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ABSTRACT

The analysis and classification of audio signals are
becoming increasingly important, especially in the age
of communication and dissemination of information
through radio broadcasting systems. It is therefore
essential that systems and platforms are available to
monitor the spread of fake or fraudulent news. A speech
feature-based correlation (SFC) algorithm and a speech
recognition framework are developed in this study,
combining specific speech features and performance
correlation to monitor real-time radio broadcasting and
recognize specific speech based on human samples. The
speech features include the Mel frequency cepstral coef-
ficient, gammatone cepstral coefficient, spectral entropy,
and pitch. The results illustrate the advantages and dis-
advantages of each feature applied to the various speech
sound groups. Furthermore, each feature combined with
the design of SFC further enhances system performance
and increases accuracy.

Keywords: Speech Recognition, FM Radio Broadcasting,
Audio Feature, Correlation Function

1. INTRODUCTION

Current technological developments are likely to be
centered around the synergy between machines and
humans through various control methodologies. For
security reasons, commands require a password or fin-
gerprint authorization to manage interactions. However,
another unique, widely used feature is voice control, or a
technology called machine hearing, which aims to sense
an acoustic environment in the same way as humans
do. Sound signals can commonly be divided into music,
speech, and environmental acoustics, depending on the
instrument and language type.

Speech data are an essential communication tool for
connecting humans and allowing them to exchange their
knowledge and viewpoints. One of the fundamental
technologies is a radio network for broadcasting news.
Currently, radio stations are a practical means of spread-
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ing valuable information, such as news and entertain-
ment. Nevertheless, some radio stations broadcast news
to society in a negative way. Government agencies need
to use modern technologies to monitor radio stations,
including analyzing the information broadcasted. These
systems must be flexible, fast, and effective.

1.1 Related Work

The analysis of sound signals, also known as auto-
matic sound recognition (ARS), is being continuously
developed and can be divided into research groups such
as speech detection, speaker recognition, and speech
recognition [1-8]. Signal processing, feature extraction,
and classification are at the core of the ARS system. This
essential information can be used to analyze audio signals
and music classifications [9,10]. Research on speech
recognition focuses on simplifying operations and mak-
ing them more flexible through correlation techniques
without applying complex learning algorithms [11-13].

In recent times, online media has been used to spread
fake news and hate speech, and many researchers aim to
detect and monitor user posts before they spread [14-16].
Profanity and offensive speech used in online media have
literal characteristics that can be used to find prototypes
and comparisons. However, broadcasting via a radio
station is more complex. In addition, the radius of radio
propagation is limited depending on the transmission
power of each radio station. It is therefore necessary
to design and develop a system for monitoring radio
stations [17-19].

The voice of each country’s language is unique.
Some languages have the same tone of voice, while
others have a tone of speech. From a study on the
unique characteristics of the Thai language, the Thai
language is identified as having five distinctive tones,
each represented by a single fundamental frequency, as
demonstrated by [20-22]. It is necessary to understand
the nature of each region’s sound characteristics because
speech analysis is essentially interpreted in both the time
and frequency domain.

1.2 Motivation and Contributions

The measurement platform and speech recognition
method developed in this study are designed to detect
speech with specific messages sent through FM radio
propagation. The method has been developed for security
purposes and to create a real-time broadcasting monitor-
ing system to address the current engineering challenges.
The developed speech feature-based correlation (SFC)



404 ECTI TRANSACTIONS ON ELECTRICAL ENGINEERING, ELECTRONICS, AND COMMUNICATIONS VOL.20, NO.3 OCTOBER 2022

algorithm consists of two processing steps, the first of
which requires the relevant thresholds to be determined
based on the correlation coefficients of sample speech.
The second step involves comparing the correlation
coefficients of selected features both in the frequency and
time domain.

This paper proposes a speech recognition framework
and demonstrates its performance using the speech
detection application in real-time FM radio broadcasts.
The main contributions of this paper are summarized as
follows. (1) In contrast to the existing methodology, this
paper proposes a recognition framework that combines
the classification performance of the correlation function
with specific speech features to detect particular word
sentences in real-time FM radio broadcasts. (2) Under
the SFC method, specific speech features are proposed,
such as the Mel frequency cepstral coefficient (MFCC),
gammatone cepstral coefficient (GTCC), spectral entropy
(SE), and pitch (P). (3) Extended operations with real-time
FM radio broadcasting are conducted in this paper.
The outcomes confirm the efficiency of the proposed
algorithm in terms of its detection performance and
scalability.

