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Access Convergence for Heavy Load Markov
Ethernet Bursty Traffic Using Two-level Statistical
Multiplexing
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ABSTRACT

A method for modeling aggregated heavy Markov
bursty Ethernet traffic from different sources is proposed
in this paper, particularly that prevailing between gate-
way services and internet routing devices, with the aim
of achieving rate accommodation. In other words, to
accommodate different rates while filtering out delays
in the queue, to achieve access network convergence.
Although gateway functions can be used to achieve this
by adapting service rates, as many gateways as services
are required. Instead of considering the distributed gate-
way services method, statistical multiplexing is chosen
for this study for cost efficiency in network resources.
Unfortunately, statistical multiplexing exhibits greater
packet variation (jitter) and transfer delay. These delays,
basically resulting from positive correlations or time
dependency in the queue system, are addressed through
infinitesimal queue modeling, based on the diffusion
process approximated by Ornstein-Uhlenbeck, which
deals with infinitesimal changes in the Markov queue.
The related analysis has resulted in an exponential queue-
ing model for univariate and/or multivariate servers
obtained through Markov Gaussian approximation. An
experiment based on two different voice algorithms
shows rate accommodation, and a fluid solution, which
is dynamically outputted according to the transmission
link availability during each transition time, without
any significant delay. Hence, better transfer delay
and rate control is obtained through the proposed two
multiplexing levels within an Ethernet LAN.

Keywords: Statistical Multiplexing, Diffusion Model,
Markov Gaussian Approximation, Gateway Distributed
Function, Arrival Process, Departure Process, Access
Convergence

Manuscript received on July 17, 2021; revised on September 30, 2021;
accepted on February 13, 2022. This paper was recommended by
Associate Editor Nattapong Kitsuwan.

I"The authors are with the Center of Telecommunications, University
of Johannesburg, South Africa.

>The author was with The Institute of Intelligent System, University
of Johannesburg, South Africa.

TCorresponding author: tgswart@uj.ac.za

©2022 Author(s). This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivs 4.0 License. To view a copy of
this license visit: https://creativecommons.org/licenses/by-nc-nd/4.0/.

Digital Object Identifier: 10.37936/ecti-eec.2022203.247512

1. INTRODUCTION

Nowadays, all network services are run as applica-
tions on top of TCP/IP protocol suites. However, the
migration of real-time protocol (RTP) services, such as
voice over the internet and live TV streaming, does not
happen without challenges, particularly when it comes to
providing an acceptable and commercial level of services
as in the old legacy networks to end-users using a single
platform. The distributed gateway service through rate
adaptation offers a solution for providing all services
on one platform. In that context, ITU-T, IEEE, and
IETF have released a series of recommendations and
protocols under several umbrellas (e.g., H.323, SAP, SIP)
to guarantee the required “quality of service (QoS)” for
distributed gateway services within a LAN, without a
guarantee like for Ethernet.

Despite these provisions, the network continues to
experience a low QoS index [1,2] due to impairments,
all of which basically result from packet loss, jitter, and
transfer delay. In this regard, the study conducted by
Sriram and Whitt [3] who characterize the aggregate
arrival process from a voice source in the multiplexer,
shows that the positive correlation or time dependency
in the queue system is the cause of the significant delay
at the multiplexer output, thereby reducing the efficient
utilization of network resources.

To optimize resource utilization where smooth rate
adaptation matters, two-level multiplexing is proposed in
this paper. Firstly, a level 1 multiplexer is used, based on
the M/G/1 queueing model, to accommodate the bursty
traffic from different sources, emitted at different rates.
Secondly, a level 2 multiplexer based on the G/G/1 queue.

The contribution of this paper is therefore to achieve
access network convergence by replacing the costly
distributed gateway services approach with two-level
statistical multiplexing, modeled to achieve rate accom-
modation, rather than the rate adaptation solution which
requires as many gateways as the potential services
provided.

In a packet switching system, some nodes are usually
encountered where the arriving packets are processed
(routing analysis, rate adaptation, multiplexing) before
continuing on their way. When the incoming traffic
is greater than the processing capacity, the solution is
to buffer the arriving packets accordingly and process
them in compliance with the queue order. This is
called statistical multiplexing. Statistical multiplexers
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are therefore modeled as queueing systems with finite
buffer space for the incoming traffic, served (on a service
discipline basis) by one or more transmission links of
fixed or varying capacity [4].

Two key concepts arise from this definition of the
multiplexer, namely traffic and buffers. Traffic refers
to teletraffic engineering and buffer refers to queueing
theory. To achieve multiplexer, traffic, and queue models
need to be developed, as demonstrated in this paper.

