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Worawat Nakawiro∗† , Non-member

ABSTRACT

Increasing penetration of renewable-based dis-
tributed generators (DGs) has transformed passive
distribution networks to active distribution networks
(ADNs). Therefore, traditional practices for voltage
and reactive power (V/Q) control should be revised
and improved. All control resources should be coor-
dinated based on real-time information and in closed
loop. To achieve this, machine learning (ML) is used
to assist in making decisions by mapping the relation-
ship between the selected network information and
the desired control output. In this paper, setting of
the shunt compensator operating in capacitive or in-
ductive modes is coordinated with the tap position
of the substation transformer such that all security
measures are within the limits. Dataset emulating
network behaviour during a year of operation is con-
structed for training a ML algorithm. A multi-class
classification problem is formulated. Simulation re-
sults show satisfactory accuracy for some classes.

Keywords: Voltage and Reactive Power Control,
Active Distribution Network, Feature Selection, Ma-
chine Learning

1. INTRODUCTION

Renewable energy sources (RESs) have played a
significant role in modern power systems as an alter-
native to fossil-fuel generating units. Thanks to tech-
nological advancement and economy of scales, RESs
can be installed in every part of the system includ-
ing distribution networks at both medium- voltage
(MV) and low-voltage (LV) levels in the form of dis-
tributed generators (DGs). Such interconnections in-
evitably change power flow patterns. Traditionally
power in distribution networks flows in a single di-
rection from the transmission system to loads. With
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DG connected, the power flow pattern in the network
changes, and the operation is gradually transformed
to active distribution networks (ADNs). Moreover,
with greater penetration of RESs there is a great
chance that the system would encounter some techni-
cal problems such as voltage rise, reverse power flow
or mis-operation of protective devices [1]. Voltage
and reactive power (V/Q) control has become a more
important tool in maintaining integrity and security
of MV distribution systems. This is due to existence
of coupling between reactive power and voltage in MV
levels while such relationship is not valid in LV levels.

The security measures, namely voltage and line
flow violations, can be mitigated by adjusting reac-
tive compesating devices. These may include network
equipment such as on-load tap changer (OLTC) lo-
cated at the substation, shunt capacitors (SCs) or tie
switches. Moreover, it is possible to schedule the set-
point of DGs. This option is technically possible but
provision to remunerate for ancillary service of the
participating DGs is generally required. In classical
control schemes, the setpoint of OLTC, SCs and tie
switches are pre-determined based on historical data
and rarely adjusted over the course of actual oper-
ation. To achieve better control performance and
to accommodate high fluctuation of REs and loads
in ADNs, the distribution system operator (DSO)
needs better both centralized and decentralized con-
trol schemes.

In the present day, real-time monitoring and con-
trol for ADNs has become more technically viable
and economically feasible due to advanced communi-
cation infrastructures, fast computing resources and
large data storage. Moreover, research on soft com-
puting has been quite well developed for the past two
decades. Researchers have applied various techniques
in soft computing to reactive power control for ADNs
such as machine learning (ML) (i.e. neural networks
[5]), fuzzy logic [2] or evolutionary computation (i.e.
evolutionary algorithm [3], genetic algorithm [4]).

In the author’s view, these applications can be
broadly categorized into two groups namely offline
planning and online control. The objective of the
former is to determine the optimal control setpoint
that will not result in any constraint violations. This
is normally carried out offline based on the complete
information of network data, forecast of loads and
RESs. Simulation time is usually not of primary con-
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Fig.1: A simple radial system.

cern. On the other hand, online control is carried
in closed loop and requires fast computing. The ob-
jective of an online approach is to find the recourse
of control setpoint in order to eliminate violation of
security constraints. Selected system variables are
gathered and used as input for the tool. This pa-
per pursues the second group of methods. The role
of feature selection techniques in improvement of the
classification accuracy is investigated. A method for
generating the dataset to be served as the knowledge
for learning of ML is presented. Two ML algorithms
with different settings are chosen for testing the pro-
posed methodology.

