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ABSTRACT
The parasitism – predation algorithm (PPA) is

an optimization method that duplicates the in-
teraction of mutualism between predators (cats),
parasites (cuckoos), and hosts (crows). The study
employs a combination of the PPA methods using
the cascade-forward backpropagation neural network.
This hybrid method employs an automatic voltage
regulator (AVR) on a single machine system, with the
performance measurement focusing on speed and the
rotor angle. The performance of the proposed method
is compared with the feed-forward backpropagation
neural network (FFBNN), cascade-forward backprop-
agation neural network (CFBNN), Elman recurrent
neural network (E-RNN), focused time-delay neural
network (FTDNN), and distributed time-delay neural
network (DTDNN). The results show that the
proposed method exhibits the best speed and rotor
angle performance. The PPA-CFBNN method has
the ability to reduce the overshoot of the speed by
1.569% and the rotor angle by 0.724%.

Keywords: Parasitism – Predation Algorithm,
PPA, Cascade-Forward Backpropagation Neural Net-
work, Automatic Voltage Regulator, Neural Network,
Elman Recurrent Neural Network

1. INTRODUCTION
Currently, electricity plays a strategic role in

everyday life, influenced by every piece of equipment
requiring electricity in homes, offices, companies, and
factories [1]. The electrical power system is designed
to operate at a set nominal value. Supply voltage
experiencing a shift in behavior results in uncertain
behavior and impacts the lifetime of equipment.
Significant changes in the system dynamics are
allowed at permitted levels [2].
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Irregular demand for loads that can change at any
time, results in the performance of electrical power
systems approaching unsafe limits. The electrical
power system control is an important element in
generation fulfillment. Besides, the burden also
needs to increase in complexity. The generator can
oscillate around a balanced state when disturbed
such as load changes, turbine fluctuation, and other
factors. This is extremely dangerous for the electrical
system. Most synchronous generators are installed
with an excitation system, controlled by an automatic
voltage regulator (AVR) to maintain the dynamic
stability and power quality of the power system.
The AVR functions as the main controller of the
excitation system and can maintain the generator
terminal voltage under any conditions [3]. The
basic foundation of the AVR system is stable and
responsive to changes in load. An automatic AVR
is a buffer for the output voltage at a pegged level
under various conditions.

Complex power systems need good AVR perfor-
mance. Various approaches to setting automatic volt-
age regulators are reported in the existing literature;
the predominant two types being conventional and
computational. The conventional approaches often
used in the AVR arrangement are the Cohen-Coon
and Zeiglar-Nicholas [4].

In conventional methods, the controller becomes
a problem when adjusting the gain from light to
severe conditions. This is because settings in one
load condition may differ in others. Due to the
complex and non-linear adjustment of the AVR, a soft
computing algorithm is implemented in this study to
adjust the parameter acquisition.

Several computational methods have started to be
used in AVR settings such as the genetic algorithm
(GA) [5, 6], teaching-learning-based optimization
(TLBO) [7, 8], sine cosine algorithm [9, 10], world cup
optimization [11, 12], biogeography-based optimiza-
tion [14], the Jaya optimization algorithm [15], global
neighborhood algorithm [16], simulated annealing
optimization algorithm [17], cuckoo search algorithm
[18], firefly algorithm [19], whale optimization algo-
rithm [20], and neural network [21, 22].

This paper presents an analysis of the AVR
performance, set up using a neural network based
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Fig. 1: System structure [19].

Fig. 2: Cascade-forward backpropagation neural network structure.

on the parasitism – predation algorithm (PPA).
The implemented neural network is cascade-forward
backpropagation, the performance of which is mea-
sured by focusing on the speed and rotor angle.
The installed AVR is tested on a single machine,
namely the Heffron-Phillips. The validation of
the proposed method is compared with that for
the feed-forward backpropagation neural network,
cascade-forward backpropagation neural network,
Elman recurrent neural network, focused time-delay
neural network, and distributed time-delay neural
network (DTDNN).

2. AUTOMATIC VOLTAGE REGULATOR

The generator control comprises the AVR and
power system stabilizer (PSS) as shown in Fig. 1,
which are used to maintain transient stability. The
working principle of the AVR is to regulate the
flow reinforcement (excitation) in the exciter. If the
generator output voltage is below that of the nominal
predetermined operator, the AVR will increase the
current reinforcement (excitation) on the exciter. If
the generator output voltage exceeds the nominal
level, the AVR will reduce the current reinforcement
(excitation) in the exciter. In the transient state, the
generator affects equipment, especially over a short
time, causing a clear drop in the terminal voltage of
the machine.

