236 ECTI TRANSACTIONS ON ELECTRICAL ENG., ELECTRONICS, AND COMMUNICATIONS VOL.9, NO.2 August 2011

Two Parallel Algorithms for a Mass Transfer
Simulation of Magnetic Nanoparticles

Kanok Hournkumnuard!, Chantana Phongpensri ?, Bunpot Dolwittayakul?,

Sergei Gorlatch?*, and Torsten Hoefler®, Non-members

ABSTRACT

We present a comparative study on the perfor-
mance of two parallel algorithms for simulating mass
transfer of weakly magnetic nanoparticles during
the process of High Gradient Magnetic Separation
(HGMS). The dynamics of mass transfer is investi-
gated statistically in term of particle volume concen-
tration and is described by the continuity equation
which is solved numerically using the finite-difference.
For parallelization, the concentration data are di-
vided into equal parts that are distributed to a group
of parallel processes. Parallel computations are per-
formed by using two communication schemes of MPI,
the pair-wise blocking and non-blocking operations.
We compare the performance of both schemes in
terms of parallel speedup, efficiency, and communi-
cation overhead. The results show that parallel sim-
ulation using the non-blocking communication has
better performance than the blocking communication
and also shows the better scalability with increasing
number of processes.

Keywords: Parallel Computing, MPI, Mass Trans-
fer Simulation, High Gradient Magnetic Separation

1. INTRODUCTION

The process of mass transfer plays an important
role in many engineering and scientific applications,
such that thermal diffusion, convection by fluid me-
dia, and influences of various forces (electrostatic,
magnetostatic, gravitational, surface force etc. The
governing equations of the mass transfer process are
often non-linear partial differential equations of sec-
ond or higher order which are difficult to be solved an-
alytically, hence numerical methods are used. Finite-
difference method is a standard method for solv-
ing partial differential equations. The more discrete
points are used, the accurate are the results, but also

Manuscript received on August 1, 2009 ; revised on January
31, 2010.

12,3 The authors are with Department of Computing,
Faculty of Science, Silpakorn University, Thailand, E-mail:
kanok_h@hotmail.com, ctana@su.ac.th and

4 The author is with Universitdt Miinster, Institut fiir In-
formatik, Miinster, Germany, E-mail: gorlatch@math.uni-
muenster.de

5 The author is with 40pen System Lab, Indiana University,
Bloomington, IN 47405, USA, E-mail: htorsQcs.indiana.edu

the longer is the runtime necessary to accomplish the
computation.

Parallel computing is used to improve the accu-
racy of the results and reduce the computation time.
There are two major approaches of parallel program-
ming. The first one is to use the compiler generating
the parallel code. In this way, the parallel code is gen-
erated automatically. The compiler attempts to find
the parallelism and derives the parallel code for the
parts that are parallelizable. Another approach is an
explicit way to specify parallelism by a user program.
In this approach, supported libraries and compiler di-
rectives are needed. Such approaches can be done
using message passing libraries (MPI) (www.mpi-
forum.org), openMP (www.openmp.org), Berkley
UPC (upc.lbl.gov), CUDA (www.nvidia.com) and
many others.

MPI is one of the common approaches that is based
on process communication concepts. It is evolved
from PVM (Parallel Virtual Machine) and becomes
a standard which is supported by many hardware
vendors. Many previous works on parallel simula-
tions are using MPI such as CLUSTEREASY [1]
and NIRVANA [2]. The CLUSTEREASY is the ver-
sion of LATTICEEASY which is the C++ program
for doing lattice simulations of the evolution of in-
teracting scalar fields in an expanding universe. It
is the lattice simulation running on the cluster ver-
sion. NIRVANA code is a general-purpose C code
for astrophysical research which numerically inte-
grates the 2D /3D equations of time-dependent, non-
relativistic, compressible magnetohydrodynamics on
Cartesian/cylindrical /spherical grids. Both of them
are fundamental tools in physic simulations but have
not focused on the nanoparticle capturing process.