The rest of this paper is organized as follows. Sec-
tion 2 discusses the basic principles of V/Q control
in distribution networks and a framework for coor-
dinated control in an example network. Section 3
presents the method for preparing input data for ML
and the test distribution system. Section 4 discusses
components of the developed ML approach, and gives
the list of all possible input features. The feature se-
lection methods and the potential scheme for real im-
plementation are also discussed in this section. Sec-
tion 5 discusses the simulation results. The paper is
concluded, and the future outlooks are given in Sec-
tion 6.

2. VOLTAGE AND REACTIVE POWER
CONTROL

2.1 Overview

A simple MV radial distribution system is shown in
Fig. 1 [1] with the line parameter R+jX, the complex
power injected by DG denoted by PDG + jQDG and
the complex load power PL + jQL. Considering the
power balance at Bus 2 and assuming that DG does
not inject active power to the network, the magnitude
of current flowing from the grid to the load is

I =

√
P 2
L + (QL −QDG)2

V2
(1)

It can be observed that the current can be reduced
by reactive power compensation, i.e. QDG in this
case. Knowing the current, voltage drop across the
feeder is defined by

Fig.2: Classical control of OLTC.

∆V = IZ =

√
(P 2

L + (QL −QDG)2) (R2 + X2)

V2

≈ RPL + X(QL −QDG)

V2
(2)

It can be observed that the voltage drop can be
controlled by reactive power. For example, if DG
injects reactive power (QDG > 0) voltage drop ∆V
decreases. Notice that the grid voltage V1 is almost
unchanged, then the voltage at Bus 2 increases. How-
ever, grid codes of many utilities require DG to be
controlled at unity power factor, any shunt compen-
sating devices connected to the PCC will have the
same impact to the voltage but with slower response
and coarser adjustment. Moreover, DG with much
faster response could be present in reactive power.
This depends on the grid code of the network opera-
tor.

The power transformer located at the substation
is typically equipped with an on-load tap changer
(OLTC). The control scheme of the OLTC is shown
in Fig. 2.

The control objective is to regulate the secondary
bus voltage of the substation V1 within the upper
and lower bounds. Alternatively, another regulated
bus such as the far-end bus can also be selected. The
difference between V1 and the setpoint voltage Vset is
computed and checked to see if such difference is out-
side the dead band for a pre-specified duration given
by the time delay. The control signal will be sent to
adjust the transformer either up or down. Therefore,
OLTC is a slow control with global impact to all buses
connected to that substation. Moreover, movement of
OLTC should not be very frequent due to operation
and maintenance (O&M) costs and lifetime.

Shunt compensators including capacitor and reac-
tor is a common element in distribution networks.
The working principle of these devices is like that of
OLTC. The voltage, i.e. feeder voltage is measured
and compared with the control setpoint. Then, the
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Fig.3: Coordinated control scheme (adapted from
[8]).

Fig.4: Framework for producing the dataset.

controller sets an appropriate level of compensation
in discrete steps.

2.2 Coordinated control scheme

Fig. 3 shows an example of coordinated V/Q con-
trol for ADNs. The control resources available here
are OLTC, shunt capacitor at the substation CS ,
shunt capacitor at the feeder CF , energy storage and
DG control setpoints. For OLTC, the substation
voltage V1 is the control target. By adjusting the
tap, reactive power flowing over the transformer QTX

changes. This would affect loadability of the trans-
former. The capacitor CS is used to compensate QTX

and allows the transformer to carry more load. The
feeder capacitor CF is used to control the voltage of
the bus to which it is connected, namely VCF . Note
that capacitor switching changes the reactive power
flow in the network. Theoretically, all DGs in the
system could participate in V/Q control. However,
the provision of ancillary service is required, and this
is beyond the scope of this study. Since this exam-

Fig.5: Process for generating yearly profiles of
OLTC.

ple is a centralized scheme, communication channels
for telemetry and sending control commands are re-
quired. Power electronics-based energy storage can
be also controlled to supply reactive power in addi-
tion to supplying the stored energy surplus.

3. GENERATION OF DATASET

3.1 Overview

To develop an online control scheme, the dataset
is needed to serve as knowledge for machine learning.
This dataset could come from historical data or simu-
lation studies. This paper adopts the latter direction.

