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The Design of a Two-Wheeled Auto-Balancing
Robot under Impulse Interruption

Kanchit Pawananont' and Kritchanan Charoensuk?’, Non-members

ABSTRACT

The innovation of two-wheeled balancing robots af-
fects human life in different ways. Immense research
continues to be undertaken to make such robots cheap,
efficient, and reliable. Essentially, autonomous mobile
robots are two-wheeled, vertical, and self-balancing. The
robot’s control system and automation application are
intergraded with daily human life. Autonomy is applied
to vehicles such as mobile robots, referred to as a vehicle
capable of independent motion. Mobile robots can be
used in various applications such as exploration, the
food industry, home service, security, logistics, and many
Moreover, it can be classified into four types:
locomotion, perception, cognition, and navigation. In
this work, the two-wheel, auto-balancing robot is inves-
tigated. The two-wheeled robot cannot operate without
a controller and is susceptible to interruption and lean-to
plunging outside the field. The PD controller, linear
quadratic regulator (LQR), sliding mode control (SMC),
and fuzzy logic control (FLC) can be used to set the
robot into a stable upright position in the rotation angle
condition. In this research, four control strategies are
compared to obtain the solid validation of a two-wheeled
balancing robot. These models are investigated in this
study to find the best controller among the PD, LOR,
SMC, and FLC and achieve solid validation. The PD
and LQR show a convergence response time of 1.2-2.0 s
to the equilibrium state for distance and time, which
is slower than the SMC and FLC. The intersection to
the equilibrium zone is 1.8 s and 1.2's, respectively. The
angle position response of the PD is 2.5 s, which is slower
than the others. Whereas the LQR, SMC, and FLC reach
equilibrium in 1.5, 1.5, and 1.25 s, respectively. According
to the results, the FLC performed better in two-wheeled
auto-balancing under the pendulum within the linear
distance in centimeters and angle positions in radian.

more.
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LIST OF SYMBOLS

0 Angular position of the pendulum
0 Angular velocity of the pendulum
0 Angular acceleration of the pendulum
) Boundary layer thickness
X Position of the robot
X Velocity of the robot
X Acceleration of the robot
e(?) Error between the input and output signal
Control signal
g Acceleration of gravity
Radius of the wheels
M Mass of the wheels
M, Mass of the pendulum

1, Wheel moment of inertia

I, Pendulum moment of inertia

L Length to the pendulum

K, Gain of the differential control
K, Gain of the proportional control
K, Back-emf constant

K, Motor-torque constant

R Motor armature resistance

Q

1. INTRODUCTION

The innovation of two-wheeled balancing robots af-
fects human life in different ways. Such robots come in
various types, such as guarding robots, service robots,
fire-fighter robots, entertaining robots, and human
robots. Immense research continues to be undertaken
to make them cheap, efficient, and reliable. Essentially,
autonomous mobile robots are two-wheeled, vertical, and
self-balancing. Their movements are usually flexible.
Two-wheeled robots have a vertical body frame on which
all circuitry is placed with a balancing mechanism similar
to that of humans. The robot can adjust its position when
falling forward or backward to avoid instability. Unlike
conventional mobile robots, dual-wheeled, self-balancing
robots bring practical advantages.

The elemental control of a two-wheeled balancing
robot involves inverted pendulum vision. The inverted
pendulum is an emblematic problem in dynamics and
control systems. It is a decidedly nonlinear, unstable,
and robust coupling structure. The goal is to stabilize
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the pendulum vertically on a motor-driven carriage. It
is extensively used as a yardstick to evaluate control
techniques (PID controllers, fuzzy control state-space
representatives, hereditable algorithms, neural grids, and
more). However, the discovery of techniques for con-
trolling and responding to the movement and balancing
two-wheeled robots remains a challenge due to the pres-
ence of components such as insecurity, multivariable,
and nonlinearity.

The controlling logic of the mechanical system is
commonly attributable to the simple configuration and
contemporary use of reaction or inertia wheels. The
conception of maintaining the angular position to change
the robot’s direction is considered in this case. Control
logic is used to understand the behavior of balanced
systems and manage environmental interruptions and
control methodologies to steady the system. One possible
application for this robot is jumping since its wheels
and inverted pendulum in the heading direction can
be manipulated. Hence, the robot has the aptitude to
adjust its functions to achieve the preferred movement
and direction. The perception of controlling mechanical
systems using reaction wheels or inertia wheels has been
reported in a research article by Jepsen et al. [1].

