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ABSTRACT

In this paper, the design and evaluations of a cross-
coupled rectifier (CCR) with floating sub-circuit
using Dynamic Threshold MOSFET (DTMOS) for
RF energy harvesting is presented. The circuit is
fabricated using 65 nm Silicon on Thin Buried Box
(SOTB) CMOS technology. The measurement result
shows that the circuit exceeds 1000 mV DC output
at —14 dBm input power and obtains 48 % power
conversion efficiency (PCE) at a level of -10 dBm
input power. The proposed circuit generated 0.9 pW
DC output power at a level of —21 dBm input
power which is equivalent to 10.6 % PCE when
harvesting the 950 MHz LTE signal in the ambient
environment. The study also indicates the effect
of the phase difference between the two RF input
signals on the DC output voltage in a CMOS CCR.
The DC output voltage depends on the phase of the
two RF input signals and reaches a maximum when
the phase difference between the two RF signals is
. Experimental results demonstrate that the output
voltage changes from 950 mV to =100 mV when the
phase difference varies from 7 to 0 at an RF input
power of —10 dBm. When the rectifier receives an
RF signal from the environment at an input power
of —21 dBm, the DC output voltage changes from
300 mV to —50 mV when the phase difference changes
from 7 to 0.
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1. INTRODUCTION

Recently, the expansion of the Internet of Things
(IoT) applications has a strong influence on human
life. In IoT technique, energy harvesting takes
an important role because the energy harvesting
system is an essential solution to eliminate batteries
for ToT applications [1]. RF energy harvesting
(RFEH), which converts an RF signal in the ambient
environment into a DC signal has received an increase
in attention as a energy harvesting technique. The
RF signal is very common in the environment where
people are living today such that it becomes an ideal
energy source for energy harvesting. However, the
amount of RF level in the ambient environment is
extremely low, usual yW level [2], [3]. At the low
input power range, the input signal is lower than the
threshold voltage (V;p,) of the active component used
for rectifying, resulting in a significant decrease in
the PCE. Certain V;;, cancellation techniques were
proposed to boost the PCE of the system such as
self Vi, cancellation technique [4], differential-drive
topology [5], and CCR with floating sub-circuit bias
[6].

DTMOS has been shown to obtain much higher
drain current than other normal MOSFET [7].
DTMOS was proposed in RFEH technique earlier
in Dickson topology [8], self Vj;, cancellation [9],
cross-coupled rectifier [10]. In [6], the PCE of CCR
with floating sub-circuits exceeds that of conventional
CCR. In this paper, we propose the application of
DTMOS to CCR with floating sub-circuits. The
circuit was fabricated using 65nm SOTB CMOS
technology [11] because the threshold voltage of
SOTB MOSFET can be changed to be larger than
the bulk so that DTMOS becomes more effective.
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Fig.2: Structure of SOTB CMOS inverter: VBN
is the body of NMOS and VBP is the body of PMOS

[11].

Table 1: RF characteristics of 65 nm SOTB

|  PMOS [ NMOS
Gate length 60 nm 60 nm
Gate oxide thickness 2.0 nm 2.0 nm
Threshold Voltage —-0.32'V 0.35 V
Fr 26 GHz 40 GHz
Fraz 20 GHz 28 GHz

Fig. 1 presents a block diagram of an RFEH system
using CCR. In general, the RFEH system consists
of an antenna, a matching circuit, a rectifier circuit,
and an energy store. Depending on the application,
in some cases, the RFEH system also has some
additional parts such as splitter, time switch [1].
Because the structure of CCR is differential-drive
topology, so RF signals supplied to the rectifier, which
is RF3; and RF3y in Fig. 1, are required to be
symmetrical signals. The requirement is ensured by
the former parts of the RFEH system which consist
of the antenna and rectifier in general, and the power
divider for optional applications. Normally, a dipole
antenna or a loop antenna, that can generate the
two differential RF output signals, is suitable to
utilize in the system. In addition, to increase the
RF input power by harvesting multiple RF signals,
the broadband antenna and wide bandwidth antenna
are proposed [12], [13]. These antennas have one RF
output, hence, there needs to be a hybrid coupler,
which is used to create the differential signals from
the input RF signal.