In MPI, when a processor wants to send a mes-
sage to another processor. The sender needs to call
send function while the receiver needs to call receive
function. There are two kinds of send/receive func-
tions: blocking and non-blocking. The blocking one
means the sender needs to wait until the receiver has
already taken the data from the buffer and it can
proceed to do other jobs. On the contrary, the non-
blocking call implies that the sender can proceed after
it finishes the send function without worrying about
the receiver. However, the sender needs to perform
the testing call at some point to ensure that the re-
ceiver gets the message. The time between the call

Two Parallel Algorithms for a Mass Transfer Simulation of Magnetic Nanoparticles 237

and the testing can be used to perform useful com-
putations. This is called overlapping communication
with the computation.

In this work, we study the parallel simulation
of mass transfer of weakly magnetic nanopartilces
subjected to High Gradient Magnetic Separation
(HGMS). Two communication schemes are studied
— with blocking and non-blocking communication —
and their performance is compared.

The paper is organized as follows. Firstly, the
characters of the problem and the numerical method
used are described. Secondly, procedures of sequen-
tial simulation and its parallelization are described.
We implement two communications schemes using
MPI and report th e results of experiments on a par-
allel cluster.

2. HIGH GRADIENT
RATION

The scheme of the High Gradient Magnetic Sepa-
ration (HGMSJ3]) is shown in Fig. 1. The suspension
of weakly-magnetic nanoparticles and a micron-size
ferromagnetic capture (collector) are placed in a non-
magnetic canister. A strongly uniform magnetic field
is then applied, perpendicular to the collector s axis.
All particles in the region close to the collector are
subject to a magnetic force [4]:

MAGNETIC SEPA-

— 1 —
Fop = 510XV, V (H?) (1)

where 1o, X = Xp— Xy, Vp, and H are the magnetic
permeability of free space, the difference between the
magnetic susceptibility of the particle and the fluid,
the volume of an individual magnetic particle, and the
magnitude of local magnetic field at the position of
the particle, respectively. An efficient HGMS process,
which means a strong magnetic force, requires the
high strength and gradient of the magnetic field.

magnetic field lines

magnetic forces

capture center

magnetic
particles

Fig.1: Scheme of HGMS.

In this work, we model the collector as a long fer-
romagnetic cylindrical wire. Due to the symmetry of

the problem, dynamics of mass transfer can be stud-
ied in normalized polar coordinates 7,6 as shown in
Fig. 2, where the radial distances, r, is measured
in the unit of wire s radius a. The mass transfer is
studied statistically in term of particle volume con-
centration, denoted by ¢, which is a function of space
and time and is defined as the fraction of particle
volume contained in an infinitesimal volume element
of the system (fluid with suspended particles) at any
point.

— (E(l’a ’ 9)
HO
—_— —
 — —
> water —_ >

Fig.2: Normalized polar coordinates.

Dynamics of the concentration, which is a function
of positions in the fluid and time, satisfies the conti-
nuity equation. For ordinary volume elements in the
fluid which are not adjacent to any impervious sur-
faces, the continuity equation can be expressed as in

[5]:

de_ e 1 oe 18 G
or or2 r,0r, 12062 Ta
Oc 0G, Gy Oc c 0Gy
e S0 Gedo o %o)
org org re 00 1r, 00

where functions G,., Gy and factor GGy were defined in
[5] and 7 = Dt/a? is the normalized time, D and u
are translational diffusion and translational mobility
of the particle in the fluid. The surface of the wire
and the surface of the static build-up of particles are
considered as impervious surfaces where the radial
flux of particles is equal to zero. Figure 3 depicts the
special volume elements, labelled by the letter I, that
are adjacent to the impervious surface.

Fig.3: Special volume elements.

238

The normalized continuity equation for special vol-
ume elements can be expressed as shown in [5]:

de\ | 1 (@) (Gede\ (e Gy
or I_(raﬁ 0%), re 00), \ro 00),
(GTC)I+1 _ i Oc

57‘@ 57"@ a’l"a I+1 ’ (3)

In the Equation subscript I and I + 1 refer the spe-
cial volume and Jr, its immediate adjacent volume
element. is the distance between these two volume
elements.

