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ABSTRACT

This paper presents hourly net load forecasting, which
is the forecasting of the difference between the hourly
power demand and the hourly power profile of the
Photovoltaic (PV) system, which is the load that the
utility should supply to the consumer. Three forecasting
models are compared. The first model represents Long
Short-Term Memory (LSTM), which is based on a deep
learning model. The second model is the Fully Online
Sequential Extreme LearningMachine (FOS-ELM), which
is an incremental learning model that does not require
initial training data. Online Sequential Extreme Learning
Machine (OS-ELM) is the third model that can be learned
incrementally like FOS-ELM. In addition, a method for
the initial training of the OS-ELM model was proposed
by taking the first sample from the studies to synthesize a
sufficient number of samples for the initial training of the
OS-ELM model. It was found from the experiment that
in the case of fixed PV penetration rate, the LSTM model
had slightly lower of error in forecasting than the other
two models. In the case of increasing PV penetration
rate, the FOS-ELM, and OS-ELMmodels had significantly
lower errors in forecasting than the LSTM model. When
comparing only the OS-ELM model using the proposed
method with the FOS-ELM model, it was found that the
OS-ELM model gave lower errors in forecasting than the
FOS-ELM model because it was initially trained by the
synthetic sample properly.

Keywords: Net Load Forecasting, Incremental Learning,
Online Sequential Extreme Learning Machine, Data
Augmentation

1. INTRODUCTION
In the past decade, the world has paid great attention

to the climate change problem and one of the most
popular solutions is to use electricity generated from
photovoltaic (PV) systems. Global PV increased from
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Fig. 1: Load profile with PV penetration.

584 GW in the year 2019 to 843 GW in the year 2022
[1] or a 44% increase over three years. The increase
in PV systems, especially those with high penetration
rates, will cause instability problems in the power system
[2]. The high penetration rate of PV results in changing
of the load profile as shown in Fig.1. The changing of
the load profile from the utility point of view causes
errors in the conventional load forecastingmethod. Error
in load forecasting can cause some mistakes in power
system planning and operation that can affect power
system reliability [3]. From Fig. 1, the PV power supplies
the load for some periods while the rest of the load is
supplied by the utility called net load profile or “net-load”.
To reduce the impact of PV penetration on the power
system, one popular approach is PV power forecasting
[4]. PV power forecasting is used in conjunction with
load forecasting as net load forecasting. There are two
main approaches for net load forecasting [5]: The first
approach is separate forecasting, which uses 2 models
separately for PV power forecast and load forecast and
calculates the net load as different between load and
PV power. The second approach is direct forecasting,
which uses only 1 model to forecast net load directly.
Subsequently, research has shown that direct net load
forecasting is more accurate than separate forecasting
[6].

There is some net load forecasting article presented,
for example in [7], which compares net load forecasting
with 7 machine learning models: Artificial Neural Net-
work (RNN), Extreme Gradient Boosting (XGBoost), k-
Nearest Neighbors (KNN), RandomForest (RF), Recurrent
Neural Network (RNN), Support Vector Regression (SVR)
and Naïve Persistence Models (NPM). The experimen-
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Fig. 2: Concept of incremental learning model.

tal results show that the RF model has the highest
forecasting accuracy due to the ensemble structure and
the second most accurate model is the RNN model,
which works well with sequential data. There are also
articles using deep learning models for load forecasting,
including Long Short-TermMemory (LTSM) [8] and Gate
Recurrent Unit (GRU) [9], which are models that can
work with time series data better than ordinary machine
learning models. All of the aforementioned models must
use historical data to train the model. If there are
changes in the electrical system, such as the increase
of PV systems and electric vehicle chargers, which
cause electricity consumption patterns to differ from the
historical data used in model training, some errors will
occur in forecasting. As in [10], the net load forecasting
is presented by using the Adaptive Neuro Fuzzy Inference
System (ANFIS) model and comparing the forecasting
error when the PV system penetration ratio is increased.
It was found that the error in forecasting is higher when
the penetration rate is changed, but the article does not
present some solution.

