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ABSTRACT

The mass-spring model has been used to describe
elastically deformable models such as skin, textiles,
and soft tissue in computer graphics. A mass-spring
mesh is composed of a network of masses and springs,
in which each edge is a spring. We apply the mass-
spring system to mesh deformation in 3D orthodon-
tic simulation, the movement of which is evaluated
using the numerical integration of the fundamental
law of dynamics based on the 4th-order Runge-Kutta
method. Computational quantity and accuracy is
demonstrated on test and dental cast model exam-
ples. The experimental results show that it can sim-
ulate the deformation change in real time and display
the results vividly.

Keywords: Mass-Spring Model, Model Defor-
mation, Orthodontic Simulation, STL Dental Cast
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1. INTRODUCTION

Traditionally, orthodontists deal with correcting
malocclusion in young patients. The “typical” or-
thodontic patient is 12 to 14 years old while adults
seeking orthodontic treatment for aesthetic reasons
alone is very rare. However, it is becoming common
nowadays for appearance-conscious adults to place
great personal value on the appearance of their smile,
and cosmetic dentistry has become increasingly pop-
ular among older patients [1].

Orthodontists use cephalometric projections to
plan their treatments [2]. Cephalometric projections
are x-rays taken of the side of head. However, it
is not convenient to store and compare orthodontic
patient records of each patient for each treatment
period. Therefore, computer technology is used in
orthodontics to simulate treatment changes in a 3D
space.

Soft tissue holds a large proportion of the whole
individual structure, including a great deal of impor-
tant organs, for example, the heart, skin, muscles and
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so on. The simulation of soft tissue deformation re-
lates to the fields of medicine, mechanics, biology,
computer graphics, and robot vision. In addition, the
simulation of soft tissue deformation is widely used in
the medicinal simulation system including plastic and
musculoskeletal surgery. Modeling of deformable ob-
ject has two models which are considered the most
popular methods. The methods are Finite Element
Method (FEM) and Mass-Spring. However, an ideal
soft tissue deforming simulation is still a challeng-
ing task due to the complex internal structure and
surface appearance of the deformable objects. FEM
is the most accurate method for simulation, but it
hardly satisfies the real-time requirement because of
its high complexity and large numbers of parameter
definition. Mass-Spring model could have acceptable
response-time but results in low accuracy.

This paper develops models of gingival tissue
deformation in orthodontics based on Mass-Spring
model because we need simulate deformation of tissue
in real-time. By simulating physical properties such
as tension and rigidity, we can model static shapes
exhibited by a wide range of deformation objects.
Furthermore, by including physical properties such
as mass and damping, we can simulate the dynam-
ics of these objects. The simulation involves numer-
ically solving the partial differential equations that
govern the evolving shape of the deformable object
and its motion through space. Solving partial differ-
ential equations is important to describe the behav-
ior of gingival deformation brought about by tooth
movement in the process of rectification that can be
simulated by computer. Gingival deformation is the
change of gingival shape (soft tissue) caused by the
change of tooth (rigid body) position under external
force in the process of orthodontic treatment. Realis-
tic simulation of gingival tissue deformation requires
an appropriate physics-based model of soft tissue de-
formation.

Section 2 describes our model for tissue deforma-
tion. The model is composed of a network of masses
and springs, which can be considered as a variant of
elastic models. We give differential equations of mo-
tion describing the dynamics behavior of deformable
models under the influence of external forces. Sec-
tion 3 presents implementation mass-spring model to
simulate soft tissue deformation. We end with our
results, discussion and conclusions.
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2. MASS-SPRING MODEL

2.1 Mesh Representation

In our model, elastically soft tissue is represented
by a triangle mesh of m masses, each mass being
linked to its neighbors by mass springs of natural
length not equal to zero (Figure 1). Each spring’s
natural length is the distance between masses in the
rest position.

Fig.1: Mesh of masses and springs used for our
model

2.2 Point Mass

In our mass-spring models, masses are allocated at
the vertices of the triangle mesh and damped springs
along the edges. To accurately distribute the total
mass of the mesh, we compute the mass mi of each
vertex i according to the area AN(i), where N(i) is
the set of indices of triangles adjacent to vertex i. If
D is the material density [4], then:

mi =
D

∑
AN(i)

3
(1)

2.3 Spring Stiffness

The easiest way to calculate spring stiffness is to
use a constant value for the stiffness (k). More com-
monly, k is computed as k = 1/L, where L is the
length of the spring at rest. In [3], Van Gelder sug-
gested a formula to compute spring stiffness for a 3D
mesh that is the closest to elastic continuous repre-
sentation. Let E be the Young’s modulus, then:

kij =
E

∑
AN(i)

lij
2 (2)

where:
• kij is the stiffness of the spring linking point

i and point j
• lij is the length between point i and point j

2.4 Spring Damping

The question of how to assign different damping
(c) values to the various springs in a mass-spring sys-
tem has been largely ignored in the literature. Tra-
ditionally, c is treated as a constant throughout the
system. We performed the same simulation as before
using (1) and (2) to calculate m and k. To simulate
the best behavior of our models, we compute spring
damping (c) of each spring e followed by equation (3)
[4].

cij =
2
√

k(mi + mj)
lij

(3)

where:
• cij is spring damping of the spring linking point

i and point j
• lij is the length between point i and point j

2.5 Applied Forces

The system under study is the triangle mesh of
the m masses, each mass being positioned at time t
on the point i, where i = 1, . . . , m. The position of
each point, at any time t, can be derived through the
fundamental law of dynamics. The internal forces are
due to the tensions of the springs [5, 6]. The overall
internal force applied at the point i at time t is a
result of the stiffness of all the springs linking this
point to its neighbors:

