector Y reduces to

fmix(y|Θ) =
k∑

k=1

P (k)fY|σ2
k
(y|σ2

k) (3)

where fY|σ2
k
(y|σ2

k) = 1
(2πσ2

k)L/2
exp(− 1

2σ2
k

∑L
l=1 y2

l ).
An alternative way to define the mixture model

for audio transform coefficients is based on block or
vector energy of Y. Let the normalized energy be
Z = ε

σ2
X

, where ε =
∑L

l=1 y2
l is the block energy

(square radius) of the vector Y , and σ2
X is the vari-

ance of X. Suppose Y is generated from the kth class.
Write the block energy as Z = σ2

k

σ2
X

ε
σ2

k
= wkZk, where

wk = σ2
k

σ2
X

and Zk = ε
σ2

k
k . The components of Y

are independent and identically distributed and thus
Zk is Chi-square distributed [21]. Then, the mixture
model of block energy Z can be expressed as

fmix(z|Θ) =
K∑

k=1

P (k)fz|σ2
k
(z|σ2

k) (4)

where fz|σ2
k

= 1
wk

f̂
(

z
wk

)
and f̂(z) is Chi-square

distributed with degree of freedom L, defined by
f̂(z) = 1

2L/2Γ(L/2)
zL/2−1e−z/2, z ≥ 0.
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Fig.3: The Gaussian mixture model of transform
coefficient block square radius compared to the em-
pirical density: (a) Model based on (5) and (6); (b)
Model based on (7) and (8)

The model parameters P (k) and σ2
k, for k =

1, . . . ,K, can be estimated by several methods such as
Expectation-Maximization (EM) algorithm [11, 12],
Markov-chain Monte Carlo algorithm [22], and Lloy
clustering procedure [23]. In this paper, the EM al-
gorithm is used since it is an algorithm widely used
for finite mixture modeling.

Let ym denote the mth block of M total blocks
and let ym, l denote the lth component of ym, for
l = 1, . . . , L. From [12], the EM algorithm requires
introduction of auxiliary variables, wm,k, that repre-
sent how likely block ym is generated by the kth class,
for blocks m = 1, . . . , M and classes k = 1, . . . , K.
From [12] and (3), the expectation and maximization
steps of the EM algorithm are as follows.
E-Steps

E [wm,k] =
fY|σ2

k
(ym|σ2

k)P (k)
∑M

j=1 fY|σ2
j
(ym|σ2

j )P (j)
(5)

m = 1, . . . , M and k = 1, . . . ,K.
M-Steps

σ2
k =

∑M
m=1 E [wm.k] ( 1

L

∑L
l=1 y2

m,l)∑M
m=1 E [wm,k]

(6)

for k = 1, . . . , K, where E[··] denotes expectation. Al-
ternatively, let zm be the normalized block energy of
ym, for m = 1, . . . , M . Similar to above, by observing
normalized block energy, the E-M steps for estimat-
ing the model parameters of the mixture model in (4)
are as follows.

Fig.4: The Gaussian mixture model marginal den-
sity of transform coefficients compared to the empiri-
cal density (L = 8): (a) Model based on (5) and (6);
(b) Model based on (7) and (8);

E-Steps

E [wm,k] =
fz|σ2

k
(zm|σ2

k)P (k)
∑K

j=1 fz|σ2
j
(zm|σ2

j )P (j)
(7)

for m = 1, . . . , M and k = 1, . . . , K.
M-Steps

σ2
k =

∑M
m=1 E [wm,k] zmσ2

X

k
∑M

m=1 E [wm,k]
(8)

The EM algorithm is used to estimate the mixture
model parameters using transform coefficient vectors
computed from a database of two minutes of wide-
band audio, 20% speech (two male and two female
talkers) and 80% music (from nine different record-
ings). The resulting GMM energy density is com-
pared to the empirical density of the transform coef-
ficient vector energy in Fig. 3 for K = 2, 4, 8, 16, and
32 classes. The transform coefficient marginal density
of the GMM is also compared to the empirical density
in Fig. 4. It is clear that as the number of classes in-
creases, the mixture models from both methods pro-
vide good approximations to both the vector energy
density and the marginal density. However, one em-
pirical observation is that GMM parameters based on
(7) and (8) converge faster than those based on (5)
and (6).
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3. RATE DISTORTION FUNCTION OF
GAUSSIAN MIXTURE MODEL