Fig. 4 shows the conceptual framework for pro-
ducing the dataset. The simulation is carried out
in a MATLAB-M file receiving inputs consisting of
yearly load profile and yearly wind power profile, sys-
tem information and the simulated OLTC movement
in the year. The change of tap position in a day
is capped to the pre-defined limit like in [6]. The
‘OpenDSS’ software package [11] is used for network
simulations and the interface with MATLAB is de-
veloped to retrieve all results. The shunt capacitor
and shunt reactor are adjusted in steps such that all
bus voltages and line flows are within the allowable
limits. If the voltage of the controlled bus is above
the limit, the shunt reactor sequentially increases the
control step to absorb reactive power until the volt-
age is below the limit. On the other hand, if voltage
of the controlled bus is below the limit, shunt capac-
itor is responsible for compensating reactive power
until the under-voltage is eliminated. By this control
logic, OLTC and shunt compensators are coordinated
based on real-time measurements.

3.2 Input yearly profiles

The yearly profiles used for the simulations in this
paper consist of OLTC, load and wind power. As
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Fig.6: Test MV-distribution system.

Fig.7: Statistics of the random profiles of OLTC in
7 days.

mentioned earlier that OLTC has global impact to
all downstream buses and has slow response, the tap
position is fixed during the duration of 4 hours. This
means that OLTC can changes the tap 6 times in
a day at maximum. The procedure for generating
OLTC profiles is shown in Fig. 5.

A sample represents the hourly movement of
OLTC throughout the year. The maximum number
of samples (‘Sample’) in this simulation is set to be
100. Power flow is sequentially run for each hour of
the day (‘Day’). Each day is divided into 6 intervals
(‘Intv’) with equal time step of 4 hours. For the first
interval, the size of step change C is set to the max-
imum number (i.e. fixed to 10 for this case). For
the rest of the intervals, C is defined by the differ-
ence between 10 and the number of steps that has
been already used in the day. By this logic, the max-
imum number of tap changes is limited to 10 steps per
day. Then, the step change (‘Step’) is randomly gen-
erated as an integer between 0 and C. The direction
of change to either increase or decrease is given by the
variable ‘Sign’ that has a random value either –1 or
1. Thereafter, the tap position ‘Pos’ is updated from
the one of the previous interval namely ‘Pos prev’ and
then checked to see if the updated value is within the
upper bound (i.e. 5) and the lower bound (i.e. –5).
The new value of ‘Pos’ is recorded and set as the
‘Pos prev’ in preparation for the updating process
of the next time interval. The procedure discussed
earlier is repeated until the last interval is reached.
Then, the counter ‘Day’ is increased and the counter
‘Intv’ is reset to 1. The entire procedure is terminated
when the last ‘Sample’ is produced.

Fig.8: Statistics of the random profiles of the nor-
malized wind power in 7 days.

Fig.9: Statistics of the random profiles of the nor-
malized load power in 7 days.

3.3 Test system

The effectiveness of the proposed method is ver-
ified by simulation on a medium-voltage (MV) dis-
tribution test system modified from [13] as shown in
Fig. 6. The two feeders are assumed to be identi-
cal. The parameters of feeders and transformer are
given in per-unit based on the their own ratings. The
security limits to be enforced in this study consist of:
• voltage level of all buses to be within ±5% and
• apparent power flow below the line capacity
15.5 MVA.

To achieve that, two shunt compensators with
6 Mvar (both capacitive and inductive each) are in-
stalled at Bus C in which a 7-MW wind turbine con-
trolled at unity power factor is connected. This wind
turbine is assumed to have no provision for reactive
power ancillary services.

4. DEVELOPING MACHINE LEARNING

4.1 Statistical properties of dataset

The 100 samples of the first week are extracted and
the mean and 25th and 75th percentiles are computed
as shown in Fig. 7. This is obvious that the sam-
ples are centered around the nominal position with
variation within the pre-specified bounds.