The two-wheeled balancing robot has improved mo-
mentum and positioning due to the design of nonlinear
and unstable dynamic systems over recent decades.
The control strategies proposed by developers and re-
searchers allow the two-wheeled balancing robot to
control its balance. The two-wheeled balancing robot
positioning equipment provides a suitable platform for
researchers to investigate the efficiency of various
controllers—the two-wheeled balancing robot is based
on the inverted pendulum model. Accordingly, a two-
wheeled balancing robot needs an excellent controller
to enable it to control itself in the appropriate position
without directives from the external environment. The
movement of a two-wheeled balancing robot is ruled by
an under-actuated arrangement, such as the number of
control input being less than the number of degrees of
freedom requiring stabilization.

Isidori et al. [2] demonstrated the degrees of freedom
input to be stabilized. For these reasons, researchers have
increasingly endeavored to design control systems that
guarantee stability and robustness for mobile wheeled
inverted pendulums. Although two-wheeled balancing
robots are naturally nonlinear with nonlinear differential
equations used to describe their dynamics, obtaining a
liberalized system model is often possible. Supposing
the system works around an operating point and the
signals involved are small, a linear model approximates
the controlling techniques for obtaining the state of the
process in a nonlinear system.

System developers or researchers have applied several
techniques to linear systems to design suitable con-
trollers and analysis methods. For example, motion
control was proposed using a linear state-space model
[3]. In small autonomous helicopters [4], research

has been undertaken to provide a low-cost, low-weight
attitude estimation system (AES) with a high bandwidth
based on a three-axial rate gyro, two-axis inclinometer,
and compass. Dynamic control strategies have been
studied for the balancing of the robot distance position.
The rotation angles of two-wheeled robots were the
variables of interest, and a linear controller designed
for stabilization by considering the Kalman rank test for
controllability, as indicated in the reports of Salerno and
Angeles [5, 6].

A two-wheeled self-balancing robot usually consists
of two wheels connected to a body frame which holds
the motor drive, power and control electronics, and a
battery. Sun and Gan [7] managed to keep the robot’s
behavior predictable by analytical means by reducing
the non-uniform distributed mass within the body to
point masses. A mathematical model was derived using
Lagrangian mechanics based on a whole state feedback
controller, combined with two higher-level controls,
deployed for stabilization and drive control. A planar
model derived a linear stabilizing controller without
considering vehicle yaw.

According to Blankespoor and Roemer [8], the afore-
mentioned control laws have been designed on the basis
of liberalized dynamics, which only exhibit desirable
behavior around the operating point and do not have
global applicability. The output tracking was achieved
by means of feedback control, with all states remaining
in the constraint sets. The general assumption of
non-singularity in unknown control coefficient matrices
was eliminated using strategic control. The results
show that adaptive neural control has been rigorously
proven to guarantee the semi-global uniformly ultimate
boundedness of all signals in the closed-loop system [9].
The partial feedback was linearized, and a stabilizing
position controller and the velocity of the two-wheeled
balancing robot derived. However, the controller design
is not robust in terms of parameter uncertainty [10]. The
PID and LQR schemes involve a two-wheeled balancing
robot.

The mathematical model of the two-wheeled balanc-
ing robot system has been presented in the form of
differential equations. A dynamic model of the system
with permanent magnet DC motors included has been
derived based on the model proposed by Grasser et
al. [11]. The responses from the nonlinear two-wheel
balancing robot were presented in the time domain. A
comparative assessment of both controls was reported
in Nasir et al. [12]. Controller logic using SMC [13]
and fuzzy logic [14] was proposed to ensure robustness
versus parameter uncertainty for controlling both the
position and rotating angle of the balancing robot.
Moreover, Pawananont and Leephakpreeda [15, 16] used
control strategies for pulse-width modulation control via
Simulink, which Charoensuk et al. [17] used to simulate
and predict intracranial pressure using clinical data and
research articles.

This study focuses on identifying the appropriate
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Fig. 1: Free body diagram of the two-wheeled balancing
robot.

