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ABSTRACT

Electric motors have revolutionized the way of human
living and resulted in the modern lifestyle. These motors
are exposed to a variety of undesirable conditions and
often operate in corrosive environments, dusty places,
and situations that result in the failure of the motor.
The most common among these motors is Induction
Motors (IM). Hence, the faults occurring in Induction
Motors need to be detected at a proper time for avoiding
losses and further consequences. A well-designed fault
detection scheme not only reduces motor failure but
also increases productivity and even sometimes avoids
accidents. This paper presents a critical review of fault
detection and classification techniques in three-phase
induction motors (TPIM). The main theme of this paper
is to revisit the conventional methods for fault detection
in TPIM and compare them with recently published
methods based on parameters to be sensed, and the type
of fault to be detected, with advantages and drawbacks.
More than a hundred papers are critically reviewed from
old and new regimes. Each major fault like inter-turn,
rotor, bearing, and joint fault is considered for review
purposes. Attention is also given to fault detection
methods based on artificial intelligence (AI) and machine
learning (ML). After an exhaustive review, future scope
and challenges for fault detection and classification are
elaborated in a separate section. Lastly, the paper
concludes with brief remarks which will be very useful
for new researchers who are willing to do the research in
the domain of fault detection and classification of IM.
Keywords: Classification, Detection, Fault, Induction
Motor.

1. INTRODUCTION

Whenever a fault occurs in the motor, the parameters
such as air-gap voltages, line currents, torque, losses,
and the efficiency of the motor are affected as well as
excessive heat is generated in the winding. One or
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more of these parameters are used as a symptom to
identify the type and nature of the fault in an induction
motor (IM). The study of the maintenance of a three-
phase induction motor (TPIM) and its failure analysis is
a vast area of research for researchers for many years.
Traditionally, the fault detection of the IM was dependent
on current and vibration. The methods which were used
include over-current, overvoltage, and earth-fault. The
exhaustive literature survey of the existing condition
monitoring and a protection method of medium volt-
age motors has been reported in [1]. Benbouzid [2]
elaborated on the various types of faults in IM and the
signatures generated by them for detection. The motor
current signature analysis (MCSA) method is discussed
in detail for the detection of various faults. However,
it is observed that the use of MCSA for analyzing a
signal having transitory characteristics such as drifts,
abrupt changes, and frequency trends is not satisfactory
as this method is load dependent. Attention is also
given to the automatic fault detection algorithms based
on neural networks, and fuzzy logic expert systems.
Liu and Bazzi [3] submitted a detailed survey of old
and recent methods for detecting the major faults in
IM. The paper presents a comprehensive discussion of
recent research advances, trends as well as difficulties
and possibilities for fault diagnosis and detection of
IM. The methods focused on artificial intelligence (AI)
techniques namely, expert systems, fuzzy logic, artificial
neural networks (ANNs), and integrated systems with
advantages and limitations of the AI techniques. The
focus is given to fault detection in induction machines,
multi-phase machines, permanent magnet synchronous
machines, and power converters [5]. Kazzaz and Singh
[6] suggested the wavelet transform (WT) technique
for analyzing non-stationary signals and getting time-
frequency information. It is also shown that WT is
more sensitive to small variations in a signal than Fast
Fourier Transform (FFT); thereby it allows the detection
of a fault in an early stage. Gundewar and Kane
presented an exhaustive survey on fault detection and
condition monitoring of electrical machines [7]. Peng
and Chu [8] reviewed WT for fault diagnosis and
condition monitoring of electrical machines which cover
the various features of time-frequency analysis such as
feature extraction, singularity detection, and extraction
and de-noising of weak signals.

This paper presents a comprehensive review of fault
detection and classification techniques in a three-phase
induction motor (TPIM. The main contribution of this
paper is to compare old methods with recently published
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methods on the common platform. The paper has been
divided into different sections. Section 2 enumerates the
faults and their causes in the TPIM. Section 3 includes
the survey of fault diagnosis techniques for various faults
in TPIM, which is further divided into four subsections.
Section 4 presents the discussion, limitations, and future
scopes of the relevant topic. Finally, Section 5 ends the
paper with concluding remarks about the work.

2. TPIM FAULTS AND THEIR CAUSES

TPIM often works in hostile environments such as
corrosive and dusty places. Moreover, these motors
are also subjected to mechanical, electrical, and thermal
stresses during running conditions [9]. If the stresses
become severe then various faults may initiate in the
TPIM. It is essential to detect the fault at an incipient
stage; otherwise, it will result in the total failure of
the motor and further result in costly downtime of
the plant. More importantly, these failures may even
result in the loss of lives, which cannot be tolerated.
Accordingly, it is essential to provide some arrangements
to protect the motors from failure and to enhance the
life of the motor. The motor is protected normally
under the following conditions, i) over-current, ii) over-
voltage, and iii) earth-fault. However, as the tasks
performed by these motors grew increasingly complex
and the existing protection schemes are not enough, it
has become essential to develop a scheme to protect these
motors against unavoidable conditions or detect faults at
an inception stage. Various surveys on IM failure have
found the most common failure mechanisms [10]. These
have been categorized according to the main components
of a machine - stator-related faults, rotor-related faults,
bearing-related faults, and other faults. Several surveys
of faults of large IMs, conducted by IEEE, EPRI, and
Allianz are compared in Figure 1. The survey conducted
by IEEE and EPRI focuses on medium-sized IMs, while
the Allianz survey focuses more on medium-to high-
voltage large IMs.

In the following subsection, various faults and their
causes are discussed briefly.