In particular, Equation (2) is used for ordinary vol-
ume elements whereas Equation (3) is used for special
volume elements that are adjacent to the impervious
surfaces such as the wire surface or the surface of
the saturation buildup of the particle. It is assigned
that the particle flux in the radial direction cannot
pass through the impervious surface, dc/0ra = 0.
Then, Equations (2) and (3) are solved numerically
to obtain the image of the concentration distribution
around the collector at any given normalized time.

+

3. SIMULATION SETUP

3.1 Discretization of Continuity Equation,
and Computing Domain Granularity

For simulation, a uniform grid is constructed in an
annular region enclosing the collector as in Figure
4a. The outer boundary is located at 7, = 10, cﬁj
denotes the value of concentration in an infinitesimal
control volume located at the point (r,,,6;) at the
instant of normalized time 7,,. Grid points adjacent
to the impervious surface are called “special points”
and denoted by cy ;. Total concentration data are
stored in a two-dimensional array as shown in Fig-
ure 4b. Two equal-size arrays are used for storing
data at the current step 7,,, and at the next step of
time 7,41. The concentration ¢}'; is the data stored
at the i*" column and j*"row. In Figure 4b, index
imaz corresponds to the outer boundary (r,z) and
the index j,,q: corresponds to the maximum angle
Omaz = 360° — Afwhere Af is the discrete step of
in the finite-difference method. Initially, at 7 = 0, ini-
tial condition is assigned as c?’j = Cy, (Cy = 0.0010 in
this work) for all ¢ and j . In practice, inter-particle
forces and interactions limit the concentration to a
finite value and the saturation or static build-up oc-
curs. Saturation build-up occurs approximately at
Csat = 0.10 [5]. A grid point with a concentration
cﬁj > Cyqt is assumed to be the saturation point.
The points of saturation are considered to be static
build-up and are excluded from the process of com-
putation by holding the concentration at Cs.¢. The
concentration on the outer boundary, where the in-
fluence of the magnetic force is relative small, is held
equal to the initial value Cj.

ECTI TRANSACTIONS ON ELECTRICAL ENG., ELECTRONICS, AND COMMUNICATIONS VOL.9, NO.2 August 2011

-
-
e o

i
']
I

j = jm:u

1= Imax

Fig.4: (a) Grid construction, and (b) Corresponding
concentration array.

At first, Equations (2) and (3) are discretized via the
finite-difference approximation. Finally, the value of
concentration at a new step of normalized time, c?jl,
at a non-special point can be computed, by using the
concentration of the present grid point and four sur-
rounding grid points at the previous step of normal-

ized time as follows:

1_2@n 2 (A7—>
ntl_ (Arg)? (T'a)f (A0)2

i ((Gr)ii (G 1 (8G Cij
((nl)i+(ar >z’,;‘L(T“)i (96)1‘ j (AT)>

“ 0)i,
e (o) ()]
" __(AATZ)Q * (A2<1> - (zé)i’j) g =)} ey
1 T i,j T N
i :(Ta)z - ((A9)2> B (2(2)’,» (M)] Ci,j+1
AT (Go)i; (AT

" _(riv B <<A9>2> " 2r)s

Following similar steps, the difference equation used
for special grid points can be obtained as

Two Parallel Algorithms for a Mass Transfer Simulation of Magnetic Nanoparticles 239

= _ Q(AT) _ AT 0G, -
15t~ |1~ e~ (o))
+ [(Ar) (Ge)l,j(AT)] -
L(ra)2(A0)2 2(r,)(AG) | TIT!
+ [(A7) - (Ge)l,j(AT)] o
GoRBaP 20 |
r T Gr 1,5(AT n
- _((AAra))2 - |)er(; =)] CI+1,5
+ (A s 5)

Figures 5(a) and 5(b) show the patterns of data
dependence for typical grid points and special grid
points, respectively, implied by Equations (4) and (5).

3.2 SEQUENTIAL SIMULATION

Let maz_round denotes the total round of itera-
tion. Parameters of simulation are the magnetic field
strength H,, magnetization of the collector M, abso-
lute temperature 7', particle s radius by, initial con-
centration Cp, saturate concentration Cyqy, grid steps
Arg,Af and At, and the size of concentration array.

The sequential simulation proceeds in five steps,
as shown in Fig. 6, as follows:

Step 1: Setup simulation parameters.