Fig. 2: Physical formation of the two-wheeled balancing
robot.

control logic for stabilizing the two-wheeled robot by
creating a physical plan of a two-wheeled balancing robot
to find the transfer function. The performance of the PD
controller, LQR, SMC, and FLC is compared in terms of
distance position and rotation angles. Simulink is used to
generate the control function. The mathematical model
of the two-wheeled balancing robot is presented in the
form of differential equations. Finally, the four controller
strategies are compared to discover a solid validation
model for a two-wheeled balancing robot.

2. MODELING OF THE BALANCING ROBOT

Balancing robots have unstable system dynamics.
They are characterized by balancing on two wheels and
spinning on the spot. The dynamic model of a balancing
robot in this study was derived using a Newtonian
approach based on the chassis being modeled as an
inverted pendulum [11]. Fig. 1 shows a free body diagram

Table 1: Parameter constants for a two-wheeled robot.

Parameter ‘ Value
K, 03674 N-m/A
K, 0.7661 V-s/rad
M, 1.5kg
M, 0.2kg
R, 140
r 0.06 m
L 0.05m
g 9.81m/s?
1, 0.00036 kg-m?
I, 0.003278 kg-m”

of the chassis and pendulum.

The balancing robot consists of an inverted pendulum,
two wheels, and a DC electric motor. The DC electric
motor drives the balancing robot and helps it to maintain
balance. Two wheels help the robot to maintain balance
via movement of the wheel forte. The inverted pendulum
serves to change the equilibrium point of the robot. The
components of the robot are connected via connection
devices. The connection equipment contacts the com-
puter while the robot equilibrium consists of analog and
digital converters. The robot circuit receives the angle
measurement signal from the angle-measuring device,
while the accelerometer sends the accelerator signal from
the robot to the computer. A digital-to-analog converter
transmits the computer’s control signal to a zero and span
circuit. The zero and span circuit adjusts the voltage gain
before it is sent to the DC motor driver circuit of the
balancing robot, as shown in Fig. 2.

The concept model of the two-wheeled balancing
robot depicted in Fig. 2 apportions the robot’s deliber-
ation into three parts: (1) the DC electric motor; (2)
the two wheels of the balancing robot; and (3) inverted
pendulums. Modeling refers to the process of identifying
the principal physical dynamic effects to be regarded in
analyzing a system, writing the differential and algebraic
equations from the conservative and property laws of the
relevant specialization, and declining the equations to a
convenient differential equation model.

The preliminary model of this research assumes that
the wheels of the equilibrium robot do not flow smoothly.
The motion angle of the inverted pendulum is considered
to be acceptable. The balancing robot measures the
distance between the pivot point and the center of
mass in the inverted pendulum. The moment of inertia
determined by the robot’s equilibrium can collect various
parameter constants, as shown in Table 1.

This section defines the modeling of the two-wheeled
balancing robot as the basis of a simulation background
for the development and assessment of both control
systems. In Fig. 1, 0 represents the pendulum’s angle
(rad). The equation of motion is derived, leading to the
linear dynamic models, given as
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A linearized model can be obtained, and linear state-
space controllers designed and implemented cos 6 = —1,
sinf = —0, and (d6/dt)*> ~ 0; from Eqs. (1) and (2), the
linear equation of motion for the balancing system can
be written as
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By rearranging Eqs. (3) and (4), we get the state-space
equation and transfer functions for the system. The state-
space equations areas can be written as,

X 0 1 0 0rx 0

| lo —263 295 ol|x| |=3.00
ol=lo o o 1lle o |V« ©®
il lo 3047 s264 o]lo] L10176

From Eq. (5), the transfer function is obtained as:

0(s) 101.8s 4+ 173.5 ©)
V,(s)  s3+2.6352 —82.64s5 —307.3

The transfer function is applied to the block diagram
via Simulink, as shown in Fig. 3. In the subsequent
system, the block diagram of the open-loop control
system in Fig. 3 gives the input and output signals.

In the block diagram, the system can receive input
from the control system to obtain the required output.
However, the two-wheeled robot cannot consider this
output for additional input reference using this system.
Generally, the input provided to the system mainly
depends on the required output. Anchored in the input,
the controller can generate the control signal and give
it to the processing unit. For this reason, based on the
control signal, fitting processing can be performed to
enable the system to attain output. In the open-loop
control system, there is no feedback path.