2.1 Stator Faults and Their Causes

According to [9], 35-40 % of IM failures are related to
the stator winding insulation. Moreover, it is observed
that a large portion of stator winding faults is initiated
by insulation failures in several turns of a stator coil
within one phase. These faults are mostly due to the
slow and constant aging of the insulating material of
winding. Such aged winding may get damaged due
to excessive stresses produced by an inter-turn short
circuit fault and the fault current will circulate through
the damaged turns. Due to thermal runaway, the fault
current progressively reduces the insulation strength
of the affected and neighbouring turns. The fault
further extends to the adjoining turns and the fault
current rises. At last, the slot insulation or insulation
of the neighbouring phase can be affected, reaching
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Fig. 1: Percentage of Fault Distribution.

to a catastrophic failure of the motor. Although the

IM can still run when some of the turns are shorted,

they can consequently lead to damage to adjacent coils

and a stator core, so that a ground fault can occur.

Among the possible causes, the following stresses are the

main reasons for the degradation of the stator winding

insulation.

e Thermal Stresses: Thermal aging is a result of the
operating temperature. As well known, the insulation
life gets half for every 10°C increase in temperature.
To cope with the thermal aging due to the temperature
rise in the windings, reducing the operating temper-
ature or increasing the class of insulation materials
is employed. Thermal overloading can be caused by
applied voltage variations, unbalanced phase voltage,
cycling overloading, obstructed ventilation, higher
ambient temperature, etc. All of these can increase
the temperature and can initiate thermal stress in the
machine.

« Electrical Stresses: The voltage stress in the windings
can be caused by having a void in the insulation, which
can cause partial discharge. In addition, the surge in
the electrical supply system can initiate the voltage
stresses in the windings.

¢ Mechanical Stresses: These stresses might be due to
coil movement, which is a result of the force inside
the machine, and rotor striking the stator, which is
caused by many reasons, such as bearing failures, shaft
deflection, rotor-to-stator misalignment, etc.

« Environmental Stresses: The winding insulation can be
deteriorated by chemicals, such as oil, moisture or dirt,
etc.

2.2 Rotor Faults and Their Causes

According to the failure survey [9], it is stated that
about 10% of total failure cases are related to rotor
failures. Broken rotor bars do not initially cause an IM to
fail but there can be serious secondary effects of broken
rotor bars. The broken parts of the rotor bar hit the end
winding or stator core of a high-voltage motor at a high
velocity. This can cause serious mechanical damage to
the insulation and a consequential winding failure may
follow, resulting in high repair costs and outage time.
Broken rotor bars or end rings can be caused by one of
the following reasons:
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o Thermal Stresses: These stresses may be due to thermal
overload unbalance in voltages, hot spots, or excessive
losses and sparking (mainly fabricated rotor type).

o Magnetic Stresses: These stresses are caused by elec-
tromagnetic forces, unbalanced magnetic pull, electro-
magnetic noise, and vibration.

o Residual Stresses: These stresses occur due to manufac-
turing problems in the motor. These can be present in
any plane and are normally not harmful to the rotor as
long as they do not cause any significant change in the
rotor geometry. Some of the more common residual
stresses are the result of casting, brazing, welding,
stacking, and machining operations.

o Dynamic Stresses: These are arising from shaft torque,
centrifugal forces, and cyclic stresses.

o Environmental Stresses: The stresses caused by con-
tamination and abrasion of rotor material due to
chemicals or moisture.

o Mechanical Stresses: The stresses may be due to losing
laminations, fatigued parts, bearing failures, etc.

2.3 Bearing Faults and Their Causes

Bearing is a very important part of the machine. The
bearing is used to hold the rotor shaft of IM. About
40% of faults are bearing-related [9]. Faults on the
bearing may result in increased vibration and noise
levels. Bearing faults can also cause some damage
to mechanical couplings that connect to a rotor shaft.
Bearing faults can also cause rotor eccentricity. The
bearing damages can result from the different reasons
given below.

« High vibration due to foundations, mechanical cou-
plings, or loads.

o Inherent eccentricities cause unbalanced magnetic
force.

« Bearing current which causes an electrical discharge or
sparking in bearings.

o Contamination and corrosion which is caused by the
pitting and sanding action of hard and abrasive minute
particles or the corrosive action of water, acid, dirt, etc.

« Improper lubrication including both over and under-
lubrication causes heating and abrasion.

o Improper installation of the bearing, by improperly
forcing bearings onto a shaft or in housing (due to
misalignment) indentations formed in the raceways.

2.4 Load and Other Faults

In some applications such as aircraft, the reliability
of gears may be critical in safeguarding human lives.
For this reason, the detection of load faults (especially
related to gears) has been an important research area in
mechanical engineering for some time. Motors are often
coupled to mechanical loads and gears. Several faults
can occur in this mechanical arrangement. Examples of
such faults are coupling misalignments and faulty gear
systems that couple a load to the motor. The other faults
include eccentricity and gear-related faults. Eccentricity
fault occurs when the rotor is not centered within the

stator, producing a non-uniform air gap between them.
In an ideal machine, the rotor is center-aligned with
the stator bore, and the rotor’s center of rotation is the
same as the geometric center of the stator bore. Air gap
eccentricity is a common fault of IMs. There are three
types of air gap eccentricity: a) Static eccentricity; b)
Dynamic eccentricity and c¢) Mixed eccentricity. Static
eccentricity is characterized by a displacement of the
axis of rotation, which can be caused by a certain
misalignment of the mounted bearing or the bearing
plates or stator ovality. Since the rotor is not centered
within the stator bore, the field distribution in the air-gap
is no longer symmetrical. The non-uniform air gap gives
rise to a radial force of electromagnetic origin, which
acts in the direction of the minimum air gap. Therefore,
it is called unbalanced magnetic pull (UMP). Moreover,
static eccentricity may cause dynamic eccentricity, too.
Dynamic eccentricity means that the rotor is rotating
on the stator bore axis but not on its own axis. The
off-center axis of rotation spins along a circular path with
the same speed as the rotor does (first-order dynamic
eccentricity). Mixed eccentricity is a combination of
both eccentricities. Therefore, the non-uniform air-gap
of a certain spatial position is sinusoidally modulated and
results in an asymmetric magnetic field. This accordingly
gives rise to revolving UMP. This can be caused by
defective bearings or manufacturing faults. The variation
in air gap disturbs the magnetic field distribution within
the motor which produces a net magnetic force on the
rotor in the direction of the smallest air gap. This so-
called unbalanced magnetic pull can cause mechanical
vibration. There may be a bent shaft which can resultin a
rub between the rotor and stator, causing serious damage
to the stator core and windings [10-11].