Step 2: Compute various constants used in the simu-
lation such as factor Gy.

Step 3: Assign initial value to concentration arrays.
Step 4: Iterative computing : while (round <
max_round)

4.1 For each row, do:

- Specify the column index “s” of special points.

- Perform the iterative computing, by using (4),

starting from column 4,,,, — 1 down to column
s+ 1 as shown in Fig. 6.
- Perform computation by using (5) in column s.
4.2 Copy data in new concentration array into old
concentration array.
Step 5: Save simulation results in output files.

4. APPROACHES TO PARALLELIZATION

For parallelization we divide the concentration
data into equal parts column-wise, such that each
part, with the number of columns equal to col-
umn_each_rank as shown in the Figure 7, is assigned
to one process. As usual when using MPI, we or-
ganize computations on a group of processes, each
with unique identification number (rank). According
to the data dependencies shown in Figures 5(a) and
5(b), the computation in the first and the last col-
umn of each subarray held by each process requires
the data in the subarrays held by the two correspond-
ing adjacent processes. On the other hand, each pro-
cess provides the data in the first/ last column of
its subarrays for the two neighboring processes. The

i, j+1

ij Citl,j

(b)

Fig.5: (a) Data dependency for typical grid points,
and (b) Data dependency for special grid points.

Impervious
region
direction of iteration
< :
0 ss+1 iy =1 4

max

max

Fig.6: Computing in a row.

column-wise data partitioning implies the radial-wise
decomposition of annular region enclosing the collec-
tor into many separate annular domains as shown in
Figure 8.

Total concentration array

=

H i
= — = L .
| g L& -

g en - = Taotal r
= = ‘_S = = & Fotal row
- ¥ g = -=

3 =

Outer boundary

'-=1 L= =
- & 2
H ¢ g
g g z
z = =
g 7 7
£ 2

Sent/Receive right
Sent/Receive left

Sent/Receive right

s
£
Z
g
¢
o

Concentration data

-
4
E
z
£
s
S

rank 0

=

rank 1 rank N-1 rank N

Fig.7: Configuration of data distribution and pat-
tern of linear data exchanges between processes.

240

According to the pattern of data dependency in
Fig. 5, each process must send its concentration
data in the first and last columns to its two adja-
cent processes. However, data exchanges between
first rank and highest rank processes are not re-
quired. Consequently, the processes communicate to
its neighbors in the straight line pattern. Data ex-
change between subarrays is also performed via four
one-dimensional arrays. These arrays have the same
number of rows as the big array. These buffer ar-
rays are called Sent_left, Receive_left, Sent_right and
Receive_right. The Sent_left and Receive_left arrays
are used to exchange data with the adjacent lower-
rank process while the Sent_right and Receive_right
arrays are used to exchange data with the adjacent
higher-rank process. The first rank process uses only
Sent_right and Receive_right arrays. An additional
one-dimensional array called Outer_boundary which
contains initial concentration Cj is used for com-
puting in the last column of subarray occupied by
the highest rank process. Major scheme of paral-
lel computation for column-wise partitioning can be
described as follows. Let the subarray occupied by
each process have the number of columns equal to col-
umn_each_rank which is obtained by the total number
of columns in the big array divided by the number of
processes. Then we have i_max = colum_each_rank -
1.

Fig.8: Radial-wise annular domain decomposition.

4.1 PARALLEL SIMULATION PROCEDURE

The steps of parallel simulation are as follows. Let
N be the maximum rank in the process group.
Steps 1-3: The same as in the sequential process and
adding parameter of column_each_rank.
Step 4: Iterative computation

4.1 Determine the associated minimum
normalized radius from the relation

Ta.min = 1.0+(rank x column_each_rank x Ar,). (6)

ECTI TRANSACTIONS ON ELECTRICAL ENG., ELECTRONICS, AND COMMUNICATIONS VOL.9, NO.2 August 2011

While (round < max_round)
4.2 Check the rank of the process

4.2.1 If rank = 0 then follows step 4.1 of
sequential computing.

4.2.2 If rank > 0 then, for each row of the
associated subarray,
- Use Equation (4), starting from

the column 4,,,, — 1 down to column

1=1.