3. CASCADE-FORWARDBACKPROPAGA-
TION NEURAL NETWORK

The cascade feed backpropagation neural network
(CFBNN) structure has input, hidden, and output
layers. Characteristically, the input unit of the
CFBNN is connected to the hidden unit and sub-
sequently, the output. The weighted value of each
input can be adjusted. The network between the
input and the hidden layer is trained. Hidden units
are added and stored on the network [23]. The
weighting between the hidden unit and the output
can be adjusted. The inputs of the CFBNN are I1,
I2, . . ., Ij with the input data used in the training
process. The structure of the CFBNN is shown in
Fig. 2.

Ij (t) =
(∫ j∑

i=1
WijIi (t) + b1

)
·
j∑
i=1

WiIi (t) (1)

I2 (t) = f (Ij (t)) = 1
1 + eIj

(2)

In layer 2, the output from layer 1 (I2 (t)) is
connected to neurons k with the weights in layer 2
(Wjk). The additional function of layer 2 is the sum
of the output layer 1 (I2 (t)), weight (Wjk), and bias
(b2).
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I3 (t) =
k∑
j=1

WjkI2 (t) + b2 (3)

I4 (t) = f (I3 (t)) = 1
1 + eI3

(4)

The output unit I4 (t) matches the target ac-
cording to the input during training. The error
is obtained by multiplying the derivative of the
activation function.

δk = ti − I4 (t) f ′(I3 (t)) (5)

Weight improvements are used to correct the new
Wjk,

∆Wjk = α · δi · I4 (6)

4. PARASITISM – PREDATION ALGO-
RITHM
The main role of the PPA is its relationship

to the mutualism of natural life, inspired by the
crow-cuckoo-cat system, known as parasitism –
predation. The mutual relationship between a crow
and cuckoo is apparent by the crow allowing the
cuckoo to lay its eggs around those of the crows.
This is very beneficial for crows since it protects
the crow’s eggs from predators such as cats. The
cuckoo-cat-crow system is an element with its own
tasks. The crow is the host, the cuckoo a parasite,
and the cats a predator of the crow’s nest [24].

This ecosystem system has an interrelationship.
Low predation occurs when the cuckoo has a small
positive effect on the crow. The cuckoo will
cause the predator to become extinct (the difference
between the density of the host in the presence
of a parasite and the density of the host in the
absence of a parasite below zero). Predation is
considered to be intermediate when the interaction
between the cuckoo and crow shifts from parasitism
to commensalism (the difference between host density
in the presence of a parasite and host density in the
absence of a parasite is zero). On the other hand,
predation is considered to be high when a cat causes
the cuckoo to become extinct if the preventative
element is weak. As with other metaheuristics, the
PPA mathematical equation has a uniform initial:

Y0 = Ymin + rand1 (Ymax − Ymin) (7)

where Ymin and Ymax are the lower and upper limits
for variables, while rand1 is the random parameter
taken from the uniform Gaussian distribution in the
range of 0 to 1.

The PPA simulation uses several variable criteria
such as the level of intrinsic addition for hosts with
the variable r1 set to 1. The level of parasite mortality
(r2) is set to 0.1, while the predator mortality level
with variable r3 is set to 0.3. Parasitic usefulness

in changing its consumption to fitness (∝1) is set
to the value of 0.2. The usefulness of a predator
in shifting its predation to fitness (∝2) is set to the
value of 0.25, while the number of sources consumed
by the parasite (β1) is set to a value of 0.1. The
predator satiety level in predation (β2) is set at 0.1,
while half the saturation density in predation (c1) is
set at 0.1. The time wasted from predators due to
parasitic resistance (c2) is set to 0.1. The mortality
rate depends on the density of the host (d1) and is
set to 0.01, while the mortality rate depending on the
density of the parasite (d2) is set to 0.01. The PPA
has the following three main phases:

Phase 1: Nesting phase
The nesting phase represents the discovery of a

crow’s nest. Initially, the number of hosts is reduced
by predators. The phase is intended to duplicate the
flying of the hosts through two equations. The first
equation serves to obtain the new position of the host
by generating random prospective hosts.

Y t+1
i = Y ti + Lf

(
Yr1 − Y ti

)
∀i ∈ ncrow (8)

where Lf is the Lévy flight step dimension calculated
according to stable distribution (∞) with the ability
to travel long distances with variations in step. The
simple Lévy distribution is

f (q) =
√

γ

2π
1

(q − µ)3/2 exp
(
− σ

2 (q − µ)

)
(9)

with 0 < µ < q <∞.
Ri produces random examples with the same flight

rate as Lévy’s. The step represents the measure of the
scale associated with that of the subject.