This paper is organized as follows: Section 2 presents
the traffic and queue models. Section 3 explains the diffu-
sion approximation process with the resulting Gaussian
approximations, while the relevant multiplexing levels
are presented in Section 4. Section 5 presents details of
the simulations carried out along with results allowing
the sizing of such buffers.

2. BACKGROUND
2.1 Traffic Modeling

Modeling the traffic involves characterizing the input
of the multiplexer, also known as the arrival process. The
arrival process analysis relies on the way the packets are
emitted and the statistical properties of the inter-arrival
times. The packet emission can be periodic, leading to
a deterministic analysis; or continuous-time analyzed
using Bernoulli or Poisson processes.

The statistical properties of transition epochs can
include the “continuous-time Markov chain (CTMC)” [5],
which can be simulated by a “Markov modulated Poisson
process”; its discrete form being the “discrete-time
Markov chain (DTMC)” [6] or the hybrid form classified
as the “semi-Markov process (SMP)” family.

Many studies have been conducted in this regard.
Frost and Melamed [7] characterized the arrival process
as samples of packets arriving in a sequence of random
arrival times associated with a random workload with
a renewal process proposed as a solution. Gusella
[8] studied Ethernet traffic, showing it to be non-
stationary and characterized by a long-tailed inter-arrival
distribution, while Leland et al. [9] studied Ethernet
traffic scaled over several times, proposing a self-similar
process as the model to overcome the tail. This paper
considers overcoming the long-tailed queue through an
infinitesimal analysis based on the diffusion process.

2.2 Queue Modeling

Queue modeling is a group of absolute QoS-defining
network parameters that characterize bandwidth usage,
transfer delay, and delay variation. The queue is modeled
according to the specification A/S/N/C/D describing
the system, which stands for Arrival/Service/Number of
servers/System Capacity/Discipline. This study focuses
on the specification with one server linked to a system
capacity C, resulting in A/S/1/C. Furthermore, an A/S/1
queue model is designed for which the system capacity
C (queue content+server) is chosen such that the system
is always stable or simply, a queue without loss.

To determine A and .S, at least one method of queue
solution is required. The most used are the matrix,
moment generating function, and fluid methods. In this
paper the diffusion approximation method is proposed,
a limit of the fluid method, to model the M/G/1 and
G/G/1 queues, where the service process is considered
as general distribution for both queues and the arrival
process as the Markov or general process, respectively.

Modeling M/G/1 or G/G/1 queues resort to approxi-
mations and many studies have been conducted in this
field. The embedded Markov chain as the underlying
process proposed by Kendall [10] is approximated by the
moment generating function based on Laplace-Stieltjes
transform [11]. This approximating solution follows
Cruz bounds, commonly denoted by R(p,o) with p as
the traffic intensity and ¢ as the unique root of the
Laplace-Stieltjes transform resulting equation, and the
probability density function from the indirect method
of Whitt [12]. Lui [13] proposed a spectral analysis
approximated from Lindley’s equations, applying the
theorem of Liouville [14] to derive a Poisson queue.
Kingman [15] provides a more tractable method known
as Kingman’s bounds on the tail probability, based on
Lindley’s equations to derive the waiting time bounds in
the queue. Kobayashi [16] extended Lui’s solution [13]
by applying Kolmogorov’s inequality [17], which is the
general form of Chebychev’s inequality [18], the notion
of martingale and sub-martingale variables [15] extended
to the inequality of Feller [19], who proposed exponential
waiting time bounds as a solution. Other exponential
bound solutions come from Kobayashi and Ren for on-off
sources [20] and Markov modulated rate processes [21]
using univariate and multivariate Ornstein-Uhlenbeck
diffusion approximations, respectively.

The most tractable exponential solutions were devel-
oped by Reiser and Kobayashi [22], who applied the
central limit theorem in the diffusion equation to a small
number of sources, and Schwartz [23] and Luhanga [24]
who used the fluid solution for two types of traffic. They
all achieved an exponential server as the solution.

Based on the Ornstein-Uhlenbeck (O-U) diffusion
approximations and tractable solutions of the exponen-
tial server, here the following simpler approach of a
queueing model is proposed from a synthesis of the
works in [21-24], for two-level statistical multiplexing to
accommodate services from multiple access networks in
the Ethernet LAN, while nullifying the tail probability in
the queue.

3. RATE ACCOMMODATION MODEL: DIFFUSION
APPROXIMATION

The solution in this paper is from the normalized
asymptotic approach of Schwartz [23] and Luhanga [24]
as the sample size increases, and the diffusion method of
Reiser and Kobayashi [22] as it converges in probability
to the value being estimated. The maximum likelihood
estimator is then chosen for that purpose and its central
limit property applied to model the queues.
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Fig. 1: Two-level multiplexing within a core network.