To address this problem, the researchers proposed an
incremental learning model, a model that can learn from
the newly received data and adjust itself during opera-
tion, as shown in Fig. 2. Examples of incremental models
such as Incremental Support Vector Machine (ISVM)
[11], Online Random Forecast (ORF) [12], Incremental
Learning Vector Quantization (ILVQ) [13], Learn++ [14],
Stochastic Gradient Descent (SGD) [15], and Online
Sequential Extreme Learning Machine (OS-ELM) [16].
This research focuses on the OS-ELM model, because it
has a low computational effort, then it can be used on a
low-resource device such as microcontrollers in ordinary
smart meters.

The OS-ELM model is a single hidden layer feed-
forward neural network that does not use iterative meth-
ods like gradient descent to adjust model parameters.
This allows the OS-ELM model for fast learning, low
computational cost, and high accuracy for uncomplicated
tasks [17]. In reference [18], researchers use OS-ELM
to forecasts PV power compared to ELM which uses
empirical mode decomposition (EMD) acting as feature
extraction. The result shows that the OS-ELM has higher
accuracy than the ELM with EDM. In reference [19], the
researchers present load forecasting by using k-MEAN

clustering to group load profiles and use each OS-ELM
to forecasting each group of load profiles. The result
shows that the grouping of data before sending it to
each OS-ELM to perform is better than using OS-ELM
alone. However, the OS-ELM has one disadvantage, a
sufficient amount of sample data is required for initial
training [20], whichmakes the OS-ELMunusable in some
tasks if historical electricity usage or PV power data is
not collected. To address this problem, researchers have
proposed a Fully Online Sequential Extreme Learning
Machine (FOS-ELM) model that does not require an
initial training sample [20]. But the FOS-ELM has a
high error at the beginning period of forecasting because
it uses an initial sample with zero value. This paper
presents another approach to implementing the OS-ELM
model without using an initial training sample inspired
by the data augmentation method [21] and compared it
with FOS-ELM and LSTM in net load forecasting tasks
with varying penetration rates of PV.

The main contributions of this paper are: 1) presents
a method to use the OS-ELM model without the initial
training sample, 2) Comparison of net load forecast-
ing (directed approach) accuracy between the proposed
methods and the FOS-ELM and LSTM models in various
PV penetration rate conditions.

2. RELATEDWORKS
2.1 Incremental Learning Algorithms

The incremental learning algorithm is a method that
allows a model to adjust parameters based on newly
received sample data without discarding what has been
learned from the past sample data. The following
incremental learning algorithms are frequently discussed
in numerous research studies:
• Online Random Forest (ORF) [12] is a Random Forecast

algorithm when the input data differs from the previ-
ously learned past data. The ’trees’ of the model will be
increased to work with this data. Thus, ORF can work
with changing data without forgetting the past data.

• Stochastic Gradient Descent (SGD) [15] is an algorithm
in which the model parameters are changed iteratively
to maximize an objective function. SGD is incremental
learning because the model can adjust the parameters
every time it receives new sample data to learn.

• Learn++ [14] utilizes the ensemblemodel approach like
Ada-boost [22]. It is made up of sub-models developed
through learning from past data. It is more likely that
the past data where the model underperformed will be
used to train the sub-model. As a result, it is claimed
that the model can adapt to changing input data.

• Incremental Support Vector Machine (ISVM) [11] is
like a Support Vector Machine (SVM), but some in-
coming data are recorded and called the Candidate
Vector. Depending on the discrepancy between the
newly received data and the current Support Vector,
the Candidate Vector may be promoted to Support
Vector.

• Incremental Learning Vector Quantization (ILVQ) [13]
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Fig. 3: Structure of OS-ELM.

is an incremental version of Learning VectorQuantiza-
tion (LVQ) that applied the Prototyped-based learning
concept [23]. A new prototype will be created if there
are significant discrepancies between the received data
and the previously learned data. This enables the
model to operate on newly received datawithout losing
track of learned data.