For wind [9] and load [10] profiles, the public data
of a German TSO namely 50 Hz in the year 2017
with the time step of 15 minutes are taken as the
base. Then, hourly average is computed and normal-
ized. The normalized profile is used as the mean and
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Fig.10: Distribution of shunt compensator settings.

Table 1: List of input features.

Feature no. Symbol Description

1 Pw Wind power injected to bus C

2 Pd Total power demand

3 a Transformer tap position

4 Vs Voltage at point of connection
to the external grid

5 VA Voltage at bus A

6 VB Voltage at bus B

7 VC Voltage at bus C

8 SA−B Apparent power flow over line
A–B

9 SB−C Apparent power flow over line
B–C

with the pre-defined level of variation, new random
samples are generated. The statistics of normalized
wind power and load power based on 100 samples of
the first week are shown in Figs. 8 and 9, respectively.

Fig. 10 shows the distribution of the shunt com-
pensator settings that are generated from the pro-
cedure described in Section 3.2. It is obvious that
almost 60% of the operating conditions do not need
reactive compensation while those that do required
capacitive compensation. Moreover, there are very
few instances of operating conditions needing to ab-
sorb reactive power.

4.2 Input features

The list of nine potential features that can be re-
trieved from the test system shown in Fig. 6 is given
in Table 1.

The features can be categorized in three main
groups namely power consisting of Features 1-2 and
8-9; voltages consisting of Features 4-7 and tap posi-
tion (Feature 9).

4.3 Feature selection

The number of input features depends on the size
of the distribution network. In most cases, the com-
plete set of information is simply too large for any
machine to effectively learn the underlying pattern.
Therefore, the number of input features should be
reduced before passing on to the machine learning al-
gorithm to improve generalization capability and to
reduce learning efforts. This process is called dimen-

Table 2: Score ranking given by selected feature se-
lection techniques.

inf-FS 2016 ECFS mutInfFS MCFS Fisher CFS Lasso

3 3 3 6 8 2 8

8 8 8 7 7 3 9

7 7 7 8 6 1 1

6 6 6 5 4 9 3

4 4 5 9 5 8 4

9 9 4 4 9 4 6

5 5 9 3 3 7 7

2 2 1 1 2 5 2

1 1 2 2 1 6 5

sionality reduction that can be broadly categorized
into two groups namely feature selection and feature
extraction. In feature selection, a subset of the origi-
nal feature set is selected to represent the characteris-
tic of the full set of features whereby the original fea-
ture set is transformed and selected to a reduced and
new feature set in feature extraction. In this paper,
the impact of feature selection on the classification
accuracy is investigated. Therefore, feature extrac-
tion such as principal component analysis (PCA) is
not considered.

Seven feature selection techniques that have been
widely used in related research communities are
adopted [14]. These consist of INfinite Feature-
Feature Selection updated version in 2016 (INF-
FS 2016), Eigenvector Centrality Feature Selec-
tion (ECFS), Mutual Infinite Feature Selection
(mutInfFS), Unsupervised feature selection for multi-
cluster data (MCFS), Fisher discriminant (Fisher),
Correlation based feature selection (CFS), Feature
selection through regularization (Lasso). The score
rankings given by the selected techniques are given
in Table 2.

The number given in the table represents the fea-
ture number. For each selection technique, features
are ranked based on the score. The feature in the first
row is the best feature. The first five features having
been selected by most of these seven techniques are
chosen. The set of features being selected include Fea-
ture Numbers 3, 4, 6, 7, 8. The effectiveness of ML
using the selected features is verified with two cases
namely all features and features based on heuristic
rules based on experience of the network operator.

4.4 Conceptual design for real implementa-
tion

Based on the proposed methodology and the re-
sults from selected feature selection techniques, a con-
ceptual scheme in which machine learning (ML) to
be implemented in the real world can be shown in
Fig. 11. The required measuring quantities consist of
voltages from three locations namely external grid,
Buses B and C, apparent power flow (absolute of the
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Fig.11: The conceptual design for real implementa-
tion.

maximum in both directions) over line A–B and the
transformer tap position. These five quantities are
fed to the ML trained offline in order to give the con-
trol signal for the suitable setting of the shunt com-
pensator. Therefore, this control signal is a discrete
variable between –6 to 6. The negative values be-
tween –6 to –1 represent supplying 1 to 6 Mvar by
the capacitor. On the other hand, the positive value
between 1 to 6 represent absorbing 1 to 6 Mvar by the
reactor. The value of zero shows the situation where
reactive compensation is not required.