Two-level multiplexing within the Ethernet LAN is
configured as shown in Fig. 1, where the gateway net-
work services are replaced by the statistical multiplexer
which outputs the required traffic.

3.1 Level 1 Statistical Multiplexing

Level 1 multiplexing concerns the sources operating
with on-off signaling.

3.1.1 Traffic Model

The level 1 multiplexer (Mux 1) handles a sample of
each active on-off source, each with its own emission
rate. The Gaussian distribution is derived, with the
resulting queue being MG/G/1, denoting the Markov
Gaussian arrival (MG), general service time (G), and one
server. The traffic in the multiplexer is in a super position
for packet streams from many on-off sources. Since
some sources are off when others are on, the input of
the multiplexer queue, as well as the queue size, are
variable. Markov analysis can only be conducted using
the bivariate (active sources-queue size) process.

Let N, be the number of sources of type k with a
rate of R, packets/second, and A; the number of active

sources with mean time a;l ms, or N, — A, the number

dap (Ak, X, t) K
ox Z

k=1

dop (Ak,x, t) K
— k; R A ()—C

K

k

+ (Ak+1k) ap (Ak+1k,x,t)
=1

of off sources with a mean silence time of ﬁk_l ms. The
multiplexer input is given by EkN=1 R, A, with traffic
intensity of (1/C) ZkN=1 R, A, where C is the system
capacity.

3.1.2 Queue Model

To serve the A, sources, Q(t) is defined as the queue
size of the buffer at time ¢ with C packets/second being
constant capacity of the transmission link. By definition,
the statistical multiplexer allocates the capacity lying

between the average and peak rates, buffering the traffic
when the load exceeds capacity. Therefore, the changes
in the multiplexer can be captured by the differential
equation

(1)

dt 0, otherwise.

o _ {R(z)—c, o) >0,

Let us consider the bivariate process (A(t), Q(t))
as previously mentioned, such that (A(?),0(t)) =
{Ak,l <k<K; Q(t)} is a Markov process. One can
define the underlying probability function of the process
as P(A,x,t) = Pr[Q(t) < x], satisfying the stochastic
differential equation in Eq. (2).

>~

[(Ne=Ay) Bt Agay] p (Ao x, 1)+ D (Ny= Ag+1) fiep (Ag—14, %, 1)

k=1

)
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As x — o0, Eq. (2) becomes a Markov birth-death
process which is known to result in a Bernoulli solution

K
P(A.n = lim P(Ax.n=]]PAcn. @
k=1

where
N
P(A.1) = < Ak>qﬁk<r)[1 — g O (4
k

also known to be a Gaussian distribution method for large
numbers. Thus, the Gaussian parameters are obtained
by transforming the on-off sources; a two-state Markov
chain, into a Gaussian process using univariate diffusion
approximation.

3.1.3 Univariate Diffusion Approximation

Let (Y (#),0O(t)) be the diffusion approximation of
(A1), O(t)) with its probability function given by
f,x,t) = Pr [yk LSy y+dy; 0@ < x]. The
resulting differential equation in the second order Taylor
series representation is given by Eq. (5) [19].

Using an analogy to the order of Egs. (2) and (5), the
infinitesimal statistical properties of the process can be

defined; namely the infinitesimal mean m;, = N, f, —
(ay+B,)y; and the infinitesimal variance by v, = N, f; —
(% = By

Considering only the infinitesimal arrival process of
mean zero, gives f(y,t) = lim,_, f(y,x,t) and y* =
N B/ (ak + ﬂk). Therefore, the mean and the variance
become m;. = —(a +fi)(y—y;), and v, (¥}) = 2N, froy/
(ak + ﬁk). Diffusion equation in Eq. (5) taken for an
individual source type can now be written as Eq. (6).

The diffusion process as characterized is called the
Ornstein-Uhlenbeck (O-U) [19]. At the equilibrium state
(t > o0), the approximated probability density function
solution of this equation at the reflecting boundaries y =
0 and y = N,, yields a Gaussian distribution defined by
Eq. (7) where 6]% = v,(¥}) / 2( + ), and is maximum
ify=y.

3.2 Queue Solution Approximation

The changes in the queue AQ are given by the O-U
differential equation and an analogy with the method
of Reiser and Kobayashi [22], giving t — oo Eq. (8) is
obtained.

We can therefore deduce from the diffusion equation

(Eq.9)

K
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ofet) __p0fCet) a9/ (x0)

or 0x 2 ox2

the mean queue lengthby E[Q] = f = (I/Q\k—C)At, where
ﬁk — C is the drift of the diffusion process representing

the variation of the mean and C the capacity transmission
link, and the variance in the queue is given by

©)

K
2N,
Var[Q] = aAr = Y NGB (10)
ot %t b
with
K
2N oy By
g= Y kP (1)
k=1 o+ ﬂk

as the volatility in the variance of the diffusion process.