The design of differential power divider is proposed
in [14], [15]. In the studies, the measurement results
indicated that the phase difference between the two
RF outputs of the divider is not ideal as 7w. Hence,
the phase difference of the paired RF signals RFj3q,
and RF3o of the rectifier is different from 7. In this
study, we indicate the effect of the phase difference
of the two paired RF inputs of the rectifier on its
operation.

The paper is organized as follows: in Section 2, the
design of DTMOS CCR with floating sub-circuits is
presented. Section 3 indicates the effect of the phase
difference of the paired RF inputs on the output of the
CCR. Sections 4 and 5 present measurement results
with a signal generator and with real RF signals in
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the environment. Section 6 presents the conclusion.

2. CROSS-COUPLED RECTIFIER USING
DTMOS WITH FLOATING SUB-CIRCUIT
ON 65 NM SOTB

2.1 Dynamic threshold MOSFET on 65 nm
SOTB technology

The cross-sectional diagram of SOTB CMOS is
shown in Fig. 2 [11]. In [16], the RF characteristics of
65 nm SOTB CMOS are measured and presented as
shown in Table 1. f,,4; of PMOS and NMOS SOTB
are 20 GHz and 28 GHz, respectively. Therefore, it
can be concluded that the 65 nm SOTB technology
is effective for application in frequency 1 GHz.

Fig. 3 shows the ID-VGS characteristic simulated
results of DTMOS and Body tied to source MOSFET
(BTMOS). From the figure, the threshold voltage
of DTMOS is 0.35 V, lower than that of BTMOS
which is 0.4 V. Besides, the drain current of DTMOS
is higher than the drain current of BTMOS at the
same value of Vgg voltage. From these results, it
can be concluded that the application of DTMOS to
rectifier in low input power ranges can provide higher
efficiency than using BTMOS.

2.2 Proposed circuit structure

The proposed circuit consists of three-stage CCR
with floating sub-circuits [6] as shown in Fig. 4. In
each stage, two cross-coupled sub-circuits supply bias
voltages for gate ports of MOSFETSs in the main
circuit. The loads of the sub-circuits are open so that
DC levels at FLi1,FLys, FLoy, FLys are boosted.
These voltages are supplied to gates and bodies of
MOSFETSs in the primary circuit, thus making the
circuit work more effectively in a low input power
range than the simple CCR. Coupling capacitors in
each stage are Cy,, = 1 pF, Cs, = 0.5 pF. Load
capacitor C, = 10 pF. Chip micrograph and the
photo of the RF energy harvesting system are shown
in Figs. 5 and 6.
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Fig.4: Cross-coupled DTMOS rectifier with floating
sub-circuit.

Fig.6: The RF energy harvesting system.

3. EFFECT OF PHASE DIFFERENCE ON
CROSS-COUPLED RECTIFIER AND SIM-
ULATION RESULTS

To simplify analysis of the effect of the phase
difference between the two RF inputs of the rectifier
on its output voltage, in this section the configuration
of a stage cross-couple rectifier is utilized as shown
in Fig. 7. The two paired RF input signals are
supplied by two sine wave voltage sources with a
phase difference between them of Ayp. In [17],

ECTI TRANSACTIONS ON ELECTRICAL ENG., ELECTRONICS, AND COMMUNICATIONS

VOL.18, NO.2 AUGUST 2020

Vivisin(2mft) RF31

A

vy
500 M P
e mas
T T
Voc
L 1 |
ﬂ V2 rr: 10pF] 3 10MQ
. N2 =—
Vinasin(2nft + Ag) P2
A
1 500 RF32 L
Fig.7: Cross-coupled rectifier.
Ap =1
o ,2u, , , A4u , , ,  6u . 8u
Vi (v) o.64
V2 (v)
0.9
0.2
° - -
-0.2 : I
1dN1 (ua) | 290 i II
s0Q |
h
400
200
°
vDC (V) 5
time(sec)
V1 (V) 0.6 1
vz (v) 0a! A
Ll |
oz ~ . N
ol - M R < &
o2l V2 F A B ici b E |
|
1dN1 (uA). 800 : |
0Q I |
a00 | |
200 | /\ |
ol |
ol NN \J
vocv) | 96| i
0.5 | |
o.a | |
0.3 | |
0z | [
01| |
R LI U i