Accordingly, this is the reason why the input in the
open-loop control system is independent of the output.
This usually generates a fault within the system. There
is no chance of changing the input once the output
illustrates the discrepancy from the expected value. In
Fig. 4, the angular position based on Eq. (6) with an
open-loop system shows the out-of-control signals. This
supports that the controller approved the error of output
integration with the control system, as expressed in the
concept and controller design section.

3. CONCEPT AND CONTROLLER DESIGN

Under impulse interruption, this study investigates
a model and controller design for a two-wheeled auto-
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Fig. 5: Block diagram of the PD control system.

balancing robot. Two-wheeled auto-balancing under the
pendulum model is shown in Fig. 1. The control strategies
for investigating the state-based controller design in this
research are PD, LQR, SMC, and FLC. The input created
represents the information as an impulse wave. The
controller is simulated via Simulink and satisfies the
stability requirement of a two-wheeled auto-balancing
robot since it is capable of maintaining the robot’s linear
position and angle under impulse interruption.

3.1 PD Controller

The PD controller improves the balance element of the
robot control system, providing a better instantaneous
response with a simple computational structure. There-
fore, the PD control can be depicted as a block diagram,
as shown in Fig. 5.

From the structure of the PD control system in Fig. 5,
the control signal can be written as,

u(t) = K,e(t) + K; / e(t)dt + Kd%e(t) 7)

The control system uses a PD controller design to stabi-
lize the robot’s equilibrium, using the method of placing
polls by reducing the output signal in the control system
at quarterly rates (quarterly-decay). The second crest is
measured against the first crest with the highest response
value by the robot’s equilibrium control system, and the
oscillation of the output waveform equals one-quarter
[18].

3.2 LOR Controller

Considering the LQR control model in the system
equations as

X = Ax+ Bu (8)
Determine the matrix K of the optimal control vector

u(t) = —Kx(1) ©)

To minimize the performance index

(0]
J = / (x*Ox + u*Ru) dt (10)
0
where Q and R are positive-definite Hermitian. The
matrices Q and R determine the relative importance of
the error and expenditure of this energy. It is assumed

YO =6:()
C —

u(?) x(2)

Fig. 6: Block diagram of the LQR control system.

that the control vector u(t) is unconstrained. The linear
control lawgiver, according to Eq. (10), is the LQR control.
Therefore, if the matrix’s unknown elements K are
determined to minimize the performance index, then
u(t) = —Kx(t) is optimal for any initial state x(0). A block
diagram showing the optimal configuration is shown in
Fig. 6.

x=Ax - BKx = (A - BK)x (11)

In the following derivations, it is assumed that the
matrices A—BK are stable or that the eigenvalues A—BK
have genuine negative parts.

(o8]
J=/ (x*Ox + x*K*RKx) dt
0

= /Oo x* (Q + K*RK) xdt (12)
0

Following the discussion to solve the parameter-
optimizing problem, we set

x*(Q+K*RK) x = —% (x*Px) (13)

where P is a positive-definite Hermitian, the following
can be obtained

x* (Q+ K*RK) x = —x"Px — x*Px
= —x* |[(A— BK)* P+ P (A - BK)|
(14)

Comparing both sides of the last equation and noting that
it must hold for any x, the following is required

(A-BK)*P+P(A-BK)=-(Q+K*RK) (15

Hence, the procedure determines the elements P from
this equation and to establish if it is positive or definite.
The performance index J can be evaluated as,

(o)
J = / x* (0 + K*RK) xdt = — x*Px|
0

= —x"(00) Px(c0) + x*(0) Px(0) (16)
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Since all eigenvalues A — BK are assumed to have
genuine negative parts, then x(co) — 0 Therefore, the
following equation can be obtained

J = x*(0)Px(0) 17)

Thus, the performance index J can be obtained based on
the initial condition x(0) = P. To obtain the solution
to the LOQR control, the procedure is as follows: Since
R the robot has been assumed to be a positive-definite
Hermitian or real symmetric matrix and can be written
as,

R=T*T (18)

where T is a non-singular matrix. Then Eq. (15) can be
written as,

(A* = B*K*) P+P(A— BK)+Q+K*T*TK =0 (19)