In [22], these two parameters are shown to be
accurately taken as decrement factors denoted as p =
exp(—2p/a), where f is the drift and « is the volatility of
the process. Therefore, the probability distribution of the
queue size is geometric and given by

p=pd=p)p" "t nx>1, (12)

where p = I/Q\k / C < 1 is the traffic intensity.

3.3 Level 2 Multiplexing
3.3.1 Traffic Model

Multiplexing the traffic from the nodes in level 1
serving different access networks, leads to the finding
of a parametric traffic model suitable for the most used
link layer technologies in the LAN networks without a
well-defined aggregated traffic model, namely Ethernet.
In this paper, these nodes are modeled as “Markov
modulated rate (MMR)” sources. Since the traffic at the
multiplexer input is of multiple types, it is reasonable
to re-scale the aggregated traffic using “carrier sense
multiple access with collision detection (CSMA/CD)”,
which governs Ethernet access.

The traffic is modeled according to the behavior of
superposed K sources from the level 1 multiplexer, each
one governed by an M -state Markov chain with the
probability transition matrix P = {p;;}, where i,j =
0,1,2,... .M - 1.

When a source is in state i, it generates packets
at R; packets/second. After a holding time, generally
distributed with mean a; ' ms and variance O'iz , it leaves
from state i to state j with transition probability p;;. The
rate accommodation implies the state transition of the
M x K MMR sources by a closed queueing network with
M servers and a total of K customers. Each source in
state i = (m, k) or node i, is considered as a customer
k served by one of the m = 0,1,...,M — 1 parallel
servers. Thus, the arrival process at node i, is the sum
of these departures from the level 1 multiplexer routing
their traffic to that node, while the level 2 multiplexer
input is the sum of the departures from all i = (m, k)

Markov chain governing each source

Mux 2

Fig. 2: Level 2 multiplexer

nodes routing their traffic during the holding time. The
formulation of the process is summarized in Fig. 2 with
the superposed traffic at the multiplexer input given by
Rt =Y RN, I =1,2,....,M XK.

3.3.2 Queue Model and Diffusion Approximation

The diffusion model is formulated using a system
composed of a statistical multiplexer and K independent
Each source is characterized by an M -state
Markov chain (k-type sources in level 1), suggesting a
K X M dimensional process. However, before going
through the K X M analysis, let us first investigate the
process used to determine the number of sources.

Let N(¢) be that process, defined by the transposed
matrix N (¢) = [Ny(t), N1 (1), ... , Ng_1(D]T, where N (1)
is the number of sources served by server m at time ¢
with rate R,, packets/second. The Markov chain state
m is reached after leaving state j with the transition
probability P;,. This state has a holding time for

sources.

the mean of a,,' and 62 for the variance. The mean
departure rate from node j can be given by a; N, while
the counting arrival process at node k is equal to the
aggregation of the departures from node j.

Given N(#) and according to the model previously
described, its diffusion approximation can be defined as
X(@®) = [Xo®), X1(®), ..., X;_], which according to the
asymptotic study by Halfin and Whitt [25], X (¢) follows
the stochastic differential equation

dX(t) = b(X (1))t + DAW (1), (13)

D X () =M, (14)
k

X(0) = xo, (15)

where W (t) is the Brownian motion and b(x) the
infinitesimal mean, highlighting the drift in the process
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compared to the long-term equilibrium. The higher
the b(x), the faster the speed of the drift, which is the
variation of the mean. D represents the randomness of
the process, outlining its volatility. The higher the value
of D, the larger the magnitude of system volatility or
variance.

From the differential stochastic equation, the con-
ditional probability density function can be f(x,t
x0,0) = Pr[x, < X; () < x; +dx; : X(0) = 0]
satisfying the multidimensional differential equation

K-1
af(x,1)
== 25 [b:(x) f (x,1)]
K-1K-1 1 0
+ . E X» lj(x)f(x7 t)] s (16)
i=0 j=

letting the multivariate mean and covariance to be
b;(x) and a;;(x) respectively, where b(x) = Bx is the
infinitesimal mean matrix with B = [f; ;] and x =
[xg, X1, ..., Xg_1] associated with X(r). A(x) is the
infinitesimal covariance matrix such that D = 4/A(x)
with A = [a;;]. The differential equation in Eq. (16)
becomes [25]:

dX(t) = BX(t)dt + \/ A(x)dW (¢), (17)

with Z,’;l X, () = K, for which Gaussian approxima-
tion solution can be obtained asymptotically.