k] - 5 - 5 - 5 -

z || £ £l 2] 1% z| [2] |= R 5
= || ¥ (=& sl (# (2= F 3
2 o = b - L - L $
s1e (2151 1s] o (3 5]1s] (2] 51s] |3
- - - - - - - - - - - 3
HIET EIRRARE SLE] ISl | 2 lE] |2
AR FIR AR S|l |cM™e| =8 3
S1E (B 5% SIS (5 [5]] 8%
o = : o - z o = z] = =
g £ Z c]]] £ H £ = 3
-} 3 =] Y Y -] Y s Y

SIE 8])% ST 1 e 1E T
rank 0 raitk | rank N-1 rank N

Fig.9: Linear data exchanges before computing col-

umn 1 = 0.

4.3 Exchange data with neighbour processes

before computing column 7 = 0.

- Rank 0 < p < N copies its
data in column 7 = 4,,,, into its
Sent_right array and sends the data
to Receive_left array of the process
rank p+1.

- Rank 1 < p < N receives data
from Sent_right of the process
rank p-1 into its Receive_left .

[- a -] - k] -
- = & = = = = = & H = =,
= = B ~ = » = <
E el LU E | |el e 26 L2 (2] 5 |3
- - [- - - - -
= 3 bt = b1 8 = f AR :
= H MEE] 2l =1 |8 sl =2 =
sz |2[] 5|2 gl e |2 %] 5|2 3
@ = = v - = o = = o = -]
@ = = 2 = = 9 = = @ = >
S5 (2|52 21515 (2| 512 IS
18] w ‘ o u “ &) 0 o u
rank rank 1 rank N-1 rank N

Fig.10: Data exchange before computing column i =

Zmaw M

4.4 Compute the new concentration in the
column ¢ = 0.
4.5 Exchange data with neighbour processes
before computing column ¢ = 7,4,
- Rank 1 < p < N copies its
data in column ¢ = 0 into its
Sent_leftt array and sends the data to
Receive_right array of rank p-1.
- Rank 0 < p < N-1 receives
data from Sent_left rank p+1 into its
Receive_right
- Rank N receives data from
Outer_boundary into its
Receive_right.

Two Parallel Algorithms for a Mass Transfer Simulation of Magnetic Nanoparticles 241

4.6 Compute the new concentration in
column ¢ = 4,,4z-
4.8 Copy data in the new concentration
array into the old concentration array.
Step 5: Save simulation results in the output files.
Figures 9 and 10 show the pattern of data exchange
between adjacent processes (Steps 4.3, 4.5) before
computing in the column i = 0 and i = i,,44, TE-
spectively.

4.2 NON-BLOCKING COMMUNICATION
IMPROVEMENT

The first scheme of pair-wise communication is the
MPI_Send and MPI_Recev which is the blocking com-
munication. After each process finishes the compu-
tation in the columns of index 1 < i < 44, — 1, it
will start when the required column arrives. After
the communication is finished, the computation can
proceed further. The first linear chain of communi-
cations start in the pattern Py, Pi,..Py and in the
second linear chain starts as Py, Py_1,..FPy. Conse-
quently, process 0 starts the communication first and
finishes the communication last in overall. It is the
process with the most waiting time as well. Thus,
the blocking communication leads to a certain com-
munication overhead and limits the performance of
the parallel simulation.

Computing in columns

I
1 1
: [|]
1)
1 7 1 No
1 1 . icati
' H communication
1 1
: A
e ———— l
1 Linear exchange 1 : Hang on
: blocking communication computation
_____________ -
[t = 1
1 Computing in column
1 i=0 1
1 .
: 1 No
1 1 communication
1 1
1 1
1 1

F)

1 Linear exchange 2 : Hang on

: blocking communication a computation
a

No
communication

Fig.11: Computation and communication steps in
blocking communication.

In the non-blocking scheme, we use MPI _Isend,

and MPI_Irecv instead. We move the computation
of column 1 <4 < i;pqe — 1 to hide the latency of the
communications. Figure 11 shows computation and
communication steps in Section 4.1. In Figure 12,
we move the communications to the first step. Then,
while we compute the column 1 < i < 4,4, — 1 the
communication is performed. When we need column
1 =0, the MPI_Wait() is called to check whether the
data is ready. Similarly, when we need column 4,4,
the MPI_Wait() is called to check whether the data
is ready.

