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Two Parallel Algorithms for a Mass Transfer
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ABSTRACT

We present a comparative study on the perfor-
mance of two parallel algorithms for simulating mass
transfer of weakly magnetic nanoparticles during
the process of High Gradient Magnetic Separation
(HGMS). The dynamics of mass transfer is investi-
gated statistically in term of particle volume concen-
tration and is described by the continuity equation
which is solved numerically using the finite-difference.
For parallelization, the concentration data are di-
vided into equal parts that are distributed to a group
of parallel processes. Parallel computations are per-
formed by using two communication schemes of MPI,
the pair-wise blocking and non-blocking operations.
We compare the performance of both schemes in
terms of parallel speedup, efficiency, and communi-
cation overhead. The results show that parallel sim-
ulation using the non-blocking communication has
better performance than the blocking communication
and also shows the better scalability with increasing
number of processes.

Keywords: Parallel Computing, MPI, Mass Trans-
fer Simulation, High Gradient Magnetic Separation

1. INTRODUCTION

The process of mass transfer plays an important
role in many engineering and scientific applications,
such that thermal diffusion, convection by fluid me-
dia, and influences of various forces (electrostatic,
magnetostatic, gravitational, surface force etc. The
governing equations of the mass transfer process are
often non-linear partial differential equations of sec-
ond or higher order which are difficult to be solved an-
alytically, hence numerical methods are used. Finite-
difference method is a standard method for solv-
ing partial differential equations. The more discrete
points are used, the accurate are the results, but also
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the longer is the runtime necessary to accomplish the
computation.

Parallel computing is used to improve the accu-
racy of the results and reduce the computation time.
There are two major approaches of parallel program-
ming. The first one is to use the compiler generating
the parallel code. In this way, the parallel code is gen-
erated automatically. The compiler attempts to find
the parallelism and derives the parallel code for the
parts that are parallelizable. Another approach is an
explicit way to specify parallelism by a user program.
In this approach, supported libraries and compiler di-
rectives are needed. Such approaches can be done
using message passing libraries (MPI) (www.mpi-
forum.org), openMP (www.openmp.org), Berkley
UPC (upc.lbl.gov), CUDA (www.nvidia.com) and
many others.

MPI is one of the common approaches that is based
on process communication concepts. It is evolved
from PVM (Parallel Virtual Machine) and becomes
a standard which is supported by many hardware
vendors. Many previous works on parallel simula-
tions are using MPI such as CLUSTEREASY [1]
and NIRVANA [2]. The CLUSTEREASY is the ver-
sion of LATTICEEASY which is the C++ program
for doing lattice simulations of the evolution of in-
teracting scalar fields in an expanding universe. It
is the lattice simulation running on the cluster ver-
sion. NIRVANA code is a general-purpose C code
for astrophysical research which numerically inte-
grates the 2D/3D equations of time-dependent, non-
relativistic, compressible magnetohydrodynamics on
Cartesian/cylindrical/spherical grids. Both of them
are fundamental tools in physic simulations but have
not focused on the nanoparticle capturing process.

In MPI, when a processor wants to send a mes-
sage to another processor. The sender needs to call
send function while the receiver needs to call receive
function. There are two kinds of send/receive func-
tions: blocking and non-blocking. The blocking one
means the sender needs to wait until the receiver has
already taken the data from the buffer and it can
proceed to do other jobs. On the contrary, the non-
blocking call implies that the sender can proceed after
it finishes the send function without worrying about
the receiver. However, the sender needs to perform
the testing call at some point to ensure that the re-
ceiver gets the message. The time between the call
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and the testing can be used to perform useful com-
putations. This is called overlapping communication
with the computation.

In this work, we study the parallel simulation
of mass transfer of weakly magnetic nanopartilces
subjected to High Gradient Magnetic Separation
(HGMS). Two communication schemes are studied
– with blocking and non-blocking communication –
and their performance is compared.

The paper is organized as follows. Firstly, the
characters of the problem and the numerical method
used are described. Secondly, procedures of sequen-
tial simulation and its parallelization are described.
We implement two communications schemes using
MPI and report th e results of experiments on a par-
allel cluster.