• Online Sequential Extreme Learning Machine (OS-
ELM) [16] is an incremental version of Extreme
Learning Machine (ELM) [24] It has a very high
learning speed and a low cost of computing suitable for
implementation in edge devices. The details of OS-LEM
will be discussed in the next section.

2.2 Online Sequential Extreme Learning Machine
(OS-ELM)

OS-ELM is an incremental learning algorithm, which
was proposed by N.Y. Liang [16]. It is an incremental
learning version of the Extreme Learning Machine [24].
It is applied to a single hidden layer feed-forward neural
network as shown in Fig. 3.

The input layer weights and biases are randomly
generated and don’t change over time. The output
weights are directly calculated not using an iterative
approach as the gradient descent with 2 steps as follows:

1) Initial training phase: For a model with 𝐿 nodes in
a hidden layer and some 𝑁 training samples (𝑥𝑗 , 𝑦𝑗), The
connection between a and b is explained as follows:

𝐲𝑗 = ∑
𝐿
𝑖=1 𝜷𝑖𝑔(𝐚𝑖𝐱𝑗 + 𝐛𝑖), 𝑗 = 1, 2, 3, ..., 𝑁 (1)

where 𝑔(...)∶ ℝ → ℝ is the hidden layer activation
function 𝜷 is the hidden layer weights 𝐚 and 𝐛 is the input
layer weights and bias respectively. Eq. (1) can bewritten
more simply as follows:

𝐘 = 𝐇𝜷 (2)

where

𝐇 =
⎡⎢⎢⎣
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The purpose of the initial training phase is to deter-
mine the value of 𝛽 by using Eq. (3), where the 𝑥 and 𝑦
values are known from the initial training sample.

𝜷 = 𝐊−1𝐇𝐓𝐘 where 𝐊 = 𝐇𝐓𝐇 (3)

When the initial training samples are tiny in size or
have low dimensions, the gradient descent approach will
take longer to determine the value than the normal Eq.
(4) [25]. Despite the input layer using random weights
and bias values, numerous studies have shown that this
learning algorithm can perform as well but faster than
other learning algorithms [26-27].

When 𝐇𝑇𝐇 is not invertible, this algorithm will
encounter the numerical instability issue. There are at
least two methods to solving this problem, the first is to
invert the 𝐇𝑇𝐇 using the Singular Value Decomposition
(SVD) method [28]. The second method is adding a
regularization factor 𝜆 to the 𝐇𝑇𝐇 before inversion, as
shown in Eq. (4) [29].

𝐊 = 𝐇𝐓𝐇 + 𝝀𝐈 (4)

where 𝜆 is a very small value called the regularization
factor and 𝐈 the identity matrix.

2) Incremental learning phase: the purpose of this
phase is to adjust the 𝜷 value according to the newly
received sample without forgetting the past learned
sample. The recursive concept is applied to Eqs. (3)
and (4). In the initial phase, the OS-ELM calculates the
𝜷0 = 𝐊−1

0 𝐇𝐓
0𝐘0 where 𝐊0 = 𝐇𝐓

0𝐇0 which subscript 0
means round 0 of learning or the initial training. When
new sample(s) data has arrived causing the value of the
matrix 𝐇 and 𝐘 change, the OS-ELM adjusts the 𝜷 as
follows:

𝜷𝑘+1 = 𝜷𝑘 + 𝐊−1
𝐤+1𝐇

𝐓
𝐤+1(𝐘𝐤+1 − 𝐇𝐤+1𝜷𝐤), (5)

where 𝐊𝑘+1 = 𝐊𝑘 + 𝐇𝐓
𝐤+1𝐇𝐤+1.

The updated 𝜷 values can be calculated by Eq. (5),
where it is observed that the updated 𝜷 values are a
function of the previous 𝜷 values, whichmeans themodel
can learn and adjust its parameters from a newly received
sample without forgetting the past learned sample. The
subscription term 𝑘 means sample in 𝑘𝑡ℎ order and the
subscription term 𝑘 + 1 means sample in (𝑘 + 1)𝑡ℎ order.
Where 𝑘 = 0 means the value from the initial training
phase.