For small mean-squared error (MSE) distortion,
D, the rate-distortion performance of entropy-coded
quantization of a memoryless Gaussian source is

R(D) =
1
2

log2

(
2πe

12β
· σ2

D

)
(9)

where σ2 is the source variance and 1 ≤ β ≤ (2πe/12)
reflects the granular gain, also called the space fill-
ing advantage [24], of the quantization method. For
uniform quantization, β = 1 and (9) is the Gish-
Pierce asymptote [25]. For vector quantization us-
ing the E8 lattice [26, 27], β ≈ 1.16 (or 0.65 dB). For
β = 2πe/12, (9) is the rate-distortion function for the
memoryless Gaussian source [28].

Now, consider a K-class Gaussian mixture source
model of vector (block) length L. Each class is mod-
eled to have block components that are independent
and identically distributed (i.i.d), as mention in Sec-
tion 3. Using (9), the rate-distortion function for
quantization and encoding the kth class can be ex-
pressed as

Rk(D) =
1
2

log2

(
2πe

12β
· σ2

k

D

)
(10)

where σ2
k is the kth class variance and D is assumed

small compared to σ2
k. One coding strategy is to first

classify a source vector and then quantize and en-
code that vector conditioned on the class. Additional
rate is necessary to specify the block class. As we as-
sume an i.i.d sequence of source blocks, the minimum
rate for encoding the class is the entropy, H(k) =
−∑K

k=1 P (k) log2 P (k) bits/block, where P (k) is the
probability of class k. The average encoding rate for
classification-based quantization and encoding is thus
modeled as

RGMM (D) =
1
L

H(K) +
K∑

k=1

P (k)
1
2

log2

(
2πe

12β
· σ2

k

D

)

(11)

=
1
L

H(K) +
1
2

log2

(
2πe

12βD
ΠK

k=1(σ
2
k)P (k)

)
(12)

Define the first term in (12) as the classification rate,
RK = 1

LH(K), and the second term as the rate con-
ditioned on the classification, Rclass(D).

4. EXPERIMENTAL RESULTS

To evaluate the effectiveness of the mixture model
rate-distortion function in (12), first we perform
spherical VQ similar to [1]. However, for simplicity,
the Z8 lattice is used instead of the RE8 lattice, and
we compare the estimated encoding rate from (12)

Table 1: Rclass(D) corresponding to Table 2 (bits
per sample)

SVQZ8
Rclass(D)

K=1 K=2 K=4 K=8 K=16 K=32
∆ = 0.5 4.46 3.44 3.19 3.14 3.14 3.15
∆ = 1.0 3.47 2.46 2.20 2.16 2.16 2.17
∆ = 2.0 2.54 1.53 1.28 1.28 1.27 1.29

Table 2: Estimated rate, RGMM (D) in (12), and
empirical average encoding rate of SV QZ8 at various
step sizes

K
Average rate (bits/sample)

∆ = 0.5 ∆ = 1.0 ∆ = 2.0
RGMM (D) SVQZ8 RGMM (D) SVQZ8 RGMM (D) SVQZ8

1 4.46

3.39

3.47

2.42

2.54

1.53

2 3.53 2.54 1.61
4 3.40 2.41 1.49
8 3.47 2.50 1.61
16 3.56 2.58 1.69
32 3.69 2.72 1.84

to the spherical VQ performance. Then, later in this
section, we use (12) to estimate the encoding rate of
RE8 lattice spherical VQ in the AMR-WB+ standard
[1].

The rate required for lossless coding of the Z8 SVQ
codevectors is determined as follows. Let v be a Z8

codevector with squared radius r =
∑L

i=1 v2
i = ||v||2.