5. EXPERIMENTAL RESULTS AND DIS-
CUSSION

5.1 CONCENTRATION DISTRIBUTION

We perform our experiments on a 32 nodes, totally
64 cores Linux cluster, with a Gigabit Ethernet inter-
connection at Louisiana Technology University, USA.
In the cluster, each core is Intel Xeon 2.8GHz with
512 MB RAM. The cluster runs LAM-MPI 7.1 and
on Gigabit Ethernet network.

We simulate mass transfer of paramagnetic
Mn2P207 particles of radius bp = 12 nm which are
dispersed in a static water. The effective magnetic
susceptibility of the system (water + MnyP2O7 parti-
cle) is x = +4.73x 1073 [5]. The ferromagnetic cylin-
drical collector is considered to be homogeneously
saturated magnetized by a uniform magnetic field Hy
=1 x 105 A/m which is perpendicular to the collec-
tor’s axis, with saturation magnetization equal to Mg
= 1.6 x 105 A/m and the absolute temperature 300
K. The values of factors Gg = -16.62 and K,, = 0.80.
The value of initial concentration at every grid point
is equal to Cqg = 0.0010 and the saturation concen-
tration is equal to Cgyy = 0.10. Grid steps are Ar, =
0.010, Af= 0.10 and A7 = 0.0000010. Hence, there
are 3,600 rows and 901 columns in the whole com-
putational domain as shown in Figure 7. The outer
boundary of the annular domain r,y, is 10 and the
boundary condition is assigned, such that the values
of particle volume concentration at all grid points on
the outer boundary are held fixed at the initial con-
centration Cy . Figure 13 shows the family of con-
centration contours around the collector.

In Figure 13, we see the buildup of MnyP2O7 par-
ticles on the ferromagnetic cylindrical collector. Re-
gions around the collector can be specified into three
zones. The first zone is the saturation region, de-
noted , where the concentration at all points is equal
to the saturation Cgay = 0.10. The second zone is the
accumulation region, denoted by , where the value of
concentration is larger than the initial value but less
than the saturation value, i.e. Cy < ¢ < Cgyny. Parti-
cles are accumulated dynamically in the this region.
The radial magnetic force is active in both satura-
tion and accumulation regions. The third zone is the
depletion region, denoted by , where the value of con-
centration is less than the initial value:0 < ¢ < Cy.

242 ECTI TRANSACTIONS ON ELECTRICAL ENG., ELECTRONICS, AND COMMUNICATIONS VOL.9, NO.2 August 2011

Overlapping between computations
and communications
3

Linear
Computing in columns exchange 1

1<iSima— 1} }
and

Linear
Exchange 2

Fig.12: Computation and communication steps in
non- blocking communication.

The radial magnetic force is repulsive in the depletion
regions. In Figure 17, we see that, in paramagnetic
mode, the buildup of MnsP50O7 particles on the col-
lector occurs in the direction parallel to the direction
of uniform external magnetic field PT(; . Particles are
depleted in the direction that is perpendicular to the
direction of 1?0> because they are carried to other re-
gions by repulsive magnetic force.

Table 1: Speedup and efficiency for blocking com-
munication approach.

No. of processes | taug(5) Sp E,
1 22271 | 1.000 | 1.000
4 7229 3.081 | 0.770
6 4888 | 4.556 | 0.759
8 3619 | 6.154 | 0.769
10 3060 | 7.278 | 0.728
12 2607 8.544 | 0.712
16 1942 | 11.468 | 0.717
20 1635 | 13.623 | 0.681

5.2 SPEEDUP AND EFFICIENCY

A standard method to evaluate a parallel algorithm is
to investigate its speedup and efficiency. The speedup
can be computed as follows [6]:

[
L

Y
(in unit of collector radius)

0.00010 0.00090
52 4 e 1 21 3

(in unit of collector radius)

Fig.13: Concentration contours around the collec-
tor.
Table 2: Speedup and efficiency for non-blocking

communication approach.