2. HIGH GRADIENT MAGNETIC SEPA-
RATION

The scheme of the High Gradient Magnetic Sepa-
ration (HGMS[3]) is shown in Fig. 1. The suspension
of weakly-magnetic nanoparticles and a micron-size
ferromagnetic capture (collector) are placed in a non-
magnetic canister. A strongly uniform magnetic field
is then applied, perpendicular to the collector s axis.
All particles in the region close to the collector are
subject to a magnetic force [4]:

−→
Fm =

1
2
µ0χVp

−→∇(H2) (1)

where µ0, χ = χp−χf , Vp, and H are the magnetic
permeability of free space, the difference between the
magnetic susceptibility of the particle and the fluid,
the volume of an individual magnetic particle, and the
magnitude of local magnetic field at the position of
the particle, respectively. An efficient HGMS process,
which means a strong magnetic force, requires the
high strength and gradient of the magnetic field.

Fig.1: Scheme of HGMS.

In this work, we model the collector as a long fer-
romagnetic cylindrical wire. Due to the symmetry of

the problem, dynamics of mass transfer can be stud-
ied in normalized polar coordinates ra, θ as shown in
Fig. 2, where the radial distances, r, is measured
in the unit of wire s radius a. The mass transfer is
studied statistically in term of particle volume con-
centration, denoted by c, which is a function of space
and time and is defined as the fraction of particle
volume contained in an infinitesimal volume element
of the system (fluid with suspended particles) at any
point.

Fig.2: Normalized polar coordinates.

Dynamics of the concentration, which is a function
of positions in the fluid and time, satisfies the conti-
nuity equation. For ordinary volume elements in the
fluid which are not adjacent to any impervious sur-
faces, the continuity equation can be expressed as in
[5]:

∂c

∂τ
=

∂2c

∂r2
a

+
1
ra

∂c

∂ra
+

1
r2
a

∂2c

∂θ2
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∂ra
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∂Gr

∂ra
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ra

∂c

∂θ
− c

ra

∂Gθ

∂θ
, (2)

where functions Gr, Gθ and factor G0 were defined in
[5] and τ = Dt/a2 is the normalized time, D and u
are translational diffusion and translational mobility
of the particle in the fluid. The surface of the wire
and the surface of the static build-up of particles are
considered as impervious surfaces where the radial
flux of particles is equal to zero. Figure 3 depicts the
special volume elements, labelled by the letter I, that
are adjacent to the impervious surface.

Fig.3: Special volume elements.
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The normalized continuity equation for special vol-
ume elements can be expressed as shown in [5]:

(
∂c

∂τ

)

I

=
1

(ra)2I

(
∂2c

∂θ2

)

I

−
(

Gθ

ra

∂c

∂θ

)

I

−
(

c

ra

∂Gθ

∂θ

)

I

+
(Grc)I+1

δra
− 1

δra

(
∂c

∂ra

)

I+1

, (3)

In the Equation subscript I and I + 1 refer the spe-
cial volume and δra its immediate adjacent volume
element. is the distance between these two volume
elements.

In particular, Equation (2) is used for ordinary vol-
ume elements whereas Equation (3) is used for special
volume elements that are adjacent to the impervious
surfaces such as the wire surface or the surface of
the saturation buildup of the particle. It is assigned
that the particle flux in the radial direction cannot
pass through the impervious surface, ∂c/∂ra = 0.
Then, Equations (2) and (3) are solved numerically
to obtain the image of the concentration distribution
around the collector at any given normalized time.

3. SIMULATION SETUP

3.1 Discretization of Continuity Equation,
and Computing Domain Granularity

For simulation, a uniform grid is constructed in an
annular region enclosing the collector as in Figure
4a. The outer boundary is located at ra,L = 10, cn

i,j

denotes the value of concentration in an infinitesimal
control volume located at the point (ra,i, θj) at the
instant of normalized time τn. Grid points adjacent
to the impervious surface are called “special points”
and denoted by cn

s,j . Total concentration data are
stored in a two-dimensional array as shown in Fig-
ure 4b. Two equal-size arrays are used for storing
data at the current step τn, and at the next step of
time τn+1. The concentration cn

i,j is the data stored
at the ith column and jthrow. In Figure 4b, index
imax corresponds to the outer boundary (raL) and
the index jmax corresponds to the maximum angle
θmax = 360◦ −∆θwhere ∆θ is the discrete step of θ
in the finite-difference method. Initially, at τ = 0, ini-
tial condition is assigned as c0

i,j = C0, (C0 = 0.0010 in
this work) for all i and j . In practice, inter-particle
forces and interactions limit the concentration to a
finite value and the saturation or static build-up oc-
curs. Saturation build-up occurs approximately at
Csat ≈ 0.10 [5]. A grid point with a concentration
cn
i,j ≥ Csat is assumed to be the saturation point.

The points of saturation are considered to be static
build-up and are excluded from the process of com-
putation by holding the concentration at Csat. The
concentration on the outer boundary, where the in-
fluence of the magnetic force is relative small, is held
equal to the initial value C0.