3.4 Asymptotic Diffusion Approximation

Let x* =[x, x], ..., Xx_,] be the asymptotic equilib-
rium state of the process X(), such that the reverting
process is stable with drift b(x) = B(x* — x). In this
particularly narrow region, the infinitesimal covariance
is constant. At the equilibrium state, we get d X () =
B(x* — X(t))dt + \/Zd W (t). This equation represents
the multivariate Ornstein-Uhlenbeck process, satisfying
the probability density function differential equation [21]

K-1K-1
of(x,t
D) ﬁ,,a — XS
i=0 j=0
K-1K-1
+ - ~ aljza a [alj(x)f(x I)] (18)
i=0 j=0
where f;; and g;; are the (i, j)-th entries of K X M
matrices.

To obtain the maximum likelihood estimator, the
transition log-likelihood proposed by Ait-Sahalia [26] is
introduced. This approximation is based on Hermite
series expansion and the change of variable in the
Jacobian form. The strategy is designed to determine
the Hermite series expansion of the transition function
Py, which is a normal distribution N (0, 1), representing

a reduced form of the transition function p, derived
from the diffusion process equation dX; = u(X,)dt +
o(X;)dW,.

The Hermite series approximation is in the form

N——

m
’ «z ; "\ va
(19)

where A is the sampling interval, ¢(x) is the density
of a normal distribution with a zero mean and identity
covariance matrix, taking into account the sum of
arrival distribution in zero mean while variance o2.
H), represents the Hermite polynomials associated with
vector h = [hy, hy, ... ,hm]T. n(4A,y,) are the Hermite
coefficients arising from the expansion in A and given
by

Yy—=>Xo

n(a, yy) = NCE

ﬁE | (S ) /Y= 30|+ (20)

where the expectation entity is evaluated by the Taylor
expansion and given by

Ak
E 100y, Yo, M)IY] = X 5 437G 30 v/6) + O
ko y=y06=0
(21)
where A’y‘ is the infinitesimal generator of the process

Y, which by applying to f yields the solution of the
diffusion differential equation [25]. The log-transition,
for any given j where the convergence of the Hermite
polynomials is verified as j — oo, the resulting log-
expansion takes the form

Cy lyo)

ck
k _ m
I, (lye. ) = _Eln(2ﬂ)+ A

+ Z ck(y|y0>

(22)
whose coefficients Cf for k = -1,0,1,2,...,K are
combinations of the coefficients identified in the Hermite
series approximation and /,, = In p.

The coefficients are determined from the series ex-
pansion, satisfying Kolmogorov’s equations describing
the evolution of the process. Consider the following
Kolmogorov equation [27]

opy¥lyo, &) & i (»py(¥1yo, A)]
N y;
m 32
1 w 9°p,(¥Iyp, D)
+ = , (23)
2 ,Z' ay?

from which the equivalent form for the log-likelihood is
given by Eq. (24).

Exploiting the log function in Eq. (22) and substituting
it for the log-likelihood function in Eq. (24), we get
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ol,(yyo. &)
7]

oy

i=1 i

0y;

_ zm: Wy i (y)‘”y(YWO’ A,
Vi

" 021, (y]yo, A) & (0L, (¥yo. A)
% - 20 + % Z ( 0 > (24)
=1 ay; =1 9y;

k -1
A 01y, ) 0 m Z e e
P} - AN 2A YOG
(zs>
k =Dlyo) -1
AL lyg, A 1 oMo +§Kl aCT (5lyg) Ak
dA A 9y, & dy; k!
(26)
k -1 _1
1 12T 0l & 2y (v Ak
2 A 2 +2 2 !
9y; 9y; k=0 0y;

(27)

By equating the coefficients of second order of A, we get
the leading coefficient given by

0C( )(yly)
D 0
C, "Olyy) = 2( 3,
(28)

By satisfying the condition that the density must approx-
imate a Gaussian density as A — 0, the approximate
solution is given by [27]

-1
aC(ylye)
ady;

1

m
(-1 __1 2_ 1 2
Gy lyo) = =3 lly = yoll* = =3 Eu— val (29)
Then by equating the terms of the first order, we get

™ oC (ylyo)

Z ay,

i=1 l

=y = Zﬂy,(y)(y yo)  (30)

In the same way the higher coeflicients are determined
using the recurrence for the higher order [27, Th. 1],

1
0 k _
Y lyy) = k / G (o + uly = Yoy~ du, k > 1
0

(1)
where G(yk) is given by 1) for K < 2

oCky ™ (ylyp) L i *C (ylyo)
9y; 23 ayl_z

- 0 0 2
Ll i’“ ASREIEOIN AR
2 9y;