2.3 Fully Online Sequential Extreme Learning Ma-
chine (FOS-ELM)

The application of OS-ELM is constrained in some
situations where initial sample data cannot be obtained,
such as load forecasting in brand-new structures or
regions that have never gathered electricity usage data.
To solve this problem, FOS-ELM was introduced in
reference [20] by setting 𝜷0 = 0 and 𝐊0 = 0, in other
words, it is initial training by a sample that is equal to
zero.
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Fig. 4: Flowchart of the proposed method.

3. PROPOSED METHOD

Using OS-ELM without the initial training samples
proposed here was inspired by data augmentation in the
deep learning field [21]. This method starts by receiving
the first sample from actual use (input and output to be
predicted) and synthesizing additional samples by adding
noise to received samples as shown in Fig. 4.
The flowchart in Fig.4 can be described as follow:

1) Receiving a sample from an actual working area and
setting the dimensions of the desired synthetic samples.
In this case, the dimension is set to 25 (24 input and one
target value).

2) Setting the number of synthetic samples required
for initial training of the OS-ELM model. In this case, 50
samples are required, which equals the number of nodes
in the hidden layer of the OS-ELM model.

3) Randomizing a number between 0 and 1 using the
uniform probability density function so that all numbers
have an equal likelihood to occur.

4) Creating a new sample data by adding a random
value obtained from step 3 to the sample data obtained
from step 1. Before adding, such random values must be
adjusted to not exceed 10% of the sample data. So that
the new sample data is not too different from the original

Fig. 5: Example of actual and synthetic samples.

until the model predicts values incorrectly.
5) Repeating steps 3 and 4 until all dimensions of all

synthetic samples are obtained.
6) Splitting the samples obtained from step 5 into input

and target for initial training of the OS-ELM model.
Fig. 5 shows some parts of the synthesized sample, it

is found that the synthesized samples are different from
the real sample but have the same pattern.

4. METHODOLOGY

The experiment in this article compares the net
load forecasting of the OS-ELM model which does not
require data in the initial training method presented in
the previous topic with the FOS-ELM, which does not
require the initial training sample, and the LSTM model,
a deep learning model without incremental learning.
In this experiment, the dataset used is described in
“Solar Generation and Demand Italy 2015-2016” [30],
which presents the hourly electricity consumption and
generation of PV systems in Italy in the period 2015-2016.
The three models mentioned above were used to forecast
the net hourly load for 2016. Data from 2015 was used
to train the LSTM model, while OS-ELM and FOS-ELM
were trained from 2016 data. In addition, this article also
divides the experiment into 3 scenarios:

1) baseline penetration, in which the penetration rate
is constant at about 20% based on the dataset,

2) low growth penetration, in which the penetration
rate increases from the dataset by 5% every quarter from
the 2𝑛𝑑 quarter, and

3) high growth penetration is the scenario where the
penetration rate increases from the data set by 10% every
quarter from the 2𝑛𝑑 quarter. The penetration rate is
defined as in Eq. (6). In scenarios 2 and 3, we modified
the PV power output in the 2016 dataset according to
the penetration rate described above. The experimental
methods and datasets used are summarized in Table 1.
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Table 1: Dataset used in each scenario.

Scenario
/Model

LSTM FOS-ELM
OS-ELM with
the proposed
method

Baseline
penetration
(Original
dataset)

Train by the 2015 and
test on the 2016 dataset

Test on the 2016 dataset

Low growth
penetration

Train by the 2015 and
test on the 2016 dataset
with some modification

Test on the 2016 dataset
with some modification

High growth
penetration

Fig. 6: Dataset provided as input and target samples.

𝑃 𝑒𝑛𝑒𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 = 𝑃 𝑒𝑎𝑘 𝑃 𝑉 𝑃 𝑜𝑤𝑒𝑟 (𝑘𝑊 )
𝑃 𝑒𝑎𝑘 𝐿𝑜𝑎𝑑 (𝑘𝑊 ) (6)

To forecast the hourly net load, the hourly net loads of
the last 24 hours were used as input. Therefore, the data
in the dataset is provided as input and target samples for
training the model. The target value in each sample will
be the net load of 1 hour and the input value for each
sample will be the hourly net load 24 hours before the
target value as shown in Fig. 6.