3. LITERATURE REVIEW

More than a hundred research papers are studied ex-
haustively in the area of fault detection and classification
in TPIM. The survey is carried out separately for each
major fault such as stator fault, rotor fault, and bearing
fault. Attention is also given to combined fault detection.
Accordingly, the proposed section is divided into four
subsections depending on the nature of the fault.

3.1 Review of Stator Inter-Turn Fault Detection

Siddique et al. [12] presented a comprehensive
review of various stator faults, their causes, detection
techniques, and the latest trends in condition monitoring
technology. Futuristic trends in stator fault diagnosis
have also been discussed. The recently available tech-
niques for online stator inter-turn fault detection and
diagnosis in electrical machines are presented. Special
attention is given to short-circuit-fault diagnosis in
permanent magnet machines, which are fast replacing
traditional machines in a wide variety of applications.
This technique utilizes the results of spectral analysis of
the stator current for detecting the various faults in an
induction motor. These faults are mostly due to the slow
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and constant aging of the insulating material of winding.
Such aged winding may get damaged due to excessive
stresses produced by an inter-turn short circuit fault
and the fault current will circulate through the damaged
turns.

The methods that are non-invasive and non-intrusive
are mostly considered for fault diagnosis of induction
motors which monitor the motor’s condition using only
electrical parameters. MCSA is a traditional non-invasive
technique that utilizes the spectral analysis of stator
current for fault detection [13]. But the limitation of
MCSA is that the magnitudes of characteristic frequency
components depend on the load variation making it
difficult for fault detection in the motor. It is also ob-
served that the magnitude of the characteristic frequency
component is very small compared to a fundamental
component which is very difficult to extract from the
frequency spectrum. The accuracy of MCSA is enhanced
by combining the conventional MCSA method with
the wavelet transform, short-time Fourier transform,
and expert system. Further, the variation in transfer
impedance obtained from symmetrical components of
the motor is suggested for fault analysis in closed-loop
multiple-motor drive [14]. The symmetrical components
are derived from the stator phase current from which the
magnitudes of negative and homo-polar components are
used as stator fault indicators [15].

Park’s Vector Approach (PVA) is used in [16] for fault
identification in which three currents are transformed
into two currents using Park’s Transformation. The
pattern obtained from two-phase quantities is observed
to be circular for healthy motors and elliptical for stator
faults [16-18]. The FFT analysis of Park’s Vector Modulus
(PVM) of currents is also proposed for inter-turn fault
detection in which fault is quantified by observing the
magnitude of the frequency component at double the
fundamental frequency. The recent development in fault
diagnosis by PVA is being discussed and the performance
evaluation of four algorithms i.e. normalized currents
average values (NVAV), errors of normalized current
average absolute values, current Park’s Vector phase
and currents polarity, and normalized reference current
errors (NRCE) are being analyzed in [19]. Modified PVA
is proposed based on the higher harmonic index of the d
and q components of Park’s vector to detect stator faults
in induction motors [20]. The authors propose to detect
and classify simultaneous effects of demagnetization and
inter-turn short circuit fault in the case of permanent
magnet synchronous machines by analyzing the current
angle in the synchronous frame [21].

Patel and Chandorkar [22] developed a dynamic
model of an induction motor for detecting and locating
the inter-turn faults in the stator winding. The mapping
of positive and negative sequence stator current informa-
tion on the polar plot is proposed for the identification
and location of the fault.

Many methods are applicable only under steady-state
conditions. Further, due to the non-stationary behaviour

of the PVM, the time-frequency decomposition tool is
more desirable than FFT analysis. The best tool for
analyzing the non-stationary signal and getting time-
frequency information is WT and widely used in fault
diagnostics. WT is more sensitive to small variations in
a signal than FFT; thereby it allows the detection of a
fault in an early stage. The review of WT for fault di-
agnosis and condition monitoring of electrical machines
is presented in [23] which covers the various features
of time-frequency analysis such as feature extraction,
singularity detection, extraction, and de-noising of weak
signals. Siddiqui et al.[24] addressed the inter-turn fault
detection in inverter-fed induction motor drives based
on discrete wavelet transform (DWT). In this work,
the transient currents are used for analysis. The low-
frequency approximation and high-frequency detailed
signals have been used to differentiate healthy and stator
inter—turn winding motor conditions.

