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ABSTRACT

Observed that most setup have limitations in the num-
ber of Radio Frequency (RF) nodes due to a limited num-
ber of measurements. However, it is well known that the
main difficulty in radio tomographic imaging attributes
to the uncertainties in the Receive Signal Strength (RSS)
measurements of transceivers due to multipath effects
especially, when the environment of interest is much
cluttered, and requirements on the larger number of
nodes for the performance improvements. However, no
study has been conducted to solve the inverse problem
and improve the quality of the reconstructed image
using a reduced sensor model for Radio tomography
system localization. This work focuses on the design
and development of a Radio tomography system for
human localization that will employ a transceiver sensor
arrangement to increase the number of measurements,
without making any changes to the hardware design
as well as the number of pixels in the sensing domain.
An image reconstruction technique namely Adjacent
Criterion Method (ACM) was proposed to enhance the
image spatial resolution. A number of experiments were
used to evaluate the performance of the system. The
results showed that the proposed technique improves the
spatial resolution and exhibits more accurate tomograms.

Keywords: Adjacent Criterion Method, Image Recon-
struction, Reduced Sensor Node

1. INTRODUCTION

Most of the researches presented in the area of RTI
have focused on single target localization and tracking.
However, in real-world indoor and outdoor contexts, RTI
systems frequently require the localization and tracking
of several objects with overlapping trajectories. As a
result, several ongoing investigations are being carried
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out to improve the performance of the RTI system in
terms of multitarget localization and accuracy, all studies
used more than 20 RF sensor nodes [1-11], so in this
work, have reduced the sensor node to 8 RF sensor
nodes, considered the lowest number of sensor has been
used in RTI research area. The 8 RT sensor nodes able
to cover monitoring area for multitarget localization.
The fundamental of RTI when increasing the number
of the sensor will also increase the processing time.
The motivation of using fewer nodes in this work is
to reduce the deployment cost of radio tomographic
imaging, faster data collection rates, shorter imaging
reconstruction times, and smaller sensitivity matrices.
An image reconstruction technique namely Adjacent
Criterion Method (ACM) was proposed to enhance the
image spatial resolution. ACM approach integrate with
Linear Back- Projection (LBP), Filtered Back Projection
(FBP)[12], Gaussian, Newton’s One-step’s Error Recon-
struction (NOSER) and Tikhonov Regularization (TR)
technique for improving the spatial resolution using
the similar number of RT sensor node and without
making any changes on the hardware. The method is
discussed in the ACM section. In the proposed method,
each projection was divided into two paths. When
transmission occurs, the receiving sensors respond in
accordance with ACM truth rules [12].

The localization and tracking of many targets are a
difficulty in the Radio tomography imaging (RTI) system
[13]. While shadowing caused by many targets is more
difficult to model mathematically than shadowing caused
by a single target, the majority of research is focused on
a number of different targets. Localization assumes that
the observed RSS variation is just the superimposition of
that of a single target, necessitating the use of algorithms
to identify them. In RTI system, one of the important
challenges is investigate at how the correlated impact of
multiple targets is represented in multiple antennae’s RF
measurements, and how to accomplish RTI localization
accuracy with multiple targets utilizing a minor path
difference produce by spatial diversity.

2. SEQUENTIAL PROCESSING

Tracking position is more easily accomplished when
measurements are made at the same time. Once
RSS readings from all transceivers are available at the
base station, the processed using the RTI graphical
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Fig. 1: Example transmitter reports for the first communi-
cation node TR1 through TR8 reports are used to create a
measuring matrix.

user interface. Another method for processing RSS
measurements is to divide vectorizing the measurement
matrix that represent RSS measurements made at the
same time instant [1]. An essential difference should
be established so that the measuring time (the RSS on a
certain connection) is taken does not coincide with the
time it is published. RSS readings obtained at various
periods are included in each report in an RTI wire sensor
network (WSN) [2]. The matrix of measurement Z is
designed so that the RSS from transmitter j to receiver i
is represented by the element Z(i,j). Using an eight-node
RTI system to demonstrate how it works.

The measurement matrix in (1) assumes that one
round of data has already been acquired from the whole
WSN. Fig. 2 depicts the construction of the measuring
matrix.