This paper is organized as follows. In Section 2, the
system model for FM signals, speech feature extraction,
correlation, and hardware implementation are briefly
introduced as the basic theory of the SFC algorithm. Sec-
tion 3 describes the SFC algorithm framework. Section 4
discusses the experimental results. Finally, Section 5
presents a summary of the paper and the conclusions
reached.

2. SYSTEM MODEL
2.1 FM Signal

Frequency modulation is the angle modulation of
a carrier oscillation according to the changes in the
modulating signal. With frequency modulation, the
amplitude of the carrier frequency remains unaffected.
The instantaneous value of the information signal (NF)
amplitude corresponds to the respective volume in sound
transmissions.  The frequency change is called the
frequency deviation. The greater the amplitude of
the modulating NF signal is, the greater the frequency
deviation. According to [23], the FM signal equation can
be written as

upp () = Acos (@ (1) = Acos (¢ [uyr (0]) (1)

where unp(f) = Asin (a)NFt) is the data to be
modulated. The derivative of the phase angle of an
angle-modulated oscillation is called the instantaneous
frequency and is written as

d
o () = ‘Zt(’). @)

When o = 2z f, the following instantaneous frequency
is obtained:

1 d(e®)
f®= o dr 3)

According to the frequency modulation, a linear
relationship exists between the phase and the signal’s
integral; written as

T

The modulation constant K ,, has the unit of second
per volt. The ratio of the frequency deviation Af to
the signal frequency fyf is called modulation index #.
For simplification, the complex voltage of the modulated
signal up, () is written as

Up g (t) — e—j(r]cos(a)NFt—th) (5)

From the complex representation, the following equa-
tion is obtained:

Im (uFM (t))
Re (uFM (t))

The demodulated signal uy . (f) is obtained by deriv-
ing the instantaneous phase as

a (1) = arctan

(6)

uyp @ = kDem%a(t) (7)

where k), refers to the demodulation constant. In this
research, the detected FM radio signals undergo a demod-
ulation process using the comm.FMBroadcastDemodulator
module in MATLAB. The developed program demod-
ulates a complex baseband FM signal and filters it to
create an audio signal. The expanded program has also
been modified to the carrier frequency and bandwidth to
conform with the radio station used in the experiments.

2.2 Speech Feature Extraction

The four existing acoustic features utilized in this
paper are briefly presented in this section, further details
of which can be found in the references.

2.2.1 Mel Frequency Cepstral Coefficient (MFCC)

The MFCC is the most commonly used feature in auto-
matic speech recognition, as presented in [27]. The MFC
feature extraction procedure incorporates windowing the
signal to produce a framed signal, implementing the DFT
to transform the signal into the frequency domain, and
then mapping the frequencies on the Mel Scale. The
cepstral parameters are then calculated from the filter
bank amplitude logarithm by implementing the inverse
discrete cosine transform (DCT). Finally, the MFCC can
be formulated as

N
m 1
MFCC,, = Z‘T X, cos [W (n - E)] (8)
where 1 < m < M, X, represents the log-energy
output of the n-th filter, N is the number of cepstrum
coefficients, and M is the number of MFCCs.
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2.2.2 Gammatone Cepstral Coefficient (GTCC)

The estimation method for gammatone cepstral co-
efficients is analogous to the MFCC extraction scheme,
as demonstrated in [24,25]. In the first step, the audio
signal is windowed into short blocks. After fast Fourier
transform (FFT), the signal is applied to the gammatone
filter bank, which is the outcome of a gamma distribution
and a sinusoidal tone of the center frequency (f,). The
log function and discrete cosine transform (DCT) are
then implemented to create a human loudness perception
feature, decorrelating the logarithmic-compressed filter
output as

GTCC,, = [Zlog ) cos [ <m - %)] )

where 1 <m < M, X, is the energy of the signal in the
n-th spectral band, N is the number of gammatone filters,
and M is the number of GTCCs.