Ri ∼ step⊕ Lévy(∞) ∼ 0.01 a

|x|1/z
(10)

u = N
(
0, σ2

a

)
(11)

y = N
(
0, σ2

y

)
(12)

σa =

Γ(1 + a)sin πα2

Γ
(

1 + α

2α2(α− 1
2 )

)


1/α

(13)

σy = 1 (14)

In the second stage, the inappropriate dimensions
from the previous equation are reproduced.

Y new
i,o = Y min

i,o + rand [0, 1]
(
Y max
i,o − Y mini,o

)
∀o ∈ violated dimension (15)

The redesign is useful for improving the exploration
capabilities and diversity of the search space.
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Phase 2: Parasitism phase
In the parasitism phase, some hosts are displaced

with the parasite. Initially, predators will cause the
parasites to become extinct. This happens when
predation is low. Parasites become extinct when
predator efficiency is high. In this condition, the
parasite is assumed to be efficient with the maximal
limit being at the medium level.

Y cuckoo
i,new = Y cuckoo

i,old +Hg · J (16)

Hg = (Yr2 − Yr3) rand [0, 1] (17)

J = rand [0, 1] > pa (18)

where Y cuckoo
i,old represents the variables selected using

the roulette wheel method based on position, while
Hg is a uniform Gaussian distribution step measure.
Binary matrices J are used to protect the old cuckoo
and retain the use of the search space, while pa is an
increasing factor.

Phase 3: Predation phase
The explosive growth of predators and a decrease

in hosts causes a reduction in sufficient food sources
for survival of the parasite under the assumption of
high predation efficiency. This phase is based on the
predator search mode. During this phase, no search
mode is required because predators can track empty
search spaces. The phase is composed of three steps.

Fig. 3: Proposed PPA-CFBNN flowchart.
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Fig. 4: Position of the PPA-CFBNN.

• Step 1: Regenerating the velocity variable

vi.d = vi.d + r · t (Ybest.d − Yi.d) i = 1, . . . ,M (19)

where vi.d is the velocity of the predator in i in
dimension dth. Ybest.d is the position and fitness
of the predator with the highest value. Yi.d is the
position of a predator, while r is the random variable
and t is the fixed variable.
• Step 2: Update and retain the velocity within the
maximum speed limit (0.25 < speed limit <1).

• Step 3: Regenerate the position of predator i

Yi.d = Yi.d + vi.d (20)

5. PROPOSED PPA-CFBNN MODEL
The steps to applying the PPA and CFBNN

methods in setting the AVR can be illustrated as
shown in Fig. 3. The first step involves taking and
processing the sample data for use in initializing and
configuring the CFBNN. The initial weighting data
from the CFBNN is then retrieved and processed
using the PPA method; initialization of the PPA
method uses random values. The results of the PPA
provide the potential weight for the CFBNN applied
in the network.

6. RESULTS AND DISCUSSION
The proposed method is validated by comparing

it with the FFBNN, CFBNN, Elman-RNN, and
FTDNN approaches, under the assumption that the
system has the same parameters. Fig. 3 shows a single
machine generator, employing the Heffron-Phillips
model. Fig. 4 shows the proposed method installed
on the system with a conventional AVR replaced by
the PPA-CFBNN.

This research focuses on speed and the rotor angle,
with speed and rotor angle performance being based

on undershoot, overshoot, and time taken to settle.
The results of the proposed method are compared
with other approaches using variations in load and
hidden layers. In the first experiment, the generator
is given a light load of 10%.

The results of the first experiment can be seen in
Figs. 5 and 6. The measurement of the ability of
the proposed method focuses on the undershoot and
overshoot aspects. Fig. 5 shows the speed response
from the generator. The overshoot value for the
proposed method is 0.381 at 45 s. The undershoot
value for speed response when using the PPA-CFBNN
method is better than that of the DTDNN which has
a value of −0.5098. Undershoot and overshoot values
using the other methods are very small compared to
the DTDNN values.

Fig. 6 shows the results of the rotor angle when
given a 10% load. The rotor angle of the proposed
method shows an undershoot value of −2.766 and an
overshoot of 0.6306. While the values of the other
methods are very small with the DTDNN method.
The results of each method in further detail are
presented in Table 1.

Table 1 shows the overshoot value of the PPA-
CFBNN method speed response at 0.3841. This value
is highest using the E-RNN method. Meanwhile, the
undershoot value of the speed response is best with
a value of −0.5072. The results of the rotor angle
employing the PPA-CFBNN method reveal that the
best values for overshoot and undershoot are 0.6306
and −2.7661, respectively.