N sensor nodes are scattered throughout the moni-
toring region. Any two sensor nodes can build a line
of sight (LOS) path, and the total number of linkages is
indicated by Z=N(N-1)/2. N voxels are used to partition
the monitoring region. The RSS value is modified
when a target enters the monitoring region[3].Although
attenuation occurs only at pixels in the LOS route, the
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Fig. 3: Configuration of RTI system of 8 RF nodes.

weight of pixels that are not in the LOS line should be
zero. Fig. 2 depicts a wireless network link that is a LOS
route. The transmitting and receiving nodes are in the
ellipse’s center [4]. The matching weight is 1 when the
pixel is included within the ellipse; otherwise, the weight
is 0.

3. CONFIGURATION OF RTI SETUP

Fig. 3 depicts the configuration under consideration
in this work. Each RF node was encapsulated and placed
at an identical distance apart. They were set up in such
a way that they received the scattered field from several
directions, resulting in a slice of images. To explore the
human, the simulation setting was used. The system was
designed based on RF sensor nodes with a frequency of
2.4 GHz and air medium. The system has 8 RF sensor
nodes as shown in Fig. 3, between each node 66.6 cm,
monitoring area 200 cm x 200 cm.
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Table 1: List of parameters for RTI simulation model.

Table 2: 2.4 GHz electrical characteristics of human tissues.

4. MODELLING AND SIMULATION CRITERA: ELEC-

TRODES

In this section, t The electrode’s width, w, is modelled
and calibrated using (??) [5]. To get the cutoff frequency,
substitute the appropriate electrode width and relative
permittivity into (??) using ¢, (unitless). RF can propa-
gate through the medium if the cutoff frequency is lower
than the frequency of the RF signals employed in this
work. This study’s electrode’s width, wis 10.95 cm. With
¢y = 3 X 108ms~! is the speed of light in vacuum.

fo=— (@)
2w/,

Next, In this simulation research, the electrode runs
at 24 [6]. Human formation is under this work’s
consideration. So, 2.4 GHz low frequency is useful for
resolving larger objects [7]. Additionally, 2.4 GHz was
chosen as the minimum measuring frequency because
to the high relative permittivity of people, which is
brought on by their high blood content and causes
increased attenuation as frequency increases. In addition,
the system operates at low electromagnetic frequencies
enhance electromagnetic penetration with the certain
amount of power applied. They are less susceptible
in lossy material [8]. Finally, the study’s transmission
power is limited to either 0 dBm or 1 mW. This limitation
was implemented in order to protect the researcher
from radiation and heat[8]. Low power RF systems
are typically significantly safer to operate. In addition,
the prescribed transmission power can avoid human
heating, which alters the morphology and dielectric
characteristics of the organism during use. The results
could be impacted by a minor change in the human
shape and dielectric characteristics. The simulation
model for RTI system is detailed out below in term of
human with different setup configuration, simulation
parameters for air, human and the fundamental equation.
The parameters used in this simulation are summarized
in Table 1. Besides, the measuring strategies and S-
parameters are described in solving the forward problem.

Parameters Values Relative Conductivity

Number of Electrodes | 8 Tissues Permittivity
Cp— (S/m)

Electrodes’ width 10.95 cm (e)
Operating Frequency | 2.4 GHz Human Skin (dry) | 38 1.46
Power 0 dbm /1 mw Human Fat tissue | 5.3 0.11
Diameter size (air) 200cm x 200cm Human Muscle 597 177
Dielectric properties | Conductivity: 0 tissue ' '
of air Relative Permittivity: 1 Human Cortical 1135 0.40
Dielectric properties | Conductivity: 1.77 Bone tissue ) '
of human Relative Permittivity: 52.97

5. MODELLING AND SIMULATION CRITERA: HU-
MAN

It is well recognised that iron is a necessary com-
ponent of the human body. The distribution of iron
inside the body is as follows: 1800 mg circulating red
blood cells; 300 mg bone marrow; 300 mg muscle; 600
mg splenic macrophages; and 1000 mg liver; with 20-25
mg iron cycles daily [22]. Nowadays, electromagnetic
(EM) interference pollution, which may be detrimental
to humans, has received a lot of attention [23], [24]. The
red blood cell is an integral element of the human body
and plays a crucial function in maintaining a healthy
human body [25]. This study looked at the RF absorption
characteristics of healthy human blood. The complex
permittivity, permeability, and reflection loss of human
blood are evaluated in frequency using a vector network
analyzer (VNA).

The reflection loss (RL) is calculated using the values
of permeability and permittivity (real and imaginary por-
tions) (??). Transmission line theory and the Nicholson-
Ross-Weir (NRW) formula were used to compute and
simulate reflection loss (RL) using data from electromag-
netic characteristics (4) [26].