This can be rewritten as,

A*P+ PA+[TK — (T*)"'B*P)*[TK — (T*)"' B*P]
—PBR'B*P+Q =0 (20

The minimization J with respect to K requires the
minimization of

x*[TK = (T*)"'B*P)*[TK — (T*)"'B*P]x  (21)
Since this last expression is non-negative, the minimum
occurs when it is zero or when

TK =T~ 'B*P (22)

Hence,

K=T"YT*"'B*P=R"'B*P (23)

Eq. (17) gives the optimal matrix K. Thus, the optimal
control law to address the quadratic optimal control
problem when the performance index given by Eq. (10)
is linear can be written as,

u(t) = —Kx(t) = =R~ B* Px(t) (24)
The matrix P in Eq. (23) must satisfy Eq. (15) or the
following reduced equation:

A*P+PA-PBR'B'P+0=0 (25)

3.3 SMC Controller

The SMC follows the concept of variable structure
control (VSC). This approach was initially introduced at
the beginning of the 1950s and has subsequently received
considerable attention from researchers, who tend to
employ it in different applications and benefit from its
numerous advantages. The first step in designing an SMC
is to identify the required behavior of the tested system,

represented by the sliding surface of the controller. In
the current research, the sliding surface of the suggested
SMC design is expressed in Eq. (26).

S(@t) = K,é(t) + Kpé(t) + Kse(t) + K, / e(tydt  (26)

where e(?) is the tracking error variable, while K, K,,
K;, and K are the parameters that optimize the transfer
function. From a control perspective, it is essential to
maintain the tracking signal e(¢) and its derivatives equal
to zero. Additionally, to keep S(¥) at a specified value,
it is necessary to maintain its derivative equal to zero, as
illustrated in Eq. (27).

S =0 27)

The control law of the proposed design illustrated in
Eq. (28) is selected by taking into account the condition
expressed in Egs. (26) and (27).

where Up(f) = F(x(t), r(t), e(t)); in which x(¢) is the
control signal, r(7) is the reference signal, and e(t) is the
error signal. The term U (¢) can be expressed in Eq. (29).

(28)

S()
[S®|+6

Accordingly, the proposed SMC design comprises four
parameters. The transfer function finds the optimal
values of these parameters by minimizing the integral
time absolute error of the deviation in the linear distance
and angular positions.

Up(t) = Kp (29)

3.4 Fuzzy Controller

The fuzzy controller fragments are as follows: the
system has two inputs (Error and d(error)) and one output
(output). The error utilizes three fuzzy batches (Neg:
Negative, Zero, and Pos: Positive), as shown in Fig. 7. The
d(error) uses two fuzzy scenarios (Decrease and Increase),
as shown in Fig. 8. The output has three batches (Neg:
Negative, Zero, and Pos: Positive), as shown in Fig. 9.
The control system later adjusted the fuzzy set limits
for functional performance, as defined in Section 4. The
fuzzy rules are summarized in Table 2.

4. RESULTS AND DISCUSSION

The control strategies used in this research consist of
the PD controller, linear quadratic regulator (LQR), slid-
ing mode control (SMC), and fuzzy logic control (FLC).
The hybrid experiment includes physical components
and simulation. The four control strategies demonstrate
an instantaneous response and resistance to changes
in system simulation parameters while also preventing
interference from entering the system. A comparative
performance assessment of the four control strategies is
also discussed in detail in this section.
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The input is the impulse wave shown in Fig. 10,
which has an amplitude of 1cm for 0.2s. The input
is a simulator, following the robot’s movement when
passing a rough surface or the user applied dynamic load.
Simulink was used to generate and simulate the control

Table 2: Fuzzy rules.
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Fig. 10: Impulse interruption diagram.
logic. A block diagram of the four control strategies

is shown in Figs. 11(a) for PD controller, 11(b) for LQR
controller, 11(c) for SMC controller, and 11(d) for FLC
controller.