] N S i
time(sec) ! 7.9995u ’ ’ ' 8u : 8.0005u

Fig.8: Steady-state simulated time-domain wave-
forms of wvoltages and drain currents in NMOS N1
when Ap =7

the steady-state simulated time-domain waveforms of
NMOS N1 in the case Ap = 7 was specified in detail,
as shown in Fig. 8. The simulation condition are at
954 MHz, Vi1 = Vine = 0.4 V and the load is 10 MSQ2.
Positive current is a forward current that charges
the load. Negative current is a flow-back current
that discharges the load. Owing to the symmetry
of CMOS devices, the drain and source should be
switched for analysis depending on these potentials.
As a result, Vgg will be (Vo — V1) or V; depending on
which is higher.

The operation of the CCR in case of being supplied
by two differential RF signals can be divided into
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Fig.9: Steady-state simulated time-domain wave-
forms of wvoltages and drain currents in NMOS N1
when Ap =0

6 regions as shown in Fig. 8. In region A, where
Vas > Vi, and Vi < 0, the current is forward
current and reaches the highest value because Vg =
(Vo — V1) reaches the highest absolute value. In
regions B to F, because V; > 0 so Vgg = V5
and Vpg = V7. The currents in these regions are
flow-back currents and have negative values. In
region B and F, the absolute values of V5 decrease in
comparison with that of region A, then the absolute
values of Vizg in these regions are smaller than those
in region A. Therefore, the absolute values of the
drain currents in these regions are smaller than that
in region A. In regions C and E, Vo < V so
these region are sub-threshold regions resulting drain
current dramatically decreasing. In region D, V5 < 0
so in this region NMOS is in off-mode. The current
in the load is an integral of all currents in a cycle. In
this case, the drain current in region A dominates the
drain current in the cycle so the current in the load is
a forward current and the output voltage is positive.

Fig. 9 presents the steady-state simulated time
domain waveforms of voltages and currents of N1
when Ap = 0. In region A, where Vg = V5 reaches
highest value, V; > 0 so the current in this region is
flow-back current. In regions B to F, where V; < 0
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Fig.10: Dependence of DC output voltage with Ap
in 8-stage CCR, 3-stage CCR with floating sub-circuit
using DTMOS and BTMOS.

and Vgg = Vo — V7, the currents are forward currents
and have smaller value than that in region A because
Vs reduces. The major drain current in this case is
flow-back current and the output voltage is negative.

From the analysis, the output voltage of CCR
depends not only on the absolute value of the two RF
input signals but also on the phase difference between
them. These dependencies are shown through
simulation results of three 3-stage-CCR types: simple
CCR, CCR with floating circuit using DTMOS,
CCR with floating circuit using BTMOS (Fig. 10).
The simulation conditions have an input power of
—20 dBm, a load of 10 M), and a frequency of
954 MHz. It can be seen from Fig. 10 that with
all rectifier types the DC output voltage strongly
depends on the phase difference between the paired
RF inputs. The output voltage reaches the peak
value when Ay = 7 and significantly decreases when
Ay changes. Fig. 10 also shows the efficiency of the
proposed circuit in comparison with the same stage
of CCR and the same configuration using BTMOS.
When Ap = 7, the output voltage of the proposed
circuit reaches 240 mV while that of 3-stage CCR
is 130 mV, and that of 3-stage CCR with floating
circuits using BTMOS is 220 mV.