The structure of the OS-ELM and FOS-ELM in this
experiment are ensemble models consisting of sub-
models with 24 nodes for the input layer and 1 node for
the output layer. For the number of nodes in the hidden
layer, 10, 20, 50, and 100 nodes were tested, and 10, 20, 50,
and 100 sub-models were tested in the ensemble model.
Therefore, a sub-model with 50 nodes in the hidden layer
and 10 sub-models in the ensemble model was selected as
Fig. 7, which is a compact structure with high accuracy.
The OS-ELM and FOS-ELM models were implemented in
Python language and run on the Spyder IDE. The LSTM
model has been implemented in the TensorFlow platform
by experimenting with the number of units 1, 5, 10, 50,
and 100. The output from the LSTM passes through the 1
node in Dense Layer. The number of units was set at 50,

Fig. 7: Ensemble of OS-ELM/ FOS-ELM in this experiment.

Fig. 8: LSTM in this experiment.

which is a very accurate structure (see Fig. 8).

5. RESULT AND DISCUSSION
The experiments described in the previous section

were performed using the Mean Absolute Percentage
Error (MAPE) as the performance index of each model
for net load forecasting. The MAPE can be calculated by
Eq. (7). The MAPE was measured for the whole year
and quarterly in the dataset to observe the trend of the
model incrementally learning and adapting itself to lower
MAPE values.

𝑀𝐴𝑃 𝐸 = 1
𝑛 ∑

𝑛
𝑖=1

|𝐴𝑖 − 𝐹𝑖|
𝐴𝑖

(7)

where 𝐴𝑖 is the actual value, 𝐹𝑖 the forecast value, and 𝑛
the total amount of data.

Fig. 9 shows the MAPE values of the net load
forecasting in a constant penetration rate scenario. It
can be seen that the MAPE of the LSTM model is nearly
equal across all quarters because the model was trained
from the last whole year’s samples. The FOS-ELM model
has a high MAPE in the 1𝑠𝑡 quarter because the model
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Fig. 9: Result of baseline scenario.

Fig. 10: Result of low growth penetration scenario.

works without samples for initial training causing overfit
problem. In the 2𝑛𝑑 to 4𝑡ℎ quarter, the FOS-ELM model
has a lower MAPE than the LSTM model due to the
ability of incremental learning from the newly receive
samples that are closer to the real situation than the
training samples in the LSTM model. When considering
the whole year, FOS-ELM still has a higher MAPE than
LSTM due to the high MAPE in 1𝑠𝑡 quarter. The OS-ELM
model with the initial training method as proposed has
MAPE similar to the FOS-ELM model i.e., high in the 1𝑠𝑡

quarter and decreasing until lower than the LSTM model
in the 2𝑛𝑑 to 4𝑡ℎ quarters, but MAPE for the whole year
is still higher than the LSTM model. However, when
comparing the FOS-ELM model and the OS-ELM model,
it found that the MAPE value of the OS-ELM model is
lower than the FOS-ELM model in every quarter. This
is because the OS-ELM model used a sufficient number
of synthetic samples for the initial training which can
reduce the overfit problems.

Fig. 10 shows the MAPE values of the net load
forecast in the low growth penetration scenario where
the penetration rate increases by 5% every quarter
(starting from the 2𝑛𝑑 quarter). It can be seen that the
LSTMmodel has significantly increased the MAPE in the
3𝑟𝑑 to 4𝑡ℎ quarter when the penetration rate increases
by 10-15%. In other words, If the data changes by 10%
or more, the LSTM model is highly inaccurate. This is

Fig. 11: Result of high growth penetration scenario.