RL (dB) = 201 Z:~ (3)
Tz
Uy 2rfd
Z,= 6—tanh <jT /4,6,) (4)
r

u=pu —ju" (permeability)

e =€ —€" (permittivity)

where Z, is the normalised input impedance in relation
to the free space impedance d is the blood The velocity
of light and the frequency of RTI in free space are
represented by thickness ¢ and f, respectively. Table
2 [9] displays at 2.4 GHz, the relative permittivity (g)
and conductivity (¢) of many human tissues, including
skin, fat, and muscle [10]. As seen in Table 2, fat tissue
has much lower permittivity and conductivity than other
tissues.
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6. MODELLING THE ELECTROMAGNETIC BE-
HAVIOUR

Maxwell’s equations regulate electric (E) and mag-
netic (H) field propagation in macroscopic, isotropic,
linear, and non-dispersive material. Equations (5) to (11)
[11]. Their time-harmonic form are given by:

Faraday'sLaw : VXE(r) = —jwB (r) (5)
Ampere’' sLaw: VXH (r) =jwD (r) +J (r) (6)
GaussLaw: V.B()=0 (7)

GaussLaw: V.D(r)=p (8)

where E is the electric field intensity (%) ,H 1is the
magnetic field intensity <%>, B is the magnetic flux
density (T), D is the electric flux density (%) , Jis

the electric current density (% ), p is the electric charge

density <%) and r indicates the position vector

There equations depend implicitly on e/*’, where

j = /-1 denotes the imaginary units. In the
presence of material in which electromagnetic events
occur, constitutive relations have been utilised.

D (r)=¢pe,E (1) 9)

J (r)=cE (1) (10)

B (r) =popH (r) (11)

where y is the permeability of free space (%) H, is

the relative permeability. Below is the derivation of the
equation used by the software solver. (11) is substituted
into (8) and curl both sides as shown in (12).

VX (VXE (1)) = —jouyu, (VXH (r)) (12)
Substitute (6), (9), and (10) into (12)
VX (VXE (1)) = —jougu; (joege E () +oE ()  (13)
VX (VXE (1)) =a)2ﬂoyreoerE (r) —jougu,cE () (14)

This equation is simplified to Equation (15) and
Equation (16)

VX (VXE (1)) =kg u, <er—j£> E®) (15
0

Vxu; ! (VXE (1) —k2 <gr—ji> EM)=0 (16)
8060

Human

(a) (b)

Fig. 4: (a) RTI’s mesh pattern, (b) When a 2.4 GHz RF sensor
node is emitting, normalise the electric field.

Fig. 5: Normal tomography projection.

where ky = w+/(up€g) is free space wave. In this work, in
order to apply a scalar model to the RTI problem, various
assumptions must be made.

7. FORWARD MODEL’S SOLUTION

The theoretical scattered electromagnetic subject mea-
surements computed at each antenna are evaluated using
the forward issue. The discretized electric powered area
strength is addressed using an instantaneous form of
solver that is primarily dependent on the distribution
of human insulating qualities, air, and electromagnetic
stimulation in terms of frequency. As illustrated in Fig. 4,
the electrical issue is converted into one that is calculated
on a mesh (a).

The sector values and the dielectric are described by
the mesh system[12]. Fig. 4 depicts the calculation of the
completely electric-powered field using a forward solver
from a person (b). While there are no people in the rice
for each of the interest antennas, the incidence electric
field is the electrical field.

8. ADJACENT CRITERION METHOD

A strategy for enhancing spatial resolution in tomog-
raphy is provided by [13]. The suggested approach
changes back-projection technique in reconstruction to-
mography images. Fig. 5 depicts the projection array of a
typical tomography system. In Fig. 5, three transmitters,
T, transmits RSS within angle 6 to one receiver R, along
projection path P,. Due to the reflection of RSS at the
human subject, therefore it generates a shadow across the
projection path behind the human.
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Fig. 7: Adjacent Criterion Method back-projection.

In Fig. 6, the projection path is back-projected using
the traditional back-projection approach by multiplying
the attenuation RSS by its projection matrix. The concept
behind this study is that the RSS penetrates the air
medium and is totally reflected at the human interface.

Assuming the original phantom’s information is bi-
nary, the signal on the receivers displays how much RSS
has been “shadowed” by the obstacles. A high and low
RSS (RSSt; and RSSrp) is introduced in order to
increase the number of effective receivers (P4 and Ppg).
In the proposed method, Each projection was separated
into two path A, (P, 4) and path B, (P, ) as shown in Fig.
7. When receiving happens, the transmission sensors will
operate in accordance with the ACM truth rules shown
in Table 3.