No. of processes | tqug(s) Sp E,
1 22271 1.000 | 1.000
4 7073 3.149 | 0.787
6 4720 4.719 | 0.786
8 3425 6.502 | 0.813
10 2825 7.885 | 0.788
12 2351 9.474 | 0.789
16 1744 12.774 | 0.798
20 1428 15.594 | 0.780

Sp=1" (7)
P

where t; is average runtime of the sequential
computation and ¢, is the average runtime of parallel
computation for the number of processes p. The ef-
ficiency of the parallel processes can be computed as
follows:

=2 0
b
Speedup and efficiency of parallel simulation using
blocking and non-blocking communication are shown
in Table 1 and Table 2, respectively.

Figure 14 shows the comparison of the speedup
of our two parallel algorithms using blocking and
non-blocking communication respectively. Figure 19
shows the comparison with respect to efficiency. As
the number of processes increases, the speedup in-
creases consistently and monotonically. As expected,
the speedup and efficiency of the non-blocking algo-
rithm is significantly better than in the blocking case.

Two Parallel Algorithms for a Mass Transfer Simulation of Magnetic Nanoparticles 243

16

14 -

12

10 -

-6~ Blocking Communication

—-£&~ Non-blocking Communication

0 5 10 15 20
Number of Processes

Fig.14: Comparison of speedup.

5.3 COMMUNICATION OVERHEAD

The communication overhead is studied by mea-
suring the average total communication time of all
MPI calls for each process per iteration. We then
compute the percentage of computation and commu-
nication time per iteration based on total simulation
time for both blocking and non-blocking communica-
tion as shown in Figure 16 and 17, respectively.

1.2

1F 4

-5~ Blocking Communication
-8~ Non-blocking Communication

0 5 10 15 20
Number of Processes

Fig.15: Comparison of efficiency.

We observe that the blocking communication incurs
more overhead than the non-blocking one. In the
blocking case, the communication is about 10-25%
for each iteration while in the non-blocking case, it is
about 10%. When there are more processes, a smaller
number of rows of data is sent. However, the com-

100
80
=
g
= 60
@ O Communication
= H Computation
40 A
20 -
0 -

4 6 8 10 12 16 20
Number of Processes

Fig.16: Time percent for blocking communication.

munication performs using two linear chains. Both
chains get longer when the number of processes in-
creases. Process 0 is the bottleneck since it starts the
first chain in step 4.3 and it ends the last chain in
step 4.5. When there are more processes, the com-
putation domain gets smaller in step 4.4. Thus, the
waiting time for process 0 increases with the number
of processes. Then, this increases the proportion of
the communication overhead per iteration of compu-
tation.

100%

80%
S 60% -
B O Communication
- B Computation
2
2 40% A

20% A

0% -

4 6 8 10 12 16 20

Number of Processes

Fig.17: Time percent for non-blocking communica-
tion.

Figure 18 shows the comparison of total communi-
cation time of the blocking and non-blocking commu-
nication case. We observe that the non-blocking ap-
proach incurs much smaller overhead than the block-
ing one. When there are more processes, the com-

244 ECTI TRANSACTIONS ON ELECTRICAL ENG., ELECTRONICS, AND COMMUNICATIONS VOL.9, NO.2 August 2011

munication overhead is reduced because fewer data
elements are sent, though the linear chain gets longer
which has a small overall effect. Note that the effect
of size of linear chain is visible more for each itera-
tion in Figure 17. In the non-blocking scheme, the
communication overhead is almost constant, i.e. the
communications is hidden in these cases

1000— T T T T T T T T :

—&~ Blocking Communication
900 - - Mo Bleiag b i

800 -
700
600
500
400+

300+

Communication Time (s)

200+

100~

¢ 2 4 6 8 10 12 14 16 18 20

Number of Processes

Fig.18: Comparison of communication time.

6. CONCLUSION

We developed, implemented and experimentally com-
pared two parallel algorithms for High Gradient Mag-
netic Separation (HGMS) of nanoparticles. In both
schemes, we distribute the domain of computation
equally column-wise. The first algorithm uses block-
ing communication based on MPI_Send/Recv lin-
ear chain. The second algorithm uses non-blocking
MPI Isend/Irecv and computation steps hide com-
munication latency. The results show that in on our
cluster both algorithms provide a good speedup rate.
However, the non-blocking algorithm performs better
because the overhead incurred by the non-blocking
MPIT calls is lower and can be hidden totally in the
overlapped computation.