The two-wheeled balancing robot systems with PD,
LQOR, SMC, and FLC control strategies shown in the block
diagram shape two responses: angular position € and
linear distance position x. As stated earlier, the initial
value of the angular position 0 in the balancing robot
was set to 0.0-1.0 rad while the linear distance position
started at the original position x = 0 cm. This means that
the initial condition of the robot is precarious, and the
result of control strategies demonstrates the generation
of relationships between angle (rad) versus times (s), as
shown in Fig. 12(a) and liner distance positions (cm)
versus times (s), as shown in Fig. 12(b). The response
time rustles of each control logic are PD (blue line),
LOR (red line), SMC (yellow line), and FLC (purple
line). The parameter values of the four control logics
are investigated by trial and error. They were obtained
and summarized for a two-wheeled robot using PD, LQR,
and SMC control, as shown in Table 3, and the FLC
control rules and fuzzy rule surface in Figs. 13(a) and
13(b), respectively.

The results of the linear distance positions in Fig. 12(b)
are summarized in Table 4, demonstrating a comparison
of the performance characteristics. The LQR has the
fastest settling time of 2.0 s, while PD has the slowest
at 6.0s. The FLC exhibits the best conservation of the
linear distance position value of 0.09 cm, the same time
as the PD, which has a slip-up distance from the original
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Fig. 12: Result among PD, LQR, SMC, and FLC in (a)
angular positions and (b) linear distance positions.

Table 3: The controller parameters of PD, LQR, and SMC.

K, | 280
PD L
K, | 0027
K, | 0.10
K, | 0380
LQR
Ky | 15.00
K, | 1.00
K, | 320
K, | 2200
SMC | K; | 20.00
Ky | 120
5 | 002

position of 1.52 cm. Moreover, the LQR shows harmonic
movement with a distance value of 1.00-1.42 cm. Despite
the high values for the distance positions, the FLC
controller carries itself to a stable position. The balancing
robot with the LQR controller exhibits the fastest rise
time of 0.2 s. The balancing robot with an FLC controller
needs an extra 0.3 s to rise from 10 to 90% to the highest
peak linear distance position. These results are similar to

Fig. 13: Fuzzy control logic of the two-wheeled balancing
robot: (a) fuzzy rule and (b) fuzzy rule surface.

those reported by Wu et al. [14] and Chouhan et al. [19].
In the case of steady-state error, almost all controllers
demonstrate outstanding performance, giving zero error
at 0.7 s and more. The responses of the balancing robot
linear distance position exhibit acceptable overshoot and
undershoot.

In addition, the results for the settling time value
represent the time taken to approach the phase. The rise
time in the linear distance positions is shown in Table 4.
It can be observed that the LQR provided little value at
0.2 s, while the bulky value of the PD control is 2.0s.
The SMC and FLC gave the same value of 0.5s. The
LOR exhibits the best response, the PD the poorest, and
SMC and FLC moderate responses. The results for the
settling time value represent the time taken to approach
the equilibrium state in each control system. The FLC
exhibits the lowest settling time value, followed by SMC,
LQR, and PD, respectively, as shown in Table 3. The
results are similar to those reported by Yue et al. [20]
and Bature et al. [21].

The results of the angular positions presented in
Fig. 12(a) are summarized in Table 5, along with a
comparison of the performance characteristics. The FLC
exhibits the fastest settling time of 1.52s and PD the
slowest at 6.0 s. The FLC shows the best angular position
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Table4: Performance characteristics of a two-wheeled
balancing robot: linear distance positions.

Control Strategies | PD | LQR | SMC | FLC

Rise time (s) 2.0 0.2 0.5 0.5
Settling time (s) 6.0 2.0 1.8 1.2
Steady time error (s) 0.0 0.0 0.0 0.0
Upper limit (cm) 1.52 1.00 0.27 | 0.09
Lower limit (cm) 0.00 -1.42 0.00 0.00

conservation value of the linear distance position at
0.01 rad, while the PD and LQR exhibit a more significant
angular position from the original of between 1.00 and
-1.00rad. The SM control exhibits a moderate value in
an angular position at 0.14 rad. The results for PD control
align with those reported by Mahler and Haase [22] and
Gonzalez et al. [23]. Concerning steady-state error,
almost all controllers exhibit an outstanding performance
by giving zero error at 0.2s and more. The responses
of the balancing robot angular position show acceptable
overshoot and undershoot. The FLC controller carries
itself to the initiation position of the angle. The balancing
robot with the FLC controller exhibits the fastest rise time
of 1.25 s. The results are similar to those reported by Yong
et al. [24] and Zhang et al. [25]. The two balancing robots
with a PD controller need 0.1 s more to rise from 10 to
90% to reach the highest peak linear distance position in
comparison to LQR, SMC, and FLC control strategies.