The number of projections is nearly doubled when
using the ACM technique. When there is no human in

Table 3: Adjacent Criterion Method (ACM) Truth Table.

Active

Sensor Loss (RSS) Condition | Projection
Pn,A Pn,B

0 < RSSyx < RSSp, X 0 0

Pn—l,B=0 0 1

RSSy;, < RSSrx < RSSty

Pn_15=1 1 0

RSS;, < RSSpx <1 X 1 1

the projection path, normalised receiving RSS is 0. For
a human greater than the sensor’s angle, the normalised
receiving RSS is 1. However, when the human is between
two sensor, threshold values are used. The high (RSS y)
and low (RSS) RSS provide adequate detection of
human presence along the relevant path transmission.
The ACM approach used to increase the performance of
LBP, FBP, Gaussian, NOSER, and Tikhonov algorithms.
As a result, the projection artefacts that are frequent in
back-projection.

9. RESULTS AND DISCUSSION

Provide simulated findings following the experimental
results. This is because the experimental data was utilised
to define the simulation settings in order to make them
as realistic as feasible.

9.1 Performance Metrics

There are several techniques exist for evaluating the
quality of the reconstructed images. Generally, the
reconstructed image is evaluated by comparing it to
the reference image. In this work, an unbiased and
automated objective assessment were performed with
intention of determining MSSIM between the reference
image and reconstructed images. It provides a reliable
result to all assigned parameters.

Mean square error (MSE), peak signal-to-noise ratio
(PSNR), and mean structural similarity index (MSSIM) are
three regularly used image quality evaluation techniques.
[14] stated that MSE is a technique which has been used
widely to assess the quality and fidelity of images. The
solution for MSE is expressed in (17).

N;
MSE(x,3) =1 Y ()’ (17)
i=1

€;=X;—Y; (18)

where N is the number of pixels of the image and e;is the
difference between two images one the reference image
and reconstruction image. When MSE approaches zero,
it means that the reconstructed image is identical to the
original images. MSE often being converted into peak
signal-to-noise ratio (PSNR) in image processing [14].
When MSE approaches zero, PSNR value is approaching
infinity. The higher the value of PSNR, the higher the
quality of the image [15]. The solution for PSNR is
expressed in (19).

2

where L is the dynamic range of acceptable image pixel
intensities The usefulness of PSNR is depending on the
comparison of images with different value of L, otherwise
it contains no new information relative to the MSE [14].

The mean structural similarity index (MSSIM) is a tool
for comparing the similarity of two images, the reference
image and the reconstructed image. Structure, intensity,
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®)

Fig. 8: (a) Surface Zone of the experiment, (b) The actual
experiment condition.

Power
ESPR266

Antenna
Development board

Fig. 9: RF sensor node in the RTI system.

and contrast are used to assess images. It produces an
index ranging from 0 to 1. When the reconstructed
picture is identical to the real image, its output index
equals one. The solutions for MSSIM are expressed in
(20) and (21).

M
1
MSSIM(X,Y)= — JZZI SSIM(x,.y,)  (20)

SSIM (x,9) =[x, )] “[cx ) s ] @D

where X is the reference image, Y is the reconstructed
image, x and y are the image contents at the local window
and M is the number of local windows of the image
I[(x,y), c(x,y) and ¢ (x, y) are the luminance, contrast
and structure comparison function with @, § and y as pa-
rameters to adjust their relative importance respectively.
This technique is an objective method which can quantify
subjective image quality more effectively compared MSE
and PSNR [14], [15]. It is due to MSE and PSNR show
a poor correlation between their result and the human
eye’s judgment [15].

9.2 Comparison and Analysis of Reconstruction
Results with Different Algorithms

If the RF node does not settle on an accurate place,
the accuracy of the results may suffer. Furthermore, it
will cause position adjustments and may transmute and
impact the reading. As a result, the simplest solution to
address such issues was to utilise a tripod platform to
standardise the height and stable all RF nodes from the
floor, as illustrated in Fig. 8. (b). The stands are 120cm
above the floor, and the RF node is attached to them. The
rationale for placing the RF node 120 cm above the floor is
to minimise fluctuations in the RSS value [16]-[19]. The
ground reflection model describes how the odds of the
RSS value fluctuating are increased when the RF node is
situated on the floor.