4. EXPERIMENTAL RESULTS WITH SIG-
NAL GENERATOR

In the measurement, evaluation conditions were
set up as shown in Fig. 11. Signal generator (SG)
SMJ100A is used to generate the RF signal to the
input of a hybrid coupler KRYTAR 4010124. The
RF signal then is divided into two RF signals by the
coupler and supplied to the rectifier. Phase difference
between points RF5; and RF5s in Fig. 11 is notated
by A@(RF21, RF95). The phase difference between
points RF3; and RFj3s is denoted by Ay, and it is
the phase difference of the two RF inputs supplied to
the rectifier. These phase differences are calculated
by Egs. 1 and 2:

0 for
w  for

> port

Ap (RF21,RF25) = { A port
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Ap = 5 (L1 — L2) + ¢ (Vrr21, VRr22)  (2)

where Ly and Lo are lengths of coaxial cables used
for connecting between the hybrid coupler and the
rectifier board. Ap is a wavelength of the RF signal
in the coaxial cable.

4.1 Performance of DTMOS CCR with float-
ing sub-circuits

To test the performance of the rectifier, matching
circuits are attached in the rectifier PCB board as
shown in Fig. 12. In the board, L type matching
circuits are designed to match the two RF inputs of
rectifier circuit with 50 € SMA connectors. Here,
inductors Ly and Lo are 2 nH each. Capacitors Cy
and Cy are 6.5 pF each. In this measurement, lengths
of the coaxial cables are the same and A port is used
so that the phase difference Ap is w. Figs. 13 and
14 show measured output voltage and PCE of the
rectifier at 1 GHz frequency and different loads. In
our measurement, the output voltage is measured up
to a limitation of 1.3 V to avoid damage MOSFETs.

The PCE of the rectifier is calculated by

PDCout V02 t
PCE = = 4 3
Prrin ~ RLPRFin )
As shown in Fig. 13, the rectifier obtained a

sensitivity of 1 V at =14 dBm input power. From
Fig. 14, the highest PCE of the rectifier is 48 % at a
level of —10 dBm input power and a 10 k(2 load. These
results prove the efficiency of the CTMOS CCR with
floating sub-circuits.
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Fig.13: Measured output voltage of the rectifier at
1 GHz.

PCE (%) at frequency 1 GHz

—e@— PCE 100kOhms

--#--PCE 51kOhms

30
F APSUeE ob Ll Ty 3
—a— PCE 30kOhms “ b -3
L7 0|y
e g
PCE 10kOhms -~
2 10
- —
= )
26 24 .22 .20 -8 -6 -4 -2 -10

Input power (dBm)

Fig.14: Measured PCE of the rectifier at 1 GHz.

4.2 Evaluation of phase effect with signal
generator

Matching circuits were not used in the mea-
surements to evaluate the phase effect at different
frequencies. The phase difference of two RF signals of
the rectifier is calculated in (2). From the equation,
by changing the connecting ports of the hybrid
coupler which are the ¥ port and A port, or changing
the length of the coaxial cables, the phase difference
effect is evaluated.

In the first measurement, the cable lengths are kept
the same so that when ¥ port and A port of the
coupler are used, the phase differences Ap are 0 and
m, respectively. Figs. 15 and 16 show simulated and
measured results at three frequencies. The output
voltage was measured at a 10 M) load and over a
wide range of input power.

When Ap = m, all DC output voltages are positive
in different frequencies and input power values. When
Ap = 0, all DC output voltages are negative. At
954 MHz and an input power of —10 dBm, the output
voltage changes from 950 mV to —100 mV when
Ay changes from 7 to 0. It can concluded in the
figures that the measurement results demonstrate
satisfactory agreement with simulation results at
954 MHz.

In the next measurement, the cable length is
changed to drive Ay following Eq. 2. Fig. 17
presents measured and simulated phase differnece
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effect depending on different values of Ay in 3-stage
DTMOS CCR with floating sub-circuit. The output
voltages are measured at a level of —-15 dBm, 1 GHz,
and 10 MQ loads. In the figure, triangle points and
circle points present the measured data when SG are
connected to the A port and the ¥ port of the hybrid
coupler, respectively. As shown in the figure, the
measurement results in the two cases are similar and
quite fit with a simulation curve.
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5. RF ENERGY HARVESTING FROM EN-
VIRONMENT

Measurement is established in a laboratory room
of The University of Electro-communication, Tokyo.
The ambient RF signals at the measurement position
measured by using a signal analyzer Agilent CXA
N900OA and a dipole antenna CANDOX 44Sa21.
Fig. 18 shows the spectrum in a frequency range from
100 MHz to 3 GHz. At a bandwidth of 20 MHz, the
band power of the signal at the 950 MHz band is
—20.7 dBm, resulting in the signal being the strongest
signal at the measurement place. The 950 MHz band
signal corresponds to the 4 LTE downlink signal. The
measurement set up is shown in Fig. 11.