2.2.3 Spectral Entropy (SE)

Spectral entropy can be used to estimate the number
of bits expected to outline some of the information. As
described in [29,30], when employed in the probability
mass function, entropy can also be used to estimate the
peakiness of a distribution. The calculation involves
dividing the individual frequency components of a spec-
trum by the sum of its parts.

X, = —— (10)

i=1

where X; is the energy of the spectrum’s frequency
component, x; = Xj,...,Xy is the probability mass
function of the spectrum, and N is the number of
spectrum points. For a particular block, the entropy is
calculated from x; by

(11)

N
- 2 x; log, x;
i=1

2.2.4 Pitch (P)

The pitch or fundamental frequency is an imperative
element of numerous speech processing applications, and
various procedures have been described in [31,32]. As
demonstrated by [33], the groups are divided according
to whether they are conducted in the time, frequency, or
time-frequency domain. The power spectral density at
frequency f, and time 7 can be formulated as

K

Y, (f) =Y ard (f —kfo) + N, ()

k=1

(12)

where N, (f) depicts the power spectral density of the
undesired noise and a;, denotes the k-th harmonic

power. In the log-frequency domain, the signal’s energy
can be determined using the convolution of the signal
model and an impulse response of the filter Y, (¢) * h (q)
that peaks at g, = log f, with

K

Y, (@)=Y a5 (q—logk—log fo) + N,(q) (13)
k=1

h(q) = Z & (q—logk) (14)

Consequently, the pitch can be obtained by selecting the
most prominent peak in the filter’s output.

2.3 Correlation

The energy of the differential signal to be compared
is used as a measure of the similarity or correlation.
According to [34], the signal energy of the actual signal
5 (t) in the time interval [tl, t2] can be written as

I
E = / s (1) dt.
1

Two real energy signals are considered, namely s (7)
and g (#), and a measure needs to be identified that
describes the similarity or correlation of the two signals.
The energy E, of the differential signal A () = s (1)—g (¢)
can be used in this case, written as

(15)

EAZ/ [s (1) — g (O] dt (16)

[Se]

To make E, independent from the amplitudes of the
signals s (t) and g (¢), they are normalized with the help
of their energy E; and E,, with s, (t) = 5 (1) /+/E, and

g, () = g(t)/+/E,, thereby obtaining

Exn= / [s, (1) — g, (T)]2 dt (17)

/oo s(t) g (t) dt
VEE,

The standardized cross-correlation coefficient is de-
fined as the measure of similarity as

=2-2 (18)

Ej, /_Oos(t)g(t)dt

|- 2 = 2o
> T VEE,

The normalized value of the cross-correlation coefficient
lies in the interval —1 < p,, < 1 and becomes 1 for g () =
ks (t) with a real, positive k.

Psg = (19)
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Fig. 1: Photograph of the testing environment; (a) control PC, (b) FMCOMMS3 and ZedBoard, and (c) antenna.
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Fig. 2: Flowchart of the FM broadcast monitoring system and SFC algorithm.

Table 1: Hardware specifications.

Parameter Value

2xTx and 2xRx
70 MHz to 6.0 GHz
<200 kHz to 56 MHz
2.5dBm
—40 to +85°C

RF transceiver
Frequency range
Channel bandwidth

RF inputs (peak power)

Operating temperature

2.4 Hardware Implementation

The performance of the proposed SFC algorithm is
validated by employing a combination of the Avnet
ZedBoard with the AD-FMCOMMS3-EBZ FMC analog
device module. Table 1 displays the hardware specifica-
tions in the specified range of RF spectra using MATLAB

R2019 to implement the proposed algorithms with a
64-bit computer consisting of a Core i5 processor and
4 GB RAM.

Fig. 1 presents the experimental setup, where
FMCOMMS3 and the ZedBoard interface are employed
in the system through MATLAB software. The receiving
antenna is located at 14.303263°N, 101.164968° E, approx-
imately 15 meters above the ground. The AOR DAG735G
antenna is connected to the Rx port of the FMCOMMS3
board and can satisfy a frequency scale of 75 MHz to
3 GHz.

3. PROPOSED FRAMEWORK AND ALGORITHM

A flowchart of the FM broadcast monitoring system
and SFC algorithm is displayed in Fig. 2. The three main
processing steps consist of the developed processing
framework and speech feature-based correlation (SFC)
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Fig. 3: Audio signals of sample speech and the spectrum after the pre-emphasis step.
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algorithm. Step 1 speech feature extraction; Step 2

FM demodulation and feature extraction; and Step 3
correlation and decision-making.