Spyropoulos and Mitronikas [25] suggested a method
based on the combination of PVM and continuous
wavelet transform (CWT) for the detection of inter-
turn faults. The inter-turn fault and its severity can be
detected by examining the frequency component in the
PVM signal. The existence of the frequency component
at twice the supply frequency is the characteristic
component for inter-turn fault detection. Das et al.
[26] demonstrated the use of cross-wavelet transform
(XWT) for inter-turn fault detection. The XWT has been
used to extract unique features from the PVM signal
and classify various operating conditions using Rough
Set Theory (RST). The CWT has been applied to the
AC components of non-stationary PVM signal to extract
unique features for discriminating the inter-turn faults
and incipient insulation failure [27]. The various peaks in
the CWT spectrum have been used to discriminate these
conditions. In the continuation of research, a simplified
Fuzzy Art-Map (SFAM) based classifier is shown to be
more suitable for classifying the severity levels of direct
inter-turn short circuit faults and equivalent incipient
insulation faults [28]. Das et al.[29] addressed the time
domain, frequency domain, and time-frequency domain
features of the PVM signal for classifying the inter-turn
faults. Support Vector Machine (SVM) based Recursive
Feature Elimination (RFE) algorithm is used to select,
rank, and optimize the number of effective features. A
Support Vector Regression (SVR) classifier is proposed to
classify different stator winding fault conditions based
on selected features. It is noticed that the algorithm
gives better results for known load conditions. To make
the fault classification algorithm immune to varying load
levels, additional two features of the PVM based on
detrended fluctuation analysis are extracted. Bessamet
al. [30-31] suggested the method for the detection
and location of the inter-turn short circuit fault in the
stator windings using DWT and neural networks. The
energy in the seventh decomposition level is used as an
input to the feed-forward multilayer-perceptron neural
network trained by back-propagation. The proposed
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technique is efficient and accurate to detect and locate
automatically an inter-turn short circuit fault in the
stator windings of the IM. Seshadrinath et al. [32—33]
developed the minor inter-turn fault detection technique
in the stator winding using complex wavelet transform.
A genetic algorithm is used for feature optimization
and SVM is adopted for classification purposes in which
four conditions: healthy, turn fault, balanced supply
conditions, voltage imbalance, and the inter-turn fault
with voltage imbalance, both occurring at the same time
are considered for classification.

Inrecent years, artificial intelligence-based techniques
are used for monitoring and fault detection. Filippetti
et al. [34] proposed the applications of Al techniques
(expert systems, neural networks, and fuzzy logic) for
rotor fault detection. Nejjari and Benbouzid suggested
and classified healthy, stator fault and voltage unbal-
ance cases in induction motors using the Parks vector
approach and ANN [35]. LF-organizing Kohonen neural
networks are used for detecting stator and bearing faults
[36].

Rama Devi et al. [37] presented the three mod-
ular neural networks, in which wavelet features are
extracted from three-phase currents to classify various
disturbances. The first network is used for classifying
single phasing, supply unbalance, under voltage, stator
inter-turn faults, sudden load change, and phase faults
whereas the second network is used for classifying the
stator winding phase faults, and the third one is used for
identifying the faulty phase and severity level of stator
inter-turn faults. The stator faults are detected using
DWT of transient current in the case of an inverter-
fed induction motor drive [38]. The author claims that
the proposed method provides notable results, reduces
the computational burden, and simplifies the estimation
process remarkably.

Bouzid et al. [39] proposed a method for inter-turn
fault detection based on three-phase shifts between the
line current and the phase voltage. It is achieved by
a feed-forward multi-layer perceptron neural network
(NN) trained by back-propagation. Rodrguez and Arkkio
[40] used the fuzzy logic system for detecting the inter-
turn faults in the stator winding. The layout has been
implemented with both data from a Finite Element
Method (FEM) motor simulation data and real-time data.

The inter-turn short-circuit fault and winding resistive
asymmetrical fault are discriminated for the simulation
model using the rotor-reference-voltage signals inside
the rotor-side-converter control system. DWT is used
to determine the energy of the signal and to propose
the fault severity index [41]. Diagnosis and classi-
fication of the stator winding insulation faults on a
three-phase induction motor are detected using DWT
and classified various practical conditions such as fault,
voltage unbalance, and sudden load changes using a
multilayer neural network in [42]. Yi-Hang Wu et al.
detected the minor inter-turn short circuit fault at the
incipient stage using a metal-coated fiber Bragg grating

sensor in which temperature and magnetic field around
the end winding are acquired and analysis is carried
out in the time-frequency domain and claiming very
good results [43]. Inter turn faults in the SCIM are
detected using the harmonic analysis of stator winding
current, external magnetic field, and electromagnetic
torque. Authors are able to detect the stator faults with
voltage unbalance conditions and the variable loading
environment. Authors claim that stray flux monitoring
is more effective as compared to stator current and
electromagnetic monitoring [44]. A short circuit fault in
the stator winding is detected using Kalman Filter [45].
The residual signals of voltage and current are used for
the analysis purpose. The proposed method is tested
with different power quality issues and claims very good
accuracy with robustness. The authors detected the inter-
turn short circuit fault in VSI fed IM drive by applying the
DWT to the stator current and estimated the L2 norm
statistical feature to classify the fault using SVM [46].
Authors invented the inter-turn fault detection based on
features extracted from the voltage and current signal
i.e. phase shift between these two signals and used as
inputs to train the SVM. The obtained results showed that
the SVM performance is better than the neural network
under the light load condition of the motor [47].