because the training samples are different from the actual
data that the model has to forecast. The FOS-ELM model
has a high MAPE in the 1𝑠𝑡 quarter due to insufficient
training samples. But in the 2𝑛𝑑 to 4𝑡ℎ quarters, the
MAPE value will drop to significantly less than the
LSTM model because the FOS-ELM model can adapt to
situations where the environment changes. The OS-ELM
model using the proposed initial training method has
MAPE significantly lower than the LSTM model in the
2𝑛𝑑 to 4𝑡ℎ quarter, similar to the FOS-ELM model. By
comparing to the FOS-ELM model, the OS-ELM model
has lower MAPE values in every quarter because the
initial training by enough synthetic samples allows the
model to adapt faster and reduce overfit issues. In
addition, from Fig. 10, it can be noticed that the MAPE of
FOS-ELM and OS-ELM in the 3𝑟𝑑 quarter is higher than
in the 2𝑛𝑑 quarter due to the summer season when PV
systems have higher power output. This resulted in a
greater change in net load, causing the model to have
a high MAPE before adjusting to a lower MAPE in the
following quarter.

Fig. 11 shows the MAPE values of the net load
forecast in the high growth penetration scenario where
the penetration rate increases by 10% every quarter
(starting from the 2𝑛𝑑 quarter). It can be seen that
the LSTM model significantly increases the MAPE value
from the 2𝑛𝑑 to 4𝑡ℎquarter, which is consistent with the
results of the low growth penetration scenario. That is,
if the data changes by 10% or more, the LSTM model
will have a significantly high error in forecasting. As
for the FOS-ELM and OS-ELM models, MAPE is higher
in the 1𝑠𝑡 quarter and decreases to lower than the LSTM
model, similar to the above 2 scenarios. This is because
both models have incremental learning ability even in
situations where the environment highly changes from
the previously learned samples. When compared with
the low growth penetration scenario, it found that the
MAPE of both models has higher than that of the high
growth penetration scenario. This is because the higher
penetration rate caused a large change in the net load
then the forecasting error during the model incremental
learn and adjust itself are also high. From the 3 scenarios
mentioned above, it is found that the FOS-ELM and OS-
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Fig. 12: MAPE for the whole year in each scenario.

ELMmodels have a high MAPE value at the beginning of
working. To mitigate this problem, there is a paper that
presents a method that can help the model achieve lower
forecasting error at the beginning called the Re-Learning
Method [31].

Fig.12 shows the annual MAPE trend for the net load
forecasting of all 3 models in the 3 scenarios. It is
found that the LSTM model has a significantly higher
forecasting error if the penetration rate has changed.
Because the model is trained by samples that are different
from the data in the real situation. In the incremental
learning models such as FOS-ELM and OS-ELM, the
change in penetration rate has less effect on MAPE than
on the LSTM model. Because the FOS-ELM and OS-ELM
models can adjust themself according to environmental
changes, in other words, the FOS-ELM and OS-ELM
models are more robust than the LSTM models. When
comparing the FOS-ELM model and the OS-ELM with
the initial training method as proposed, it is found that
the OS-ELM model always has a lower forecasting error
because the OS-ELM model used a sufficient amount of
synthetic samples based on the actual situation for initial
training, so there is less overfit problem than the FOS-
ELM model that starts from zero.

6. CONCLUSION

From the experiment of the net load forecasting of
LSTM, FOS-ELM, and OS-ELMmodels with the proposed
method, it was found that in the scenario of constant
PV penetration, all three models gave a nearly level of
error in the annual average. Although the FOS-ELM and
OS-ELM models give a higher error in the beginning,
they can incrementally learn and adjust themselves to
reduce the error. In the scenario of an increase in the
penetration rate of PV, all three models had an increase in
forecasting error. But the FOS-LEM and OS-ELM models
had a much lower annual average forecasting error than
the LSTM model because both models have incremental
learning capacity. When comparing only the OS-ELM
that uses the proposed method and the FOS-ELM model,
it was found that the proposed method which is the
synthesis of the initial training sample helped the OS-
ELM model has a lower error of forecasting than the

FOS-ELM significantly. The proposed method allows
the modeling for forecasting the net load forecasting
with incremental learning capability, does not require the
initial training samples, and low computational cost that
is suitable for implementation on edge devices.
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