Gy = D g

(32)

and 2) for k > 2

K 0lye) 18 0*Ci (ylyg)
—+_2—

2 i=1 ayiz

Gy (ylyo) = 2 ()

L1 ik ! k-1 9C) 1o " (1)
2 0y;0y;

i=1

>

=0
(33)

The change in variable based on the Jacobian matrix
for a differentiable function y(x) is given by Ay(x) =
6~ !(x), then we can write Y, = y(X;) = fox (du [ o(u)),
with Y; satistying dY, = u,(Y;)dt + DW,. This change in
variable reverts to the log-likelihood of the process and
is called Lamperti transform. It should be noted that the
covariance of the multivariate process is given by v(x) =
o(x)oT (x) and letting D, (x) = (1/2)In[Det[v(x)]], we
can transform Y, to X,. Therefore, the log-likelihood of
X denoted as [, =Inp, is given by

l(x]xq), A) = —% In(Det[v(x)] + 1,,(A, y(X)]7(x()))

= D, (x) + 1,(A, y()]y(x0)) (34)

From this, the approximation of order k in A can be used
to reach the solution [24]

V0l (xp))

1K(x|xg, A) = — %ln(ZﬂA) - R

D, (x)+

K k
+ Y Polrn T (35)
k=0

This log probability is useful in determining the required
parameters for the approximated Gaussian distribution
using multivariate diffusion.

3.4.1 Multivariate Diffusion Approximation

The variation of the traffic in the queue is given by the
differential stochastic equation

dX (1) = B(x* — X()dt + VAW (@),  (36)

where X being reducible, and applying the change in
variable y(x) = ¢ 'x, the resulting reducible process
differential equation is given by

dY, = (6~! Bx*o Bx*Y,)dt + dW,

= k(n - Y,)dt + dW,. (37)
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Fig. 3: Log-transition probability

Furthermore, since the process is reducible, Ito’s
lemma of the variable y satisfies Vy(x) = 6~ !(x).

Each element of m-dimension diffusion is reducible
by means of a simple transformation known as Lamperti

transform:
du
v=ron = [ (38
x o)
Therefore, letting X, = oY, allows the reversion to
process X.

From the differential equation in Eq. (37), it can be
noted that = o~ 'x* = [n]21,.. k = 0 'Bo =

(kijlij=12.. ,and o = \/Z

The coefficients of the series expansion can be found
in the appendix of [28] and are used accordingly to
approximate the Gaussian distribution. To ensure no
interference occurs, as previously mentioned, the non-
diagonal of the matrix [k; ;1 denoting © = [6;;] must be
zero, resulting in the infinitesimal mean matrix having
real eigenvalues. The conditions §;; > 0 and 65, > 0 are
necessary for making the process stationary, so that the
standard asymptotic provides the asymptotic distribution
of the maximum likelihood estimators. Since MLE is of
interest in this study, X, = [X,;, X,,] is defined as the
asymptotic estimate value. Therefore, the drift reversion
in the diffusion and diffusion equation processes becomes

dX(t) = B(X, — X(1)dt + VAdW,.

To approximate the distribution, coefficients in
Egs. (29), (31), (32), (33), and the log-transition probability
in Egs. (22), (24) are utilized to provide a solution through
MATLAB, yielding the results shown in Fig. 3.

Fig. 3 shows the log-transition probability as a straight
line with a negative gradient. Therefore, the probability
of the reduced function is an exponential distribution
with the rate given by the following Kolmogorov equa-
tion as

(39)

E - Z % (40)
IA ~ &gy,

Since the infinitesimal mean is dp, = k(n — y)dt as
in Eq. (37), it can be observed that the rate given by the
drift in the diffusion process is ®. This implies that the
transition probability is in the form of P(#) o exp(—k®).

Since the purpose of diffusion approximation is to
overcome the exponential server by considering the
mean and variance of the service time distribution, ©
being a function of the mean and the variance, ® =
o~ ! o is sufficient to characterize the changes in the
queue.

Since the change in variable is independent of O,
the sampling interval, and according to Kolmogorov’s
equation in Eq. (40), related to the diffusion process X,
it can be deduced that the probability transition of the
diffusion process is X(¥), by P,(t) = y exp(—0t) where
v is the normalization coefficient, and O is the diffusion
coefficient of its drift and volatility with zero interference
(diagonal matrix). As observed, the inference of these
exponential increments can be written as in level 1,
yielding the geometric distribution [29]

. _J1=-p n=0,
= o= ppt, nx1,

where p = exp(—01).