3.2 Review of Rotor Fault Detection

Rotor faults are of significant importance as they
cause secondary failures which lead to serious motor
malfunction. Mehrjou et al. [48] presented the critical
review, summary, and developments of recent research
performed in the area of rotor fault diagnosis. Rotor
faults can be categorized into rotor eccentricity, breakage
of rotor cage bars, breakage of end-rings, and rotor bow.
The rotor is subjected to various stresses that severely
influence the rotor condition and cause subsequent
failures. Bonnett and Soukup [49] studied the various
stresses and their causes in IM. Kliman et al. [50]
developed an instrument for detecting broken or cracked
rotor bars using the MCSA method. The FFT spectrum
of the square of the current is considered and more
relevant information about the rotor fault is obtained
compared to MCSA [51]. Cardoso et al. also suggested
the PVA method for rotor fault detection in which the
relative thickness of the Lissajous pattern is utilized for
deciding the severity of the rotor faults in an induction
motor. The spectral analysis of PVM was obtained from
three-phase currents used for detecting rotor cage faults
in three-phase induction motors [52-54]. Talhaoui et
al. [55] detected rotor fault in the case of sensor-less
vector control induction motor using speed, and current
signals. To prove the effectiveness analysis of DWT for
transient and non-stationary signals, FFT and DWT are
applied to the motor signals. In this, it is observed that
the performance of DWT is quite better as compared to
FFT analysis. Daviuet al[56] suggested a method for
the diagnosis of rotor bar failures in induction machines,
based on the analysis of starting currents using the
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DWT. The faults are detected under practical operating
conditions and compared with the classical FFT method.
The authors also proposed rotor fault detection using the
Hilbert-Huang-based method and studied the advantages
and disadvantages of both methods. Kia et al. [57]
proposed rotor fault detection based on DWT for varying
load conditions. It is shown that applying the proposed
algorithm to the squared instantaneous magnitude and
the squared stator current space vector magnitude of the
stator current can detect the rotor fault without knowing
the value of the slip. However, the single current sensor
technique is preferred since it induces a lower cost than
the space-vector current involving three current sensors
with the problem of balancing them. Tsoumas et al
[58] suggested a method for rotor fault detection under
low-loading conditions. The stator current is filtered
through a complex wavelet to remove the fundamental
supply frequency component so that faulty components
can be easily highlighted. Moreover, the mean absolute
deviation (MAD) of the wavelet transform is extracted
and used as an input to a support vector machine and
Multi-layer Perceptron (MLP) classifier to detect rotor
fault at very low values of slip. Ayhan et al. [59]
investigated a different approach for rotor fault detection
in which multiple signature processing is suggested to
overcome or reduce the effect of any misinterpretation
of the signatures that are obscured by factors such as
measurement noises and different load conditions in the
conventional methods. Two different multiple signature
processing techniques are demonstrated and shown that
the proposed approaches are more efficient and accurate
than a single signature processing.

R. Senthil Kumaret al. presented a method for
the detection of broken rotor bar fault by combining
Artificial Neural Network (ANN) and Hilbert Trans-
form (HT) for three-phase InductionMotor Drives (IMD)
operated under Direct Torque Control (DTC) topology
under steady state [60]. The combination of both
Park’s vector approach and the extended Park’s vector
approach (EPVA) for broken rotor bars (BRBs) fault
detection and identification is presented in [61]. In the
case of a gearbox-based Induction machine, frequencies
induced in the stator current are always overlapped
due to Low-frequency torque (LFT) oscillations and
rotor asymmetry (RA). The authors separated these two
frequency components using the single-phase current in
the stator winding. The method benefits from a novel
pre-processing stage based on several sign functions.
The proposed method maps the static reference frame
obtained through a single stator current and its associ-
ated Hilbert transform to the proposed rotating reference
frame, which can separate the effects of LTOs from RA
effectively [62].

3.3 Review of Bearing Fault Detection

The bearing-related faults cause a percentage of motor
failures in the range of almost 41-50 % [63]. Conse-
quently, it is essential to detect such incipient faults

to avoid loss of revenue and to enhance the life of
the machines. The faults related to bearing originate
from distributed types, such as raceway roughness and
waviness, and then develop into local types, such as
cracks, pits, and spalls. Based on the locality of the
fault, these can be sub-alienated into inner-race, outer-
race, ball broken faults. Most of the traditional methods
developed for fault detection are based on vibration
analysis. These are based on the monitoring of exact
characteristic frequencies for specific bearing faults in
the frequency spectrum of the signal. Tandon et al. [63]
and Patidar et al. [64] reviewed the methods for bearing
fault detection based on vibration and acoustic analysis
using different signal processing techniques. However,
the vibration sensors required for these techniques are
very costly, and access to the motor is also required.
Schoen et al. [65] addressed the detection of bearing
faults using stator current monitoring by correlating the
relationship between vibration and current frequencies.
The obtained signatures fall at locations that are different
from the supply and slot harmonics of the motor with
a relatively small magnitude. With spectral resolution
techniques, current monitoring will be an effective way
for bearing fault detection. Consequently, stator current-
based bearing fault detection has received more and more
attention in research.

A common review of stator current analysis for
bearing fault detection with different signal processing
techniques is presented in [66]. The bearing faults are
mainly classified into single-point defects and general-
ized roughness.

Singh et al. [67] presented the detection of outer race
faults using current monitoring. The technique is based
on the application of CWT to the current signal and com-
pared the results with the FFT technique. Saeidi et al.[68]
used Park’s vector approach for bearing fault detection in
which four-time domain features are extracted from the
PVM signal and classified healthy and inner race faults
using an adaptive neuro-fuzzy inference system. The
results obtained by this method give better performance
compared to the results obtained from a single-phase
current. Zarei and Poshtan [69] implemented an FFT
analysis of the PVM signal of currents for bearing fault
detection. The obtained results compared with the MCSA
and concluded that the proposed method is reliable for
detecting bearing faults in the induction motor. The
Concordia approach along with fuzzy logic is applied to
the detection of stator faults in variable load applications
[70]. Delgado et al. [71] identified the bearing faults
using the statistical time features of vibration signal and
curvilinear component analysis. The hierarchical neural
network is used for classifying the various bearing faults
under operating conditions.