F int
i (t) = −

∑

j∈Ri

kij

(
Pij(t)− l0ij

Pij(t)
||Pij(t)||

)
(4)

where:
• Ri is the set of all couples (j) such as point j is

linked by a spring to point i,
• Pij(t) is position of the spring linking point i

and point j which Pij(t)=Pi(t)-Pj(t),
• Pi(t) is position of point i at time t,
• l0ij is the natural length of the spring linking point

i and point j which l0ij = ||Pij(0)||,
• kij is the stiffness of the spring linking point i

and point j

The external forces (Fext) are of various natures ac-
cording to the load to which we wish the model to
be exposed. Omnipresent loads will include gravity,
a viscous damping and a viscous interaction with an
air stream (or wind), but we only applied damping
forces (Fdis) at time t to simulate our models. The
viscous damping will be given by:

F ext
i = F dis

i (t) = −civi(t) (5)

where:
• ci is all damping coefficients that are computed

by equation (3) ci =
∑

j∈Ri
cij ,
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• vi(t) is its velocity of point i at time t which can
be computed following equation (6).

The role of this damping is in fact to model the first
approximate dissipation of the mechanical energy of
our model.

3. IMPLEMENTATION

In orthodontic treatment simulation, we can ex-
tract teeth structure from the gingival surface before
teeth alignment. To analyze gingival surface deforma-
tion, a deformable model (gingival surface) must be
created by animation and the differential equations
of motion are simulated numerically. The first step
is defining the point force at a point on the gingi-
val surface which is the applied force when teeth are
aligned. Finally, the new position of points at time
are computed by solving the differential equations.

3.1 Point Force

Point forces are applied forces when teeth are
moved. We can define point forces with boundary
points of gingival surface connecting to the moved
tooth (Figure 2).

Fig.2: Point Forces (balls) are contributed on the
gingival surface boundary connecting to the moved
tooth.

3.2 Gingival Surface Motivation

The movement of gingival surface is caused by
forces of teeth movement applied to each point of the
model. The position of each point, at any time t, can
be derived through Newton’s second law of motion.
All the above formulations make it possible to com-
pute the force Fi(t) applied on point Pi at any time t.
The fundamental equation of dynamics can therefore
be explicitly integrated through time by the simple
Euler’s method [5,6]:





mi
∂2Pit

∂t2
= F int

i (t) + F ext
i (t)

ai(t) =
F int

i (t) + F ext
i (t)

mi
=

F int
i (t)− civi

mi

vi(t) =
∂Pi(t)

∂t

(6)

We can solve motion equation 6 to evaluate a new
position at any time Pi(t). The positions and veloc-
ities of the points are computed based on 4th order
Runge-Kutta method as follows:

r1 = hf(P0, t0)
r2 = hf(P0 + k1/2, t0 + h/2)
r3 = hf(P0 + k1/2, t0 + h/2)
r4 = hf(P0 + k3, t0 + h)
P (t0 + h) = P0 + (r1 + 2r2 + 2r3 + r4)/6

(7)

where:
• r are Runge-Kutta functions,
• Pi(t) is position of point i at any time t,
• f(P, t) are the forces at point at any time t,
• h is the minimum time step.

4. EXPERIMENTAL RESULTS AND DIS-
CUSSION

The algorithm of the technique was implemented
under Windows with Borland C++ Builder, using
the OpenGL Library for rendering the 3D images.
A set of patient’s pretreatment models from the Or-
thodontic Clinic, Advanced Dental Technology Cen-
ter, was selected. Two different sets were used dur-
ing the experiments - a mandible model (Figure 3)
and a maxilla model (Figure 5). The triangle meshes
of two models were generated from the CT scanner.
First step, we extract a tooth from gingival surface
and then we move the tooth to simulate the gingival
deformation. The simulation results of the gingival
deformation are shown in the following figures. Fig-
ures 4 and 6 are the deformation simulation result for
translation and rotation of tooth by arrow direction,
respectively. Iterations of each deformable model are
shown by Figures 7 and 8. Lastly, the simulated times
that include the processing and rendering times are
shown in Table 1.

After simulation at 100 iterations, large deforma-
tion appears near the point forces, and constraints
are sometime not met. But after simulation at 500
iterations, we ensure both a more natural look of the
gingival surface and the enforcement of constraints.
The simulation takes rather a long time since the 4th
order Runge-Kutta method requires many iterations
in order to achieve the final result.

5. CONCLUSION

The soft tissue deformation needs to be consistent
with the physical properties. In this paper, we apply



Simulation of Surface Mesh Deformation in Orthodontics by Mass-Spring Model 295

Table 1: Simulation Time
Num. of Frame Rate Num. of
Triangles (msec.) Frames/sec

29108 0.56 1769
26198 0.53 1904
23286 0.45 2210
11452 0.29 3395
11642 0.26 3832
5820 0.16 6101

mass-spring system to soft tissue deformation in 3D
orthodontic simulation. The process of dynamic de-
formation can be described effectively after the time
variable is introduced. The dynamic motion rule
adopts the differential equation form; the numerical
method can be carried out for the real-time compu-
tation of the dynamic system. The experimental re-
sults show that this method satisfies the demand for
the computational real-time and the gingival defor-
mation 3D in virtual orthodontics.
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Fig.3: Original mandible model.

Fig.4: Gingival deformation of mandible model.

Fig.5: Original maxilla model.

Fig.6: Gingival deformation of maxilla model.
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Fig.7: Simulation at 100 iterations (left) and 500 iterations (right) of mandible.

Fig.8: Simulation at 100 iterations (left) and 500 iterations (right) of maxilla.
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