In the second experiment, the load is increased to
50%, the results of which are presented in Table 2,
with the overshoot and undershoot values of the speed
response using the PPA-CFBNN method being the
best at 0.4293 and −0.5630, respectively.

Similarly, the best values of overshoot and under-
shoot for the rotor angle are obtained equating to
0.7051 and −3.1524, respectively.
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Fig. 5: Speed response with 10% of the load.

Fig. 6: Rotor angle response with 10% of the load.

For the third experiment, the load is increased to
80%, the results of which are presented in Table 3.
The undershoot and overshoot for the speed response
using the PPA-CFBNN method obtain the best val-
ues of −0.5979 and 0.4596, respectively. Meanwhile,
the rotor angle response values for undershoot and
overshoot are −3.4159 and 0.7821, respectively.

7. CONCLUSION

This research examines the parasitism – preda-
tion algorithm method combined with the cascade-
forward backpropagation, collectively called PPA-
CFBNN. This combination of methods is used to set
the AVR on the generator. This study employs three

different loads to measure performance. The hidden
layer value of the neural network is 4 for all methods.
In this study, the speed value and rotor angle using
the neural network algorithm reveal almost the same
results. The CFBNN method exhibits slightly better
results compared to other neural network methods.
However, the capabilities of the CFBNN are still
below that of the proposed PPA-CFBNN method.
The results of the study reveal that the proposed
method has the best average value. In this paper,
the proposed approach is tested with the use of
a simple, single machine system. To determine
the performance and durability of the PPA-CFBNN
method further research should be conducted using a
larger and more complex system.
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Table 1: Results of training with 10% of the load.
Method Speed Response Rotor Angle Response

Under- Over- Rise Time Settling Under- Over- Rise Time Settling
shoot shoot (s) Time (s) shoot shoot (s) Time (s)

FFBNN −0.5098 0.3827 0.544 85.5572 −2.7687 0.6400 4.6299× 10−8 83.2848
CFBNN −0.5098 0.3827 0.5197 85.5823 −2.7687 0.6402 4.5794× 10−8 83.2913
E-RNN −0.5147 0.4024 0.7095 85.5424 −2.8263 0.7633 1.9659× 10−6 81.5118
FTDNN −0.5098 0.3827 0.4688 85.5805 −2.7687 0.6402 4.5881× 10−8 83.2910
DTDNN −0.5098 0.3827 0.7234 85.5778 −2.7687 0.6401 4.5764× 10−8 83.2897

PPA-CFBNN −0.5072 0.3841 2.48× 10−10 87.0607 −2.7661 0.6306 0.8081 83.8766

Table 2: Results of training with 50% of the load.
Method Speed Response Rotor Angle Response

Under- Over- Rise Time Settling Under- Over- Rise Time Settling
shoot shoot (s) Time (s) shoot shoot (s) Time (s)

FFBNN −0.5711 0.4296 0.4819 88.1445 −3.1694 0.7161 2.6061× 10−7 85.6717
CFBNN −0.5710 0.4294 0.5937 88.1705 −3.1692 0.7165 2.7709× 10−7 85.6926
E-RNN −0.5795 0.4555 0.6714 88.0012 −3.2385 0.8592 2.4764× 10−6 83.8869
FTDNN −0.5710 0.4294 0.3998 88.1720 −3.1692 0.7164 2.7593× 10−7 85.6923
DTDNN −0.5710 0.4294 0.6879 88.1769 −3.1693 0.7164 2.7710× 10−7 85.6948

PPA-CFBNN −0.5630 0.4293 0.0065 93.3397 −3.1524 0.7051 0.2729 88.7103

Table 3: Results of training with 80% of the load.
Method Speed Response Rotor Angle Response

Under- Over- Rise Time Settling Under- Over- Rise Time Settling
shoot shoot (s) Time (s) shoot shoot (s) Time (s)

FFBNN −0.6151 0.4668 0.589 88.65 −3.4696 0.7743 0 85.9820
CFBNN −0.6151 0.4667 0.649 88.56 −3.4696 0.7748 0 85.9367
E-RNN −0.6254 0.4952 0.6408 88.3191 −3.5531 0.9341 2.881× 10−6 84.1216
FTDNN −0.65151 0.4667 0.3391 88.5645 −3.4696 0.7747 2.880× 10−7 85.9379
DTDNN −0.6151 0.4667 0.6584 88.5585 −3.4696 0.7747 2.885× 10−7 85.9358

PPA-CFBNN −0.5979 0.4596 0.2179 96.0734 −3.4159 0.7821 0.5 90.5663
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