In the first measurement, three antennas shown
in Fig. 19 are used to receive RF signals in the
environment. Antenna A is a dipole antenna, while
antennas B and C are loop antennas. The antennas
are designed to harvest signals at 545 MHz, 830 MHz,
and 950 MHz bands, respectively. The length of the
dipole antenna A is 18 c¢m which is equivalent to
a half-wavelength at 830 MHz. The loop antennas
B and C have lengths 32 cm and 55 cm which
correspond to the wavelengths at 950 MHz and
545 MHz, respectively. These antennas have different
resonant frequencies and polarizations, therefore, by
using these antennas in the measurement, the phase
difference effect is checked with various conditions.

Table 2 shows the measurement results. From the
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Table 2: Output voltage measurement results with
signal from the environment.

Antenna ‘ Vpc when Ap =7 ‘ Vpe when Ap =0
A 130 mV —12 mV
B 124 mV —18 mV
C 12 mV —4 mV
Output voltage when A@=m
0.9
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Fig.20: Measured output voltage in the environment
at 100 kQ when Ap = 7.

table, with respect to all antenna types, the output
voltages are positive and reach the highest absolute
value when Ay = m. When Ap = 0, the output
voltages are negative and have small absolute values.
These measurement results demonstrate that with
different type and polarization of antennas, the effect
of phase difference on the output of the rectifier shows
an agreement with the theory proposed in Section 3.

In the next measurement, the matching circuit at
950 MHz is attached to the rectifier board to evaluate
the performance of the proposed RFEH system. A
14.3 ¢cm wired dipole antenna with length equivalent
to 0.45 of the wavelength at 950 MHz is utilized.
Because levels of RF signal in the environment
continuously change, to evaluate the performance of
the RFEH system, the output voltage is measured
every second and automatically stored in a computer.

Fig. 20 presents measured output voltage at
100 k2 load when Ap = 7. The output voltage is
measured over 450 seconds. As shown in the figure,
the output voltages, in this case, are positive and the
average value is 0.3 V, which is equivalent to 0.9 pW
DC output power received. The results indicate that
at —20.7 dBm input power for the LTE signal, the
proposed RFEH system can obtain 10.6 % PCE. The
measurement results show the efficient performance
of the proposed RFEH system when harvesting RF
signals in the ambient environment.

Fig. 21 shows measured output voltage at 100 k{2
load when Ay = 0. Here, all the output voltages
measured over 450 seconds are negative with an
average level of =50 mV. This result shows the effect
of phase difference when the system harvests the real
RF signal in the environment.

Output voltage when Ap=0
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Fig.21: Measured output voltage in the environment
at 100 k) when Ay = 0.

6. CONCLUSION

This paper proposed the application of DTMOS to
CCR with floating sub-circuits based on 65 nm SOTB
CMOS technology. The designed system generated
over 1 V DC voltage at —14 dBm input power,
whereas the PCE reached 48 % at —10 dBm input
power. With an ambient LTE signal at level of
—20.7 dBm, the proposed RFEH generated 0.9 yW
DC power which is equivalent to a PCE of 10.6 %.
The effect of phase difference between the two RF
input signals on the output voltage of the rectifier was
shown. The simulations and measurements indicated
that the output voltage becomes maximum at the
phase difference of 7w and decreased when the phase
difference differs from w. Therefore, one of the
requirements in designing the RFEH system using
CCR is to ensure two paired RF signals supplying
to the rectifier are differential signals.
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