(41)

4. QUEUE IMPLEMENTATION
4.1 Level 1 Multiplexer

Multiplexer implementation is carried out using two
voice algorithms in MATLAB from two different sources,
namely G.711 A as Source 1 and ADPCM as Source 2.
Two voice algorithms are chosen for simplicity, while
the choice of G.711 and ADPCM (G.721) is motivated by
the fact that they can be used interchangeably in two
different access layers (physical and the data link of the
OSI model), namely, E1 and T1, since all are pulse-code
modulation systems regardless of the version used (- or
A-law).

G.711 is an ITU-T standard that uses a sampling rate
of 8000 per second, with a tolerance of 50 parts per
million (ppm). It uses non-uniform quantization where
8 bits are used to represent each sample, resulting in
a 64-kbps bit rate. ADPCM is a variant of differential
pulse-code modulation (DPCM) that alters the size of
the quantization step to allow further reduction in the
required data bandwidth for a given signal-to-noise ratio.
Its algorithm maps a series of 8-bit (u- or A-law) PCM
samples into a series of 4-bit ADPCM samples, thereby
doubling the line capacity. Starting with G.721, which
is a 32-kbits/s scheme, and reinforcing the simulations
by multiplexing the G.711 with other ADPCM schemes,
namely the G.726 of 16 kbits/s and G.729 of 8 kbits/s,
respectively, aims to demonstrate how the capacity can
be improved with further processing techniques.

The objective of this study is to achieve a smooth
transition with less delay in the waiting time of the length
of the queue for both algorithms applied in two different



366 ECTI TRANSACTIONS ON ELECTRICAL ENGINEERING, ELECTRONICS, AND COMMUNICATIONS VOL.20, NO.3 OCTOBER 2022

access networks, namely T1 and E1. The specifications of
these modulation schemes are as follows:

4.1.1 Source 1: G.711 A algorithm

The parameters for this source are:
« T| = 1 ms: standard value of packetization delay,
« R, = 64 kbits/s: standard bit rate,
+ N; =30 (E1 standard) , number of sources,
+ a; = 22, number of active sources,
« f; — 1 = a,T}, the mean active time,
+ a; — 1 = 100 ms, the mean silence time.

4.1.2 Source 2: ADPCM algorithm

The parameters for this source are:
« T, = 16 ms: standard value of packetization delay,
+ R, = 32Kkbits/s: standard bit rate,
« N, =24, (T1 standard) number of sources,
+ a, = 16, the number of active sources,
+ pp —1 = a,T,, the mean active time,
« ay — 1 = a; — 1, the mean silence time.

4.2 Level 2 Multiplexer

As in the previous experiment, MATLAB is used but
with a higher number of sources. The parameters then
are:

« C; = 3, C, = 2, the squared coeflicients of the two
types of heavy traffic,

« Py =06, P, = 04, P,y = 05, P, = 0.5, the
probability transition matrix,

e a; = 1/200x 1073, &, = 1/100 x 1073, the holding time
of the two states,

+ Xy = 1000, X, = 1200, the number in the queue at
t=0,

+ X; = 1400, X, = 1600, the number for the two types
of sources,

» C = 100 Mbits/s the transmission capacity link used
for Ethernet,

« X, = (1/5C, X,, = (1/10)C, the transmission rate
available for each source.

4.3 Simulation

A statistical multiplexer is considered in this study,
whose inputs consist of two incoming links with rates
r; and ry. Diffusion approximation is also considered,
resulting in a geometric distribution with a decrement
factor r; in the aggregated process to analyze the
fluctuations in the queue caused by traffic intensity r,.
Accordingly, the geometric distribution characterizing
the queue behavior is given by p(n) = rl'.'_l(l — rp),
O<r, <L

The exploitation of the equations previously men-
tioned requires the following inputs:

« the number and rate of type 1 sources;

« the number and rate of type 2 sources;

» and the transmission link capacity in bit/sec, and
« the number of samples.

The processing phase outputs:

« the number and the service rate in the queue.

Table 1: Queue performance.

0 (%) 1 10 20 40 60 80
E[D] (Mb/s) 0.9 42 53 6.1 6.4 6.6
E[L] (packet) 593 60 29 15 10 7
E[S] (us) 7.2 072 036 018 012  0.09

Two queues will be simulated, the resulting diffusion
approximation queue and Poisson queue, and the results
compared.

The results of the simulations previously described in
MATLAB are presented in Figs. 4, 5, 6, and 7, representing
comparisons between the Poisson and diffusion queues,
as well as the impact of compression techniques on the
queue content through a comparison between the G.711
and other ADPCM schemes. Figs. 4 and 5 present the
simulation results of a comparison between the diffusion
and Poisson queues, while Figs. 6 and 7 show how the
capacity, and hence the bandwidth, can be improved
efficiently. The X-axis represents the cumulative number
of transitions in the simulation, while the Y-axis is
the histogram representing the number of output levels
(state-queue content), while the stairs represent the
transition time (Figs. 6 and 7).