In addition, the settling time value results represent
the time taken to approach the phase. The rise time in
the angular positions presented in Table 5 indicates that
the LQR, SMC, and FLC gave a small value of 0.1s, and
the PD control a bulky value of 0.2s, while the LOR,
SMC, and FLC gave the same value of 0.1s. The LQR,
SMC, and FLC exhibit the best response in the angular
position state while the PD shows a poor response. The
settling time value results represent the time taken to
approach the equilibrium state of each control system.
The settling time value shows that the lowest value of the
responses for each controller is plotted in one window,
as summarized in Tables 4 and 5. The PD and LQR
exhibit a response time convergence of 1.2-2.0 s to reach
equilibrium according to the distance and time diagram,
which is slower than SMC and FLC. The intersection to
the equilibrium zone is 1.8 s and 1.2 s, respectively. The
PD exhibits a settling time of 2.5 s, meaning that it is slow
to reach the equilibrium state.

Incidentally, the angle response of PD is 2.5 s slower
than LQR, SMC, and FLC, which exhibit values of 1.5,
1.5, and 1.25s, respectively. The angle response of the
LOR and SMC control converge at the time value. The
results indicate that these are better controllers than PD
and FLC for achieving a solid validation. Despite the LQR
demonstrating a virtuous rise time, the results show that
the FLC achieves the best performance in two-wheeled
auto-balancing under the equilibrium state, with the
inverted pendulum being within the linear distance in

Table 5: Performance characteristics of a two-wheeled
balancing robot: angular positions.

Control Strategies | PD | LQR | SMC | FLC

Rise time (s) 0.2 0.1 0.1 0.1
Settling time (s) 2.5 1.5 1.5 1.25
Steady time error (s) 0.0 0.0 0.0 0.0
Upper limit (cm) 0.98 1.00 0.14 | 0.01
Lower limit (cm) -0.10 -1.00 0.00 0.00

cm and angle positions in rad, as presented in Fig. 12.
The FLC exhibits the best response behavior for to control
stabilizer, aligning with the results of previous research
[1,7,12,19,26-29]. The four logical controls obtained
zero for the steady-state time error.

5. CONCLUSION

In conclusion, the designs of the PD, LQR, SMC,
and FLC are presented and compared in this study.
These four controllers perform stabilization functions
to enable the robot to maintain its balance. When
designing the four controllers, the mathematical model
of the equilibrium robot must first be determined. In
this research, Newton’s laws are applied in the design. A
mathematical model of a balancing robot is mainly used
for design considerations. The mathematical model of
an equilibrium robot is determined according to the total
kinetic energy of the system.

Nevertheless, the mathematical model of an equilib-
rium robot derived from Newton’s laws is a nonlinear
system. Hence, the controller must first convert the
mathematical model of the nonlinear equilibrium robot
into a linear one. In this study, a mathematical model of
a linear equilibrium robot was applied to the controller
design. In simulations and experiments, the ability of
the controller is used to stabilize the balancing robot.
The system of the balancing robot is simulated using
the actual structure of the controller and comparing
the performance of the inverted pendulum angle in the
balancing robot with the controller obtained from the
mathematical model. Equilibrium is reached by com-
paring the angle and distance performance values of the
balancing robot control system using the PD LQR, SCM,
and FLC. A PD controller is used to control the balancing
robot system along with the LQR, SLM, and FLC. In the
equilibrium state, these four controllers derived from the
linear equations of mathematical models can be used to
control and maintain the stability of balancing robots.
Nevertheless, the four controllers take the same time to
reach the equilibrium point.

The simulation and experimental results show that
a PD controller, LQR, SMC, and FLC can be used to
drive an equilibrium robot. As can be observed from
the oscillation of the inverted pendulum angle and the
position value of the equilibrium robot, the PD controller
takes longer to reach the equilibrium point than the LQR.
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The SMC and FLC, respectively, can maintain the stability
of the balancing robot better than the PD controller.
However, the LQR and SMC have many slide mode
controls. Moreover, the four control logics have design
limitations in transferring from a nonlinear system to a
linear control system. The system stabilization response
must be developed and the parameters improved to
enable the controller to support the nonlinearity of the
applied system to respond more effectively and maintain
system balance.
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