3.1 Step 1: Speech Feature Extraction

The aim of the initial step is to discover a suitable
threshold based on the sample speech correlation coef-
ficients as shown in Fig. 2 (Step 1).

In the first stage, audio samples of specific speech used
in the speech detection prototype for radio broadcasts
are collected and pre-emphasized by a low-pass filter
to reduce noise in the speech signal. Five speech
messages were selected in this paper, namely, “Set Ta
Git” (economic), “Rat Ta Ban” (government), “Sa Was
Dee” (hello), “Rong Rean” (school), and “Pra Tet Thai”
(Thailand) with 104 samples of each message, spoken in
the Thai language, recorded using 15 male and 20 female
Thai native speakers.

Fig. 3 depicts an example of each recorded speech
in the time domain with a duration of one second
for “Set Ta Git,” “Rat Ta Ban,” “Sa Was Dee,” “Rong
Rean,” and “Pra Tet Thai,” as shown in Figs. 3(a), 3(c),
3(e), 3(g), and 3(i), respectively. Furthermore, the
spectrum of each speech sample can be observed from
the time domain data displayed in Figs. 3(b), 3(d), 3(f),
3(h), and 3(i), respectively. The graph characteristics
demonstrate the distinction of a signal envelope in the
time domain, including the frequency spectrum of each
speech signal, which is an essential basis for feature
extraction. Pitch (P), Spectral Entropy (SE), Gammatone
Cepstral Coefficient (GTCC), and the Mel Frequency
Cepstral Coeflicient (MFCC) have been chosen in this

paper, as described in Section 2.

The rationale for the five terms under study comes
from the hypothesis that a radio station might use these
words in general conversation. This practical application
adapts and examines specific words or messages that
violate the rights of others for further analysis. These
passages are characterized by the feature extraction
process and then compared with the features within each
speech group. Fig. 4 illustrates the extracted features
derived from the speech sample “Set Ta Git.” Fig. 4(a)
presents the audio signal in the time domain. The
corresponding spectral, MFCC, GTCC, entropy, and pitch
are displayed in Figs. 4(b)-4(f), respectively.

The determined correlation coefficient and threshold
of each feature are stored in the database. The resulting
correlation coefficients are used as a reference or thresh-
old for examining the real-time signal monitoring of the
FM radio station.

3.2 Step 2: FM Demodulation and Feature Extrac-
tion

Once the appropriate reference values in Step 1 have
been obtained, in Step 2, the system will monitor the
FM radio station. This paper uses the FM broadcasting
signal from the CRMA FM radio 89.75 MHz, located at
14.279154°N and 101.163686°E, about 3km away from
the proposed system. First, the FMC module captures the
real-time FM signal with a one-second duration in each
loop, as shown in Fig. 2 (Step 2). The signal then goes
through the demodulation process using the program
developed in this study. The result is an audio signal
with a length of one second. The detected signal is then
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Fig. 4: The SFC algorithm modeling sample speech “Set Ta Git” in time and frequency domains; (a) voice speech in the
time domain, (b) voice speech in the frequency domain, (¢c) MFCC, (d) GTCC, (e) spectral entropy, and (f) pitch.

analyzed to determine the specific features. It should
be noted that these are broadcast signals. Thus, there
is a general use of words and sounds, not only in the
five speech samples. The aim of this paper is to develop
a monitoring system to search for specific words under
general messages actually broadcast.

3.3 Step 3: Correlation and Decision

The final step includes a comparison of the correlation
coefficients to facilitate decision-making, as shown in
Fig. 2 (Step 3). Finally, the speech features obtained from
the real-time FM broadcast data are compared with the
sample speech sets in the database developed for this
study.

In this paper, the comparison conditions are classified
into ten groups, as shown in Fig. 2 (Comparison and
Decision Category). In c1, c2, ¢3, and c4, the comparison
is made using one feature of pitch, entropy, MFCC,
and GTCC, respectively. In the case of ¢5 to c10,
combinations of various features are employed. For
example, in the case of c5, the requirement is only
valid if the pitch and entropy values are sufficient to
show that the detected data are similar to the established
criteria. This developed process improves the efficiency
in verifying more accurate speech recognition.