4.5 Machine learning

Machine learning (ML) is a component of soft com-
puting that has been used in many real-world appli-
cations. The working principle of ML relies on algo-
rithmic and statistical models to perform a specific
task without having explicit instructions provided by
the user. A mathematical model is constructed based
on the knowledge gained through learning from data.
Supervised learning is generally used to train the ML
engine to build the relationship between the collected
inputs and the desired outputs. Classification is one
of the tasks which ML has shown great capability to
deal with. In this paper, two groups of ML techniques
that can be easily trained are chosen namely clas-
sification tree and k-nearest neighbors (KNN) algo-
rithms. The ‘Classification Learner’ app in MATLAB
[12] is used for verification of the proposed method-
ology.

5. SIMULATION RESUTLS

To demonstrate the impact of feature selection
on the classification accuracy, two methods for han-
dling input features are considered namely all inputs
and heuristic. The former feeds all nine inputs to
the ML during learning while the later uses heuris-
tic rules for selection of five inputs. For the clas-
sification tree, three models based on complexity of
the tree are used namely complex, medium and sim-
ple trees. For the KNN, various techniques namely
fine, medium, coarse, cosine and weighted KNNs are
considered. Table 3 shows accuracy of classification
based on the use of different ML algorithms and dif-

Table 3: Accuracy of classification based on differ-
ent ML algorithms and feature handling techniques.

ML Algorithm

Handling of input features

Selected
All inputs Heuristic

inputs

Complex tree 80% 79.8% 79.7%

Medium tree 80.2% 80% 79.8%

Simple tree 80.2% 80% 78.6%

Fine KNN 78.8% 74.1% 74.2%

Medium KNN 78.5% 76.9% 76.9%

Coarse KNN 79.1% 77.5% 76.8%

Cosine KNN 75.5% 74% 73.8%

Cubic KNN 78.4% 76.5% 76.7%

Weighted KNN 79.7% 76.6% 76.3%

Fig.12: Confusion matrix of the classification.

ferent feature handling techniques. The results show
that the medium tree and simple tree based on the
selected input features are the most accurate. Con-
fusion matrix of the simple tree method is shown in
Fig. 12. All the classes ‘0’ (no compensation required)
are correctly predicted. The class ‘–6’ (–6 Mvar from
the capacitor) can be predicted with accuracy of 91%.
The prediction accuracy of class ‘–1’ is 75%. For the
inductive zone, the prediction of class ‘1’ is 93% accu-
rate. The classes ‘2’ to ‘6’ are nearly impossible to be
predicted due to unavailability of these classes in the
training set. In the capacitive zone, the classes ‘–2’
to ‘–5’ cannot be predicted at all. One of the possible
reasons is distribution of these classes are flat, mak-
ing class separation in this region become extremely
difficult.

6. CONCLUSION AND FUTURE OUT-
LOOK

In this paper, a machine learning (ML)-based ap-
proach for voltage and reactive power (V/Q) control
in an active distribution network is presented. A
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dataset emulating operational behavior of the net-
work is constructed and used for training a ML al-
gorithm. Modern feature selection techniques are ap-
plied to select five important features. Based on three
methods for handling inputs and two MLs with differ-
ent settings, the classification of simple-and medium-
classification tree methods are the highest. The con-
fusion matrix reveals that performance of the devel-
oped ML heavily relies on distribution of the target
output and the number of samples in each class. Fu-
ture research will focus on the strategy to improve the
prediction accuracy and application to larger practi-
cal systems. In the cases of many renewable sources,
the location of reactive power compensators should be
determined from sensitivity analyses to ensure effec-
tive control results. Moreover, additional engineering
judgement has to be applied to pre-screen the candi-
date input features before applying feature selection
techniques.
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