The localized bearing faults such as inner race and
outer race faults are detected using stator current and
vibration envelope analysis based on squared envelope
spectrum analysis in the induction motor. The authors
claim that the method based on the analysis of squared
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envelope spectrum current is superior in comparison
with any existing stator current or vibration monitor-
ing techniques [72]. Picot et al. addressed bearing
fault detection with a statistical parameter of particular
frequency bins in high-speed permanent magnet syn-
chronous machines. The method is also compared with
the vibration method and obtained satisfactory results
[73]. The bearing faults are detected using the non-
Gaussian model in which a combination of kurtogram
and alpha-stable model is proposed [74]. Frosini et
al. [75] calculated the statistical parameters of the
stray flux signals. These signals are acquired using
a special flux probe and placed at multiple locations
around the motor for detecting localized bearing faults
in the induction motor. Zhu et al. [76] proposed the
hybrid of null space pursuit and S transform for detecting
various bearing faults in an induction motor. Maruthi
and Hegde investigated the multiple bearing faults us-
ing vibration analysis using micro-electro-mechanical-
systems (MEMS) accelerometers under various operating
conditions [77]. Zarei et al. designed removing non-
bearing fault component (RNFC) filter for detecting
bearing faults using a neural network. It is shown
that satisfactory results are achieved when the filtered
component of the vibration signal is used for fault
classification instead of the use of the original vibration
signal [78].

Soft computing approaches have also been employed
to enhance the accuracy of bearing fault detection.
Li et al. [79] proposed bearing fault detection and
classification based on the mixed features of the vibration
signal and the neural network. Four different faults
include; looseness, inner race, outer race, and defect
in the rolling element are considered for fault analysis.
Zarei [80] suggested that only time domain features
are sufficient for bearing fault classification which not
only leads to a lower computational burden but also
results in more accurate fault diagnosis. Samanta et
al. presented pre-processing techniques like high-pass,
band-pass filtration, envelope detection (demodulation),
and wavelet transform of the vibration signals, before
feature extraction [81].

Many methods are proposed using support vector
machines and neural-based techniques for bearing fault
detection. Soualhi et al.[82] combined the Hilbert Huang
transform (HHT), the SVM, and the SVR to detect faults in
ball bearings. The SVR is used to estimate the remaining
life of the bearings. Samanta et al. [83] presented a
comparative performance of ANN and SVM for bearing
fault detection. The dominant features of the vibration
signal are extracted using a genetic algorithm. The
performance of SVM is better than ANN with the entire
feature set. Patel and Giri [84] explore the development
of a random forest (RF) algorithm for bearing fault
detection. The statistical features of the vibration signal
are extracted and fed to RF and ANN classifiers. The
performance of the RF classifier is observed to be superior
to ANN. Kimothi et al.[85] studied the effectiveness of a

random forest classifier for detecting faults in the helical
gearbox. The genetic algorithm is used to extract the
features from the vibration signal and the J48 decision
tree is used for proper feature selection. An extensive
investigation is done on an RF classifier that produces
better performance for fault detection than any other
classifier. An intelligent passive thermography-based
technique is proposed for detecting bearing faults using
Convolutional Neural Network (CNN) with Transfer
Learning (TL) under varying working conditions. The
proposed method enables and speeds up the training
process of CNN towards accurate adaptation for fault
diagnosis approach in the escalated time frame [86]. The
work presented in [87] is about the detection of faults
in the outer bearing’s raceway with three different fault
severities using motor dynamic strain signals collected
from sensors based on Fiber Bragg grating. The tests
were carried out on the motor operating under no-load
conditions, with 47 different power supply frequencies.
The occurrence of fault judged is by two features namely
the four highest peaks in the frequency spectrum and the
principal component analysis method whereas severity
is evaluated using SVM. Thermal imaging-based fault
detection is used to detect the various faults in bearing
under different loading conditions [88].

3.4 Review of Mixed or Joint Fault Detection

It has been observed that most of the research work
carried out by the researchers is to detect an individual
fault in the motor. However, the simultaneous presence
of two or more faults is a very common scenario in
an industrial environment. Thomson and Fenger [89]
developed an instrument based on the MCSA method
for detecting stator and rotor faults. Antonino-Daviu et
al. suggested the application of the DWT to the starting
current of the induction motor for detecting rotor,
eccentricity, and stator faults. The various combinations
of mixed faults are also detected using currents in parallel
branches of the stator winding [90]. The rotor and stator
faults are detected using short-time Fourier transform
(STFT)and WT [91]. A comparison between STFT and
WT is carried out and features extracted from WT are
used for further analysis. The energy in the detail
coefficient is used to detect and distinguish the type
of fault in the variable and constant load applications.
Martins et al. [92] implemented a pattern recognition-
based system for the continuous monitoring of induction
motors. The method is based on the image identification
of the three-dimensional current state space patterns
that allow the identification of distinct types of faults
as well as their fault severity. The analysis of instan-
taneous active power, reactive power, power factor,
and phase angle have been suggested for detecting and
discriminating broken rotor bars and air-gap eccentricity
conditions from mechanical load oscillation effects in
operating three-phase squirrel cage induction motors
[93]. Toliyat and Lipo [94] developed a generalized
mathematical model for multi—phase cage induction
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motors with various faults. The modeling is based on
winding functions and makes no assumptions; therefore
the derived model includes all the space harmonics in
the machine. The equations describing the performance
of multi—phase induction machines during the transient
as well as steady-state behavior including the effects of
stator asymmetry, broken rotor bars, and broken end
rings have been derived. Ghate and Dadul [95] have
developed the radial basis function multilayer perceptron
cascade connection NN-based fault-detection scheme for
the small and medium sizes of three-phase induction
motors. Simple statistical features of stator current
are extracted and optimized using principal component
analysis. The algorithm is tested with uniform and
Gaussian noises for detecting stator fault, rotor ec-
centricity fault, and combined fault. The generalized
feed—forward network and support vector machine-
based classifier is developed for detecting various faults
in the induction machine [96—97]. Cunha Palacios et al.
[98] evaluated the performance of classification methods
for fault identification in IM. The classifiers namely:
Naive Bayes, k-Nearest-neighbor, SVM, ANN, and C4.5
Decision Tree are discussed for stator, rotor, and bear-
ing fault detection under various operating conditions.
The adaptive neural fuzzy inference system (ANFIS) is
proposed for the detection of stator and bearing faults
[99]. The positive features of neural networks and fuzzy
logic are combined for detection. The algorithm is tested
with two and five measurable parameters of the motor
and shows that five inputs predict more accurate results
than two parameters. Vilhekar et al. [100] proposed
the detection of multiple faults using multiple Park’s
vector approach. In this technique, the characteristic
fault frequency component of stator winding faults, the
rotor winding faults, unbalanced voltage, and bearing
faults are extracted from three-phase stator currents. By
monitoring the variation in multiple Park vector patterns,
the type of fault and its severity level is identified. Sonje
et al. proposed to detect and classify different faults in IM
under practical operating conditions and claimed that the
random forest classifier is providing satisfactory results
compared to any other classifiers [101-102].