To gain a sense of what is happening in the queue,
its performance is inspected based on the mean queue
values obtained when utilization varies. The results are
presented in Table 1, where p is the utilization, E[D] is the
mean departure or throughput, E[L] is the mean queue
length, and E[S] is the mean service time.

4.4 Analysis Results

Simulation of the M/G/1 queue using diffusion ap-
proximation is directly compared to the M/M/1 queue.
The histogram in Fig. 4(a) shows the two levels of the
M/M/1 queue where the traffic is aggregated prior to
output. This complies roughly with the definition for
the statistical multiplexer in that the resource allocation
lies between the average and peak values, while in
the diffusion queue, the multiplexer accommodates a
variable rate as shown in Fig. 4(b) and hence, dynamic
resources allocation. This is confirmed by the stair graphs
in Fig. 5, whereby the transition times are variable for the
diffusion approximation in Fig. 5(b).

However, the M/M/1 queue exhibits no flexibility in
uniform time transitions (Fig. 5(b)). As demonstrated by
previous studies, this lack of flexibility is more likely to
experience a tail due to jitter, hence increasing delay and,
consequently, packet loss. The rate accommodation is
explained by the fact that the diffusion approximation
process, exploiting the Gaussian property of MLE as
approximated in this paper, results in smoothing the
correlated non-renewal process into a Markov rate re-
newal process in the sequence (X (), O(#)) consisting of
the phase in the Markov process affecting the number
of sources X (¢) and queue content Q() at the departure
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Fig. 4: Histogram for Poisson vs. diffusion queue size.
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Fig. 5: Service time transitions Poisson vs. diffusion queue.

times ¢ > 0. The results can be outlined as follows:

1. The variables (X (¢), O(t)) satisfy N + 1 levels as the
fluid process aligns with the theory.

2. The transfer delay of the diffusion process needs

an average of 3ns times the transfer delay of the
exponential queue, resulting in a smaller buffer size
for the same incoming traffic. As in the simulation
conducted on the M/G/1 diffusion and M/M/1 queues,
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Fig. 7: Queue content G.711 and G.729 multiplexed.

if the LAN card of 100 Mbits/s provides 250ms of
buffering, the buffer size is less than 100 bytes for the
diffusion queue, while about 7 Mbytes is required for
the Poisson queue (8 kHz sampling rate).

. Over the same service rate, the multiplexer also
processes more packets when some bandwidth-saving
techniques are employed, such as compression, allow-
ing the queue length to adapt to the requirements of
the traffic offered. In fact, the multiplexer outputs a
modulated rate as it is inputted, depending only on
the number of active sources X; from a bursty arrival
rate and the rates of the parallel servers R; such that
Zi’=1 X,R; < C. This allows for the accommodation
of all available rates and outputs them with negligible
delay (less than 1 us). This negligible delay plays a
crucial role in nullifying the tail in the queue despite
variations in the queue content.

4.

This result is confirmed in Table 1. As previously
mentioned, a packet in an Ethernet is 1518 X 8 bits
long; one can realize that availing above 70% of the
service rate requires a very small buffer with a service
time of less than 120 ns when fewer than 10 packets
are queued, while the queue length becomes important
when the service time is longer than 30 ns since the
server is only available for less than 20%.

This result is due to the fluid capability of the diffusion

queue, hence has the potential to serve more packets
offered at different rates within Ethernet LAN without
any additional delay, thereby providing statistical multi-
plexing with multi-rate services to millions of users.

5.

CONCLUSION

In this paper, a fluid solution is proposed. As with

diffusion approximation, the rate adaptation method can
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be replaced using the distributed gateway service, em-
ploying the statistical multiplexer as the rate accommo-
dation system. To achieve this, diffusion approximation
provides an exponential server which, with its exponen-
tial decrements, yields geometric distribution. This distri-
bution is not only suitable for Markov methods but also
for fluid applications since it accommodates variable bit
rates while smoothing randomness in the queue. This can
therefore serve as a solution for statistical multiplexers,
especially as, unlike the well-known exponential servers,
the decrement rate of the exponential server achieved in
this study decays faster, resulting in the probability of
a full capacity queue equal to zero. As a sequence, the
variable allows traffic to be smoothed like a fluid in the
diffusion queue according to the space available in the
server. This leads to the suggestion that the distributed
network gateway services can be replaced with the more
cost-effective two-level multiplexing as another way of
achieving access network convergence. The initiative for
setting up such a statistical multiplexer is left for further
study.
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