A product code is used to encode v, consisting of
two parts: 1) a code is used to specify the sphere of
squared radius r, and 2) a code is used to specify the
codevector on a given sphere. The ideal required rate
can be expressed as

Ri =
1
L

[log2(1/P (r)) + log2 N(r)] bits/sample,

(13)
where P (r) is the probability that v has squared ra-
dius r and N(r) is the number of Z8 lattice points that
lie on the sphere. N(r) can be computed off-line from
the theta function for the Z8 lattice [26]. In practice
the allowed range of lattice codevector radius can be
truncated, and overload lattice codevectors losslessly
encoded using the method of Voronoi extension (as
in [1, 6]), or by simply partitioned the overload code-
vector into subblocks, and using a separate lossless
code to encode the subblocks. In the experimental
results to follow, the latter method is used, together
with (13), to compute Z8 SVQ encoding rates.

The source data are the spectrally pre-shaped and
scaled transform coefficients from the AMR-WB+ en-
coding method. The transform coefficients are quan-
tized using the scaled Z8 lattice, and the average en-
coding rate computed using (13). The squared error
distortion is controlled in the simulations by adjust-
ing the Z8 lattice step size, and is computed as

D =
1

L ·M
M∑

m=l

L∑

l=1

(ym,l − ŷm,l)2, (14)

where M is the number of data vectors, L = 8 is the
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Table 3: Rclass(D)4 corresponding to Table 4 (bits
per sample)
AMR-WB+ Rclass(D)
rate (kbps) K=1 K=2 K=4 K=8 K=16 K=32

10.4 1.57 0.64 0.61 0.60 0.59 0.59
16.8 2.06 1.08 0.95 0.90 0.90 0.90
24.0 2.52 1.50 1.26 1.26 1.25 1.27

vector dimension coresponding to Z8, and ŷ is the lat-
tice SVQ codevector for y. The distortion is thus the
average squared error from lattice SVQ, and the rate,
from (13) is the (idealized) spherical lattice VQ en-
coding rate. For a given lattice step size, the resulting
simulation distortion, D, is used in (12) to determine
the GMM estimate of encoding rate, RGMM (D).

The simulation results are summarized in Tables
1- 2, comparing the average rate required for spher-
ical VQ using the scaled Z8 lattice (SV QZ8) to the
GMM rate-distortion function RGMM (D) in (12),
with β = 1 (corresponding to Z8 latice) and for sev-
eral step sizes (equivalent to several signal-to-noise
ratios, SNR). From Tables 1 and 2, it can be seen
that the bit rate necessary to specify the block class,
RK , costs roughly 0.1 bits/dimension in classification
rate for each doubling of the number of classes in
the GMM. Examining Table 2 shows that for a single
class (a memoryless Gaussian source model), the rate-
distortion model over-estimates the rate by a signif-
icant margin. For effective rate-distortion modeling,
K = 4 is a sufficient numbers of classes to capture the
available classification gain, and increasing K beyond
4 needlessly wastes rate in the modeling. This can be
seen from Table 1 in which the conditional class en-
coding rate in (12), Rclass(D), saturates for K ≥ 4.
Note from Fig. 3 that the K-class mixture modeling
estimate of the empirical block energy density contin-
ues to improve as K ranges from 1 to 32. For K = 4
the mixture model energy density is a rather coarse
estimate of the empirical density. However, for mod-
eling of rate-distortion performance, K = 4 classes is
adequate. The 4-class GMM rate estimate is close to
the (ideal) observed Z8 VQ encoding rate, underesti-
mating it by no more than 0.04 bits/sample.

The GMM rate-distortion function in (12) is used
to estimate the average encoding rate of the RE8 lat-
tice VQ in the AMR-WB+ algorithm. The value =
1.16 (corresponding with RE8 lattice) is used in (12)
[26, 27] for various distortions corresponding to differ-
ent encoding modes of AMR-WB+ [1]. The results
are shown in Tables 3-4. We note that the encod-
ing in [1] uses a fixed rate per frame, whereas the
GMM ratedistortion function in (12) does not impose
this constraint. Hence, one expects the GMM rate-
distortion mode to lower bound the observed RE8

lattice VQ performance.
From Table 4, the rate-distortion modeling with

K = 4 classes reasonably well models the AMR-WB+

Table 4: Comparison between RGMM (D in (12)
and average rate using RE8 in AMR-WB+