If the correlation coefficient value is lower than the
defined threshold value, the system will skip the data
and move to the next loop to monitor the following
demodulated FM data. If the value of the variable value
is greater than or equal to the predetermined reference
value, all the datasets are recorded, and the system will

manage the next loop.

4. EXPERIMENTAL RESULTS

The experimental results were divided into two main
parts, the first of which involved an experiment to
determine the SFP algorithm’s effectiveness with five
speech samples recorded from humans aged between 20
and 65 years old in a room environment without special
audio equipment. The second part uses the developed
platform and SFC algorithm to monitor an FM radio
broadcast signal and recognize the specifically selected
speech.

4.1 Sample Speech

The dataset with five types of original Thai voice
signals: “Set Ta Git” (economic, E), “Rat Ta Ban” (govern-
ment, G), “Sa Was Dee” (hello, H), “Rong Rean” (school,
S), and “Pra Tet Thai” (Thailand, T), is analyzed in this
section. Each speech sample contains 104 datasets from
15 male and 20 female Thai native speakers. The objective
of this experiment was to test the correlations among
speech sound datasets and identify appropriate threshold
values for each feature to determine the correlation with
the radio broadcast datasets. We used speech audio data
to analyze the conditions of four specific features: MFCC,
GTCC, entropy, and pitch. All the sample speech datasets
were used to determine the correlations within the same
speech collection with the mean and standard deviation
investigated for comparison.

Table 2 compares the mean and standard deviations of
each feature’s correlation coefficients in each audio set
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Table 2: Mean and standard deviation of feature correlation coefficients.

Speech MFCCyy;  MFCCyg GTCCyy, GTICC;g Entropyy, Entropys  Pitchy,  Pitchg

“Set Ta Git” (E) 0.5262 0.1819 0.4172 0.1771 0.3424 0.1421 0.2590 0.1231

“Rat Ta Ban” (G) 0.7282 0.2049 0.4666 0.1539 0.3118 0.1534 0.4014 0.1693

“Sa Was Dee” (H) 0.5451 0.1815 0.3215 0.1550 0.3118 0.1534 0.2467 0.1512

“Rong Rean” (S) 0.4572 0.2054 0.2972 0.1575 0.1689 0.1534 0.3244 0.1091

“Pra Tet Thai” (T) 0.4974 0.1813 0.3669 0.1274 0.2591 0.1690 0.2297 0.1081
(a) Pitch (b) Entropy
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Fig. 5: Distribution of the correlation coefficient values; (a) pitch, (b) entropy, (c) MFCC,, and (d) GTCC,.

group. The mean of the correlation coefficients in each
speech group is different. For example, in speech group
E, the most correlated feature in the dataset was MFCC,
at 0.5262, while the least correlated feature was pitch at
0.2590. In the G group, the correlation coefficients of the
dataset samples were highest when the MFCC, feature
value of 0.7282 was used and the lowest at an entropy
value of 0.3118.

It can be observed that when analyzing the speech
signal in combination with various features among the
sample set, the results obtained from the MFCC, feature
exhibit the highest correlation with the dataset, followed
by GTCC,, entropy, and pitch feature. However, they
are still considered to have comparable values and can be
effectively implemented according to the proposed SFC
algorithm.

The distribution of the correlation coefficient values
can be expressed as a histogram or probability density
function (PDF). For ease of understanding, we fit a
probability distribution object to the histogram data of
the correlation coefficient values using a kernel distribu-
tion. Figs. 5(a)-5(d) show the probability of a particular

correlation coefficient in pitch, entropy, MFCC,, and
GTCC, speech group, respectively.

It can be observed from the graph that each group’s
distribution is different in nature and unique to each
speech group and language. The distribution shown in
Fig. 5 corresponds to the mean and standard deviation
shown in Table 2. The diagrams are the basis for
determining the threshold value in the development step
and display the proportion of speech data that may be
mistakenly recognized when the threshold value used for
each speech signal group is too high or low. This value
is the key to determining the proper threshold value in
a real-time application to suit the nature and tone of the
language used.

In the next step, the SFC algorithm is applied to sepa-
rate the speech audio signals into specific classification
groups, as presented in Fig. 2. The threshold for the
correlation coefficient values was set at the mean to
classify the datasets into individual groups (c1-c10).