(a)

(b)

Fig.4: (a) Grid construction, and (b) Corresponding
concentration array.

At first, Equations (2) and (3) are discretized via the
finite-difference approximation. Finally, the value of
concentration at a new step of normalized time, cn+1

i,j ,
at a non-special point can be computed, by using the
concentration of the present grid point and four sur-
rounding grid points at the previous step of normal-
ized time as follows:
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Following similar steps, the difference equation used
for special grid points can be obtained as
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Figures 5(a) and 5(b) show the patterns of data
dependence for typical grid points and special grid
points, respectively, implied by Equations (4) and (5).

3.2 SEQUENTIAL SIMULATION

Let max round denotes the total round of itera-
tion. Parameters of simulation are the magnetic field
strength H0, magnetization of the collector M , abso-
lute temperature T , particle s radius bp, initial con-
centration C0, saturate concentration Csat, grid steps
∆ra,∆θ and ∆τ , and the size of concentration array.

The sequential simulation proceeds in five steps,
as shown in Fig. 6, as follows:
Step 1: Setup simulation parameters.
Step 2: Compute various constants used in the simu-
lation such as factor G0.
Step 3: Assign initial value to concentration arrays.
Step 4: Iterative computing : while (round ≤
max round)

4.1 For each row, do:
- Specify the column index “s” of special points.
- Perform the iterative computing, by using (4),

starting from column imax − 1 down to column
s + 1 as shown in Fig. 6.

- Perform computation by using (5) in column s.
4.2 Copy data in new concentration array into old

concentration array.
Step 5: Save simulation results in output files.

4. APPROACHES TO PARALLELIZATION

For parallelization we divide the concentration
data into equal parts column-wise, such that each
part, with the number of columns equal to col-
umn each rank as shown in the Figure 7, is assigned
to one process. As usual when using MPI, we or-
ganize computations on a group of processes, each
with unique identification number (rank). According
to the data dependencies shown in Figures 5(a) and
5(b), the computation in the first and the last col-
umn of each subarray held by each process requires
the data in the subarrays held by the two correspond-
ing adjacent processes. On the other hand, each pro-
cess provides the data in the first/ last column of
its subarrays for the two neighboring processes. The

(a)

(b)

Fig.5: (a) Data dependency for typical grid points,
and (b) Data dependency for special grid points.

Fig.6: Computing in a row.

column-wise data partitioning implies the radial-wise
decomposition of annular region enclosing the collec-
tor into many separate annular domains as shown in
Figure 8.

Fig.7: Configuration of data distribution and pat-
tern of linear data exchanges between processes.
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According to the pattern of data dependency in
Fig. 5, each process must send its concentration
data in the first and last columns to its two adja-
cent processes. However, data exchanges between
first rank and highest rank processes are not re-
quired. Consequently, the processes communicate to
its neighbors in the straight line pattern. Data ex-
change between subarrays is also performed via four
one-dimensional arrays. These arrays have the same
number of rows as the big array. These buffer ar-
rays are called Sent left, Receive left, Sent right and
Receive right. The Sent left and Receive left arrays
are used to exchange data with the adjacent lower-
rank process while the Sent right and Receive right
arrays are used to exchange data with the adjacent
higher-rank process. The first rank process uses only
Sent right and Receive right arrays. An additional
one-dimensional array called Outer boundary which
contains initial concentration C0 is used for com-
puting in the last column of subarray occupied by
the highest rank process. Major scheme of paral-
lel computation for column-wise partitioning can be
described as follows. Let the subarray occupied by
each process have the number of columns equal to col-
umn each rank which is obtained by the total number
of columns in the big array divided by the number of
processes. Then we have i max = colum each rank -
1.

Fig.8: Radial-wise annular domain decomposition.

4.1 PARALLEL SIMULATION PROCEDURE

The steps of parallel simulation are as follows. Let
N be the maximum rank in the process group.
Steps 1-3: The same as in the sequential process and
adding parameter of column each rank.
Step 4: Iterative computation

4.1 Determine the associated minimum
normalized radius from the relation

ra,min =1.0+(rank×column each rank ×∆ra). (6)

While (round ≤ max round)
4.2 Check the rank of the process

4.2.1 If rank = 0 then follows step 4.1 of
sequential computing.

4.2.2 If rank > 0 then, for each row of the
associated subarray,
- Use Equation (4), starting from

the column imax − 1 down to column
i = 1.

Fig.9: Linear data exchanges before computing col-
umn i = 0.