K
10.4 kbps 16.8 kbps 24.0 kbps

RGMM (D)
AMR

RGMM (D)
AMR

RGMM (D)
AMR

WB+ WB+ WB+

1 1.57

0.6

2.06

1.05

2.52

1.54

2 0.72 1.16 1.58
4 0.81 1.15 1.46
8 0.93 1.23 1.59
16 1.00 1.32 1.67
32 1.13 1.43 1.81

Table 5: Results of the comparison based on the
modified modeling

K
10.4 kbps 16.8 kbps 24.0 kbps

RGMM (D)
AMR

RGMM (D)
AMR

RGMM (D)
AMR

WB+ WB+ WB+

1 0.75

0.60

1.41

1.05

2.12

1.54

2 0.59 1.02 1.51
4 0.58 1.00 1.45
8 0.62 1.08 1.54
16 0.62 1.10 1.60
32 0.66 1.15 1.67

rate at high rate (24.0 kbps), similar to the SV QZ8

case. The results in Table 3 also demonstrate again
that for rate-distortion modeling in (12), the number
of classes, K, equal to 4 is enough to capture classfi-
cation gain of the mixture model.

At low and medium rates, however, the ratedis-
tortion modeling in (12) does not adequately predict
the AMR-WB+ encoding rate. The reason is that
as the rate decreases, the frame gain (normalization
factor) increases and the number of source vectors
encoded as the zero codevectors increases. Thus, the
overall distortion gets larger and the small distortion
assumption in (12) is not valid. Some modifications
have to be made in order to use rate-distortion mod-
eling in (12) at low and medium rates.

A modification to the modeling approach is to use
the GMM to model only significant source vectors,
where significant means a source vector encoded us-
ing the AMR-WB+ RE8 lattice VQ as a non-zero
codevector. Using only significant source vectors,
GMM parameters are again estimated using the EM
algorithm, and the average encoding rate RGMM (D)
is computed from (12). The total estimated rate,
Rtotal(D), is then computed by

Rtotal(D) =
(R̂GMM (D)×Nnonzero)+(Rzero×Nzero)

Nnonzero+Nzero
(15)

where R̂GMM (D) = RGMM (D) + 0.125 is the es-
timated encoding rate for significant source vectors
based on (12), plus an additional 0.125 bits/sample
(or 1 bit/source vector) to distinguish the codeword
as not having the same prefix as the zero vector code-
word. Rzero is the encoding rate for zero codevectors,
which for AMRWB+ [1] is a fixed rate of 1 bit/vector
(or 0.125 bits/sample). Nzero and Nnonzero are the
number of zero codevectors and nonzero codevectors,
respectively.

The estimated encoding rate based on the mod-
ified GMM approach is presented in Table 5. This
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provides a better prediction of the observed AMR-
WB+ encoding rates. Again, K = 4 is a sufficient
number of classes.

5. CONCLUSION

This work accurately models the SVQ performance
in transform audio coding using Gaussian mixture
models. The Gaussian mixture model is used to
model vectors of transform audio data and the EM
algorithm is used to estimate GMM parameters. Two
alternative methods are used to determine the mix-
ture model parameters. A rate-distortion function
based on GMM is developed and used to estimate
the actual average encoding rate of SVQ. The ef-
fectiveness of the model is evaluated by comparing
the estimated rate from the model with the aver-
age encoding rate of Z8 lattice SVQ and with the
RE8 lattice VQ used in the AMRWB+ standard.
The simulation results show that the estimated rate
from the model with four classes reasonably well mod-
els SVQ performance, especially at high rate (small
distortion). At low and medium rates, a modified
model partitions source vectors into insignificant (en-
coded as zero codevector) and significant (encoded
as non-zero codevector) classes. The GMM rate-
distortion function is used only to estimate the en-
coding rate for nonzero source vectors since the en-
coding rate for zero source vector is fixed and prede-
fined. With the modification, the model accurately
estimates SVQ performance for low, medium, and
high encoding rates. The results also indicate that
GMM rate-distortion modeling with K = 4 classes is
suffi- cient to capture the available classification gain
of the mixture model for transform audio coding.
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