In Fig. 6, the x-axis represents the classification
group while the y-axis represents the percentage of each
speech. The factors used to classify the datasets into
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Fig. 6: A comparison of the grouping results for each sample speech sound with reference to the mean of the correlation

coefficient.

groups cl, c¢2, c¢3, and c4 included only one feature
type. If the speech dataset has a correlation coefficient
value of greater than or equal to the threshold value, it
will be organized into that group. As can be observed
from c1, the G speech group has the highest accuracy
rate. This indicates that the accuracy of the G sound
signal is approximately 80 percent. In addition, the
graph indicates that the G sound group has a correlation
in pronunciation and speech that can be parsed more
appropriately and accurately than the S sound group with
the mean as the threshold.

As can be observed, in a group with a small ac-
curacy ratio, such as c2 of the S sound group, the
characteristics of the entropy of this speech group are
very diverse; hence, applying only the entropy analysis
leads to significant errors in real-time implementation.
Therefore, it should be complemented by MFCC and
GTCC to provide greater accuracy. The results shown
in Fig. 6 illustrate the advantages and disadvantages of
each feature applied to each sound group. Furthermore,
the coordination design of each feature further enhances
the system’s performance and provides more accurate
results. This knowledge is helpful in detecting and
increasing accuracy when recognizing specific speech or
sentences.

4.2 FM Radio Broadcast

This section presents the experimental results with
the developed platforms and algorithms for monitoring
the audio signals emitted by FM radio stations. The
signals were examined by recording a one-second FM

signal frame to process in each cycle according to the SFC
algorithm by continuously processing tens of thousands
of cycles and collecting statistical data to recognize a
particular speech group signal. The speech groups were
divided into five groups:

Fig. 7 displays an example of the captured demod-
ulated FM signal, classified as “Set Ta Git” Fig. 7(a)
presents the audio signal in the time domain. The
related spectral, MFCC, GTCC, entropy, and pitch are
demonstrated in Figs. 7(b)-7(f), respectively.

Fig. 8 shows the clustering results of the detectable
signals classified by speech groups based on the mean
correlation values and grouped by feature matching
based on the SFC algorithm. It is clear from Fig. 8 that
the system can detect many speech samples, which is
consistent with the fact that the station host greets the
listeners.

In the experiments with accurate signals, there is a
limit to the inability to control the content and infor-
mation of the radio stations. However, the experiments
follow the actual application conditions for which this
platform is developed. The system demonstrates the
efficiency of monitoring and recognizing specific speech
samples or sentences.

5. CONCLUSION

In this paper, a processing framework and speech
feature-based correlation (SFC) algorithm are proposed.
Five of the most common speech signals are compiled
using 15 male and 20 female volunteers. Each audio
speech set contains 104 samples. First, the essential
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Fig. 7: Example of the captured signal, classified as “Set Ta Git” in the time and frequency domains; (a) voice speech in
the time domain, (b) voice speech in the frequency domain, (c) MFCC, (d) GTCC, (e) spectral entropy, and (f) pitch.

1000

800 [~

Count

cb c7 c8 c9 cl0

Group

Fig. 8: A comparison of the grouping results for the real-time FM radio signal with reference to the mean of the correlation
coefficient.

features of the audio signals are extracted, namely MFCC,  concept can optimize threshold values and accurately
GTCC, entropy, and pitch. The feature correlations are  provide sound signal validation while following the
then compared in each speech group to determine the specified reference value.

threshold values of the correlation coefficients used for

signal testing. The results confirm that the SEC algorithm Another interesting observation is that the distribu-

tion corresponds to the mean and standard deviation to
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determine the threshold value in the development step
and is key to determining the proper threshold value in
a real-time application to suit the nature and tone of
the language used. Tests under actual case conditions
yield satisfactory results since the SFC platform can op-
erate quickly and responds to uninterrupted continuous
operation. It should be noted that only five speech
types are used as speech recognition clusters in real-time
FM radio monitoring, thereby affecting the number of
signals detected. Limitations include the broadcasting
content, which may consist of long paragraphs (rather
than specific words) and background voices or music,
making classification more difficult. Even so, the results
demonstrate the advantages and disadvantages of each
feature implemented in an individual speech sound
group. Furthermore, a specific feature coordination
pattern would further improve system performance and
precision.
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