4.3 Exchange data with neighbour processes
before computing column i = 0.
- Rank 0 ≤ p < N copies its

data in column i = imax into its
Sent right array and sends the data
to Receive left array of the process
rank p+1.

- Rank 1 ≤ p < N receives data
from Sent right of the process
rank p-1 into its Receive left .

Fig.10: Data exchange before computing column i =
imax.

4.4 Compute the new concentration in the
column i = 0.

4.5 Exchange data with neighbour processes
before computing column i = imax

- Rank 1 ≤ p ≤ N copies its
data in column i = 0 into its
Sent leftt array and sends the data to
Receive right array of rank p-1.

- Rank 0 ≤ p ≤ N-1 receives
data from Sent left rank p+1 into its
Receive right

- Rank N receives data from
Outer boundary into its
Receive right.
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4.6 Compute the new concentration in
column i = imax.

4.8 Copy data in the new concentration
array into the old concentration array.

Step 5: Save simulation results in the output files.
Figures 9 and 10 show the pattern of data exchange
between adjacent processes (Steps 4.3, 4.5) before
computing in the column i = 0 and i = imax, re-
spectively.

4.2 NON-BLOCKING COMMUNICATION
IMPROVEMENT

The first scheme of pair-wise communication is the
MPI Send and MPI Recev which is the blocking com-
munication. After each process finishes the compu-
tation in the columns of index 1 ≤ i ≤ imax − 1, it
will start when the required column arrives. After
the communication is finished, the computation can
proceed further. The first linear chain of communi-
cations start in the pattern P0, P1, ..PN and in the
second linear chain starts as PN , PN−1, ..P0. Conse-
quently, process 0 starts the communication first and
finishes the communication last in overall. It is the
process with the most waiting time as well. Thus,
the blocking communication leads to a certain com-
munication overhead and limits the performance of
the parallel simulation.

Fig.11: Computation and communication steps in
blocking communication.

In the non-blocking scheme, we use MPI Isend,

and MPI Irecv instead. We move the computation
of column 1 ≤ i ≤ imax− 1 to hide the latency of the
communications. Figure 11 shows computation and
communication steps in Section 4.1. In Figure 12,
we move the communications to the first step. Then,
while we compute the column 1 ≤ i ≤ imax − 1 the
communication is performed. When we need column
i = 0, the MPI Wait() is called to check whether the
data is ready. Similarly, when we need column imax,
the MPI Wait() is called to check whether the data
is ready.

5. EXPERIMENTAL RESULTS AND DIS-
CUSSION

5.1 CONCENTRATION DISTRIBUTION

We perform our experiments on a 32 nodes, totally
64 cores Linux cluster, with a Gigabit Ethernet inter-
connection at Louisiana Technology University, USA.
In the cluster, each core is Intel Xeon 2.8GHz with
512 MB RAM. The cluster runs LAM-MPI 7.1 and
on Gigabit Ethernet network.

We simulate mass transfer of paramagnetic
Mn2P2O7 particles of radius bp = 12 nm which are
dispersed in a static water. The effective magnetic
susceptibility of the system (water + Mn2P2O7 parti-
cle) is χ = +4.73×10−3 [5]. The ferromagnetic cylin-
drical collector is considered to be homogeneously
saturated magnetized by a uniform magnetic field H0

= 1× 106 A/m which is perpendicular to the collec-
tor’s axis, with saturation magnetization equal to Ms

= 1.6 × 106 A/m and the absolute temperature 300
K. The values of factors G0 = -16.62 and Kw = 0.80.
The value of initial concentration at every grid point
is equal to C0 = 0.0010 and the saturation concen-
tration is equal to Csat = 0.10. Grid steps are ∆ra =
0.010, ∆θ= 0.10 and ∆τ = 0.0000010. Hence, there
are 3,600 rows and 901 columns in the whole com-
putational domain as shown in Figure 7. The outer
boundary of the annular domain ra,L is 10 and the
boundary condition is assigned, such that the values
of particle volume concentration at all grid points on
the outer boundary are held fixed at the initial con-
centration C0 . Figure 13 shows the family of con-
centration contours around the collector.

In Figure 13, we see the buildup of Mn2P2O7 par-
ticles on the ferromagnetic cylindrical collector. Re-
gions around the collector can be specified into three
zones. The first zone is the saturation region, de-
noted , where the concentration at all points is equal
to the saturation Csat = 0.10. The second zone is the
accumulation region, denoted by , where the value of
concentration is larger than the initial value but less
than the saturation value, i.e. C0 < c < Csat. Parti-
cles are accumulated dynamically in the this region.
The radial magnetic force is active in both satura-
tion and accumulation regions. The third zone is the
depletion region, denoted by , where the value of con-
centration is less than the initial value:0 < c < C0.
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Fig.12: Computation and communication steps in
non- blocking communication.