Several authors investigated and distinguished the
different faults in three-phase induction motors at the
incipient level. Motor speed and load current spectra
are used as features to classify bearing faults, broken
rotor bar faults, and short-circuit insulation faults. In
[103], the author claims that the minor fault of one turn
short can be judged at the very initial stage. Different
faults in the SCIM are investigated by the authors in
[104]. The analysis is based on statistical data in
which signal homogeneity and Kurtosis is estimated
using starting transient current. Fault classification is
performed using ANN. A comparison is also shown
with the earlier publications and it is claimed that the
proposed method is far better. The authors proposed
a fault detection technique for multiple fault detection
using the dilated convolutional neural network-based

model. In this research work, real-time vibration data
is transformed into image form and processed using
a convolutional neural network to detect and classify
rotor and bearing faults with different severities and
claimed very good accuracy [105]. Inter turn short
circuit faults and broken rotor bars are investigated in
[106] using a modified FFT method in which motor
current normalized residual harmonic signal is used for
analysis. Authors are claiming that not necessary to
conduct a wide spectral sweep to search each time for
different faults like motor current signature analysis that
have variable characteristic frequencies depending on
the type of fault. The authors suggested the use of
DWT analysis of current for the detection of various
faults in SCIM. The stator current is decomposed into
various levels, extracted statistical features, and classified
various fault cases using ANN. The authors obtained very
good accuracy with the proposed method with the tanh
function [107].

4. DISCUSSION, LIMITATION, AND
FUTURE SCOPE

It is observed that a large number of techniques are
suggested to detect and classify the various faults in
TPIM. Moreover, the decision of choosing the proper
method is a very difficult task for detecting and classi-
fying the fault due to uncertain conditions that occurred
in the motor during its operation. ~Conventionally,
frequency analysis, time-domain analysis, and their
combination are used for analyzing raw data. In time
domain analysis, statistical measures like mean, standard
deviation (SD), kurtosis factor and skewness, etc. are
estimated. In frequency domain analysis, the time
domain signal is converted into the frequency domain
and features are extracted for analysis. To extract more
information from the raw data, other methods like WT,
CWT, DWT, WPT, STFT, HHT, etc. are used.

A detailed comparison of techniques discussed through-
out the study is carried out in Table 1. The comparison
covering the number of sensors required, signal to be
acquired, and type of fault with advantages and draw-
backs of the respective method is elaborated in Table 1.
DWT-based fault detection is more effective to detect all
types of faults under any abnormal operating condition.
This method is very sensitive to small variations in the
magnitude of current and is also applicable in abrupt
conditions, transient situations of currents, and sudden
load variation scenarios. The only disadvantage of
this method is that it requires expertise to judge the
type of fault and fault severity. PVA is a very simple
graphical technique to identify the various faults under
the balanced condition of the supply system. In PVA, it
is essential to know the geometry of the stator winding,
and also three phase supply should be balanced to get
accurate results. In the industrial scenario, MCSA is
a very powerful and low-cost solution to detect and
identify all types of faults only under constant loading
applications. The advantage of the MCSA technique
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is that no additional sensors are required to acquire
the data. This is because the basic electrical quantities
associated with electromechanical plants such as cur-
rents and voltages are readily measured by tapping into
the existing voltage and current transformers that are
always installed as part of the protection system. As a
result, current monitoring is non-intrusive and may even
be implemented in the motor control center remotely
from the motors being monitored. But this method
is not giving satisfactory results in the variable load
applications, abnormal conditions of supply, and abrupt
load variations because in all these conditions, the speed
of the motor changes which directly affects the slip of the
motor. In another approach, TPIM faults can be detected
successfully with the statistical parameter obtained from
the current and vibration signals. These techniques are
very costly due to costlier vibration sensors. Another
disadvantage of vibration monitoring is that it requires
access to the machine to place the vibration sensor
on the motor. For accurate measurements, sensors
should be mounted tightly on the electric machines,
and expertise is required in the mounting. However,
high product costs can be incurred just by employing
the necessary vibration sensors for a sensitive electric
machine. The current monitoring technique is also
attractive due to one more reason there is no physical
contact between the current sensor and motor-driven
equipment with the operator which enhances the safety
of human beings. Further, with the availability of modern
tools and advancement in signal processing techniques,
the combination of traditional and modern approaches
provides an efficient technique for fault detection in the
TPIM in the near future.