7. ACKNOWLEDGEMENT

We would like to thank Assoc. Prof. Dr. Box
Leangsuksun for providing a cluster for our experi-
ments. Also, we thank Silpakorn University Research
and Development Institute for the partial support.

References

[1] G. Felder, “CLUSTEREASY: A program for
lattice simulations of scalar fields in an ex-
panding universe on parallel computing clus-
ters,” Computer Physics. Communications, Vol.
179, pp. 604 - 606, 2008. Also available at
(http://www.science.smith.edu/departments/
Physics/fstaff/gfelder/latticeeasy/).

[2] U. Ziegler, “The NIRVANA code: Parallel com-
putational MHD with adaptive mesh refinement,”
Computer Physics Communications, Vol. 179, pp.
227 - 244, 2008.

[3] F. Matthias, H. Uwe, R. Gerhard, “Magnetic fil-
ters on duty for cleaner metallic surface,” Geo-und
Wassertechnologie, Vol. 3, pp. 66 - 75, 2002.

[4] B. I. Bleaney, B. Bleaney, Electricity and Mag-
netism, Claredon Press, Oxford, 1965. Chapter 6.

[5] L. P. Davies, R. Gerber, “2-D simulation of ultra-
fine particle capture by a single-wire magnetic col-
lector,” IEEE Transactions on Magnetics, Vol. 26,
No. 5, pp. 1867 - 1869, 1990.

[6] Micheal Quin, Parallel Programming in C with
MPI and OpenMp, McGraw Hill, Singapore, 2003,
Chapter. 7.

Kanok Hournkumnuard received the
bachelor degree of electrical engineering
(control engineering) in 1998 from King
Mongkut s Institute of Technology Lad-
krabang, Bangkok, Thailand. In 2004,
he received the master degree of sci-
ence (physics) from Chulalongkorn Uni-
versity, supported by Thai government
scholarship. He has studied for Ph. D.
of science (physics) since 2007 until now.

S8 Currently, he is a staff of department
of physics, faculty of science, Silpakorn University, Nakhon
Pathom, Thailand. His research interests include magnetic
separation, computational physics, environmental physics, and
physical waste water treatments.

Chantana Phongpensri received the
B.S. degree of computer science(2"d
Class Honor) in 1991 from Thammasat
University, Bangkok, Thailand. She
then received the M.Sc. degree of com-
puter science from Northeastern Univer-
sity, Boston, MA in 1994, and the Ph.D.
degree in Computer Science and En-
gineering from the University of Notre
Dame, Notre Dame, IN, USA in 1999,
both on a Thai government scholarship.
Currently, she is an associate professor at department of
computing, faculty of science, Silpakorn University, Nakhon
Pathom, Thailand. Her research interests include architecture
synthesis for VLSI design, fuzzy system prototyping, real-time
and embedded systems, parallel processing, wireless applica-
tion development, and visual system design.

faf 14

Two Parallel Algorithms for a Mass Transfer Simulation of Magnetic Nanoparticles

Bunpot Dolwittayakul

No
Image

Sergei Gorlatch obtained his Master
degree in Computer Science from the
State University of Kiev in 1979 and a
PhD degree in Computer Science from
the National Institute of Cybernetics,
Kiev, in 1984. In 1991-1992 he was a
Humboldt research fellow at the Tech-
nical University of Munich/Germany.
From 1992 to 1999 he worked as a
research assistant and then as Assis-
tant Professor at the University of Pas-
sau/Germany, where he obtained his “Habilitation” (qualifi-
cation for professorship) in 1998. From 2000 to 2003, he was
Associate Professor at the Technical University of Berlin. Since
October 2003, Sergei Gorlatch has been Full Professor of Com-
puter Science at the University of Muenster/Germany. He has
more than 100 publications in renowned international journals
and conferences, and has led several research and development
projects in the field of parallel, distributed and Grid comput-
ing.

Torsten Hoefler

No
Image

245