The radial magnetic force is repulsive in the depletion
regions. In Figure 17, we see that, in paramagnetic
mode, the buildup of Mn2P2O7 particles on the col-
lector occurs in the direction parallel to the direction
of uniform external magnetic field

−→
H0. Particles are

depleted in the direction that is perpendicular to the
direction of

−→
H0 because they are carried to other re-

gions by repulsive magnetic force.

Table 1: Speedup and efficiency for blocking com-
munication approach.

No. of processes tavg(s) Sp Ep

1 22271 1.000 1.000
4 7229 3.081 0.770
6 4888 4.556 0.759
8 3619 6.154 0.769
10 3060 7.278 0.728
12 2607 8.544 0.712
16 1942 11.468 0.717
20 1635 13.623 0.681

5.2 SPEEDUP AND EFFICIENCY

A standard method to evaluate a parallel algorithm is
to investigate its speedup and efficiency. The speedup
can be computed as follows [6]:

Fig.13: Concentration contours around the collec-
tor.

Table 2: Speedup and efficiency for non-blocking
communication approach.

No. of processes tavg(s) Sp Ep

1 22271 1.000 1.000
4 7073 3.149 0.787
6 4720 4.719 0.786
8 3425 6.502 0.813
10 2825 7.885 0.788
12 2351 9.474 0.789
16 1744 12.774 0.798
20 1428 15.594 0.780

Sp =
t1
tp

, (7)

where t1 is average runtime of the sequential
computation and tp is the average runtime of parallel
computation for the number of processes p. The ef-
ficiency of the parallel processes can be computed as
follows:

Ep =
Sp

p
. (8)

Speedup and efficiency of parallel simulation using
blocking and non-blocking communication are shown
in Table 1 and Table 2, respectively.

Figure 14 shows the comparison of the speedup
of our two parallel algorithms using blocking and
non-blocking communication respectively. Figure 19
shows the comparison with respect to efficiency. As
the number of processes increases, the speedup in-
creases consistently and monotonically. As expected,
the speedup and efficiency of the non-blocking algo-
rithm is significantly better than in the blocking case.
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Fig.14: Comparison of speedup.

5.3 COMMUNICATION OVERHEAD

The communication overhead is studied by mea-
suring the average total communication time of all
MPI calls for each process per iteration. We then
compute the percentage of computation and commu-
nication time per iteration based on total simulation
time for both blocking and non-blocking communica-
tion as shown in Figure 16 and 17, respectively.

Fig.15: Comparison of efficiency.

We observe that the blocking communication incurs
more overhead than the non-blocking one. In the
blocking case, the communication is about 10-25%
for each iteration while in the non-blocking case, it is
about 10%. When there are more processes, a smaller
number of rows of data is sent. However, the com-

Fig.16: Time percent for blocking communication.

munication performs using two linear chains. Both
chains get longer when the number of processes in-
creases. Process 0 is the bottleneck since it starts the
first chain in step 4.3 and it ends the last chain in
step 4.5. When there are more processes, the com-
putation domain gets smaller in step 4.4. Thus, the
waiting time for process 0 increases with the number
of processes. Then, this increases the proportion of
the communication overhead per iteration of compu-
tation.

Fig.17: Time percent for non-blocking communica-
tion.

Figure 18 shows the comparison of total communi-
cation time of the blocking and non-blocking commu-
nication case. We observe that the non-blocking ap-
proach incurs much smaller overhead than the block-
ing one. When there are more processes, the com-
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munication overhead is reduced because fewer data
elements are sent, though the linear chain gets longer
which has a small overall effect. Note that the effect
of size of linear chain is visible more for each itera-
tion in Figure 17. In the non-blocking scheme, the
communication overhead is almost constant, i.e. the
communications is hidden in these cases

Fig.18: Comparison of communication time.

6. CONCLUSION

We developed, implemented and experimentally com-
pared two parallel algorithms for High Gradient Mag-
netic Separation (HGMS) of nanoparticles. In both
schemes, we distribute the domain of computation
equally column-wise. The first algorithm uses block-
ing communication based on MPI Send/Recv lin-
ear chain. The second algorithm uses non-blocking
MPI Isend/Irecv and computation steps hide com-
munication latency. The results show that in on our
cluster both algorithms provide a good speedup rate.
However, the non-blocking algorithm performs better
because the overhead incurred by the non-blocking
MPI calls is lower and can be hidden totally in the
overlapped computation.
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