Nowadays, artificial intelligence and machine learn-
ing are becoming mature in every field. The application
of amachine learning algorithm for condition monitoring
of TPIMs requires signal processing of raw data. The
implementation of AI techniques in the real world
requires feature extraction and selection using some
feature extraction algorithms. The main parts of fault
detection have four components, namely: (a) Identifying
fault location; (b) Determining faulty parts; (c) learning
incipient failure and their causes; (d) predicting the
pattern of faults. Fault detection can be treated as a
classification problem and pattern recognition problem
too. Fault detection in IMs is divided into multiple stages
data acquisition, data processing, feature extraction, and
implementation of machine learning (ML) algorithms
for fault recognition. Most Al-based fault detection
system requires features for developing the input vector
for the ML algorithms. The data can be pre-processed
by various feature extraction algorithms like Genetic
algorithm (GA), WT, Particle swarm optimization (PSO),
etc. to extract input features. Sometimes, principal
component analysis (PCA), and linear discriminant anal-
ysis are used to reduce the high dimensional vector
to a low dimensional vector for easier analysis and to
reduce the computational burden. Features can also

be estimated using simple statistical learning methods.
These feature vectors are used as input vectors for
developing an Al-enabled fault identification system.
For developing Al-based systems, ML algorithms like
k-Nearest Neighbor (k-NN), Artificial Neural Networks,
Support Vector Machines (SVM), Decision trees, Bayesian
Classifier, random forests, and deep learning techniques
have been efficiently used. A decision tree represents a
tree-like structure. Decision trees are often used for fault
classification properties. A higher version of decision
trees, i.e. random forests can be used as it is immune
to external noises and easier to interpret. It is observed
that the random forest provides very good accuracy in
classifying the various faults in TPIM as compared to any
other algorithm.

Future Scope and Challenges

Some of the future scope and possibilities are enlisted
below:

o Feature Extraction: Extracting relevant and informa-
tive features from motor signals is crucial for fault
detection and classification. Developing efficient fea-
ture extraction techniques that capture the distinctive
characteristics of different faults is a challenge.

¢ Noise and Interference: Motor signals are often con-
taminated with noise and interference, which can af-
fect the accuracy of fault detection algorithms. Finding
robust methods to mitigate the impact of noise and
interference is a research challenge.

Fault Severity Assessment: Determining the severity
of a detected fault is important for timely maintenance
and decision-making. Developing accurate fault severity
assessment methods that provide reliable information
about the extent of the fault is a challenge.

Multiple Faults: In real-world scenarios, motors may
experience multiple simultaneous or sequential faults.
Developing techniques that can effectively detect and
classify multiple faults is a challenge, as the presence of
one fault can obscure the detection of other faults.

Unbalanced Operating Conditions: Induction mo-
tors often operate under unbalanced conditions due
to unequal loads or supply voltages. Fault detection
algorithms should be robust to handle such unbalanced
operating conditions and accurately identify faults.

Generalization and Adaptation: Fault detection and
classification algorithms should be capable of gener-
alizing to different motor types, sizes, and operating
conditions. Developing algorithms that can adapt to
varying motor characteristics and different fault patterns
is a challenge.

Labeling and Training Data: Obtaining labeled train-
ing data for fault detection and classification can be
challenging and time-consuming. Creating accurate and
representative datasets that cover a wide range of fault
scenarios is crucial for developing robust algorithms.

Real-Time Implementation: Implementing fault detec-
tion and classification algorithms in real-time systems
with limited computational resources is a challenge.
Developing efficient algorithms that can provide accurate
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Table 1: Comparison of techniques applied for the detection of motor faults.

Technique Parameers o be Faults Detected Advantages Drawbacks
measured
. Low-cost solution Not possible to detect the fault in variable
Stator inter-turn fault load applications.
MCSA Only one stator phase Effective under constant speed
current Broken rotor bar fault And constant load applications Not suitable for non-stationary signals.
. - i Not effective fi d
Stator inter-turn fault Low-cost solution ot ettective forunder .
. . Unbalanced supply condition
Effective under balanced supply conditions
All three phase currents | Broken rotor bar fault )
PVA Cannot be used in load
. Useful at a constant speed and constant load . Lo
Mixed faults L Varying applications
applications.
Effective under balanced and unbalanced supply
conditions.
All three phase currents | All types of faults Can be used in sudden change load applications Require expertise
DWT
Can be used in variable load applications
Stator inter-turn fault
L Three phase currents Rotor broken bar fault . .
Statistical - Can be used to detect the fault in practical More sensors are required
Method Vibrati iomal Mixed fault operating conditions q
tbration signals Multiple bearing fault

results in real time is an ongoing research focus.

Fault Diagnosis Interpretability: Interpreting the re-
sults of fault detection and classification algorithms is
important for maintenance personnel to understand the
underlying issues. Developing interpretable models and
visualization techniques to aid in fault diagnosis is a
research challenge.

Online Monitoring and Fault Prediction: Developing
techniques for online monitoring and predicting im-
pending faults in induction motors can enable proactive
maintenance and reduce downtime. Designing predictive
models that can anticipate faults before they occur is an
area of active research.

Addressing these research challenges can lead to the
development of more accurate, reliable, and efficient
fault detection and classification methods for three-phase
induction motors, improving their overall reliability and
performance.

5. CONCLUSION

This paper has presented a detailed review of fault
detection in TPIM. Indeed, the scope of this area is
not limited to some important publications from the
old around the year 1995 to till date are considered for
the study. In the initial part of the paper, different
types of faults such as stator faults, rotor faults, bearing
faults, and joint or mixed faults with their causes are
discussed in detail. The review and comments for each
paper on stator fault, rotor fault, bearing fault, and joint
fault are separately presented in the subsection. In each
subsection, due attention is given to Al techniques for
fault detection and identified some algorithms such as
Random Forest, and Convolution Neural Network (CNN)
as effective and accurate tools for fault and fault severity
classification. These sections will be very informative
and useful for beginners who wish to start research in

the fault detection and classification of TPIM. As every
technique is having its pros and cons, an attempt has been
made to compare a few popular methods such as DWT-
based, MCSA, PVA, and statistical-based methods on the
common platform with their advantages and drawbacks.
The paper concluded with some brief remarks and also
suggested some areas for further studies. It is sure that
this review will be fruitful for the new researcher and
will get some specific direction for further research in the
domain of fault detection and classification for TPIM.
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