The hardware of the system is designed based on
RF sensor nodes with a frequency of 2.4 GHz, using
sensor WiFi model namely NodeMCU (Node MicroCon-
troller Unit) is an open-source software and hardware
development environment based on the ESP8266, a low-
cost System-on-a-Chip (SoC), as seen in Fig 9. The
Espressif Systems ESP8266 comprises all of the essential
components of a computer: CPU, RAM, networking
(WIiFi), and even a contemporary operating system and
SDK. The parameters of the ESP8266 RF module are
shown in Table 4.

The reconstruction results from various methods for
three distinct human locations were analysed to assess
the efficacy of the suggested ACM-based image recon-
struction technique in overcoming the inverse problem
caused by the decreased sensor model to 8 sensors
in a big tomography system. Fig. 11 depicts the
picture reconstruction results acquired from simulation
data, whereas Figure The picture reconstruction findings
acquired from experimental data are shown in Fig.12.

To test the performance of the reconstruction meth-
ods, certain simulation experiments were conducted. To
replicate the various human localization distributions,
three phantoms were employed as models. The phantoms
were chosen as a broad depiction of humans in the
monitoring region, and they are distributed as single
people (simulation model 1), two people (simulation
model 2), and three people (simulation model 3). The
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Fig. 10: Image reconstruction simulation results in 2D view.

reconstruction outcomes of several methods for three
distinct human locations have been investigated. The
image reconstruction results acquired from simulation
data are shown in Fig. 10, and the image reconstruction
results obtained from experimental data are shown in Fig.
11.

The LBP, FBP, GAUSSIAN, NOSER, TIKHONOV, LBP
+ ACM, FBP + ACM, GAUSSIAN+ ACM, NOSER+ ACM,
and TIKHONOV+ ACM algorithms were all tried on
phantoms and the results were analysed. Figs. 10
and 11 depict the image reconstruction modelling and
experimental findings in 2D. The ACM approach, on the
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Fig. 11: Image reconstruction experimental results in 2D view.

other hand, improves tomogram image. According to
Fig. 10, Fig. 10 ACM methods improved performance
by up to 34% . The ACM approach doubles the projection
data, increasing spatial resolution. However, there is a
disadvantage to ACM. As the projection data accumu-
lates, the image becomes more susceptible to noise from
more projection artefacts. This is visible in concentration
differential measurements. Among the reconstruction

techniques, the ACM method improved the percentage
difference estimated on all simulated and experimental
results. MSSIM, PSNR, and MSE, on the other hand,
are primarily concerned with perceptual image mea-
surement and are hence unaffected by the reconstructed
simulation results through each image reconstruction
algorithm subjectively demonstrate decent overall image
quality indexes for all simulated models. The maximum
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SIMULATION MODEL_1

—&—Normal Projection ~ —#i—Normal Projection+ ACM

0.6000
0.5000
z 0.4000
z 0.3000
w)
= 0.2000
0.1000
0.0000
LBP FBP GAUISSAN ~ NOSER  TIKHONOV
—+— Normal Projection 0.4446 03536 0.4054 05136 0.5278
—=—Normal Projectiont ACM  0.4666 03813 04314 0.5432 0.5546
Fig. 12: MSSIM Indexes measured on simulation model 1.
SIMULATION MODEL_2
—&—Normal Projection ~ —li—Normal Projection+ ACM
0.6000
0.5000
0.4000
z
z 0.3000
= 0.2000
0.1000
9:0006 LBP FBP GAUISSAN ~ NOSER  TIKHONOV
——Normal Projection 0.3642 0.2691 0.3149 0.4521 0.4662
—8—Normal Projectiont ACM  0.3976 0.3065 03578 04778 0.5097
Fig. 13: MSSIM Indexes measured on simulation model 2.
SIMULATION MODEL_3
—&—Normal Projection ~ —#i=Normal Projection+ ACM
0.6000
0.5000
0.4000
=
2 0.3000
= 0.2000
0.1000
00000 LBP FBP GAUISSAN ~ NOSER  TIKHONOV
—e— Normal Projection 0.2939 02129 02514 03762 0.3868
—8—Normal Projectiont ACM 03183 02375 02798 0.3939 0.4168
Fig. 14: MSSIM Indexes measured on simulation model 3.
SIMULATION MODEL1
—4—Normal Projection ~ =fll=Normal Projection+ ACM
1000
= 300
=)
= 600
>
= 400
22}
= 200
0 LBP FBP GAUISSAN NOSER TIKHONOV
=t Normal Projection 660 864 585 585 574
=@ Normal Projection+ ACM 605 813 557 548 515

Fig. 15: MSE Indexes measured on simulation model 1.

score of the MSSIM index is 0.5546 of simulated model = model 3 using the FBP algorithm. For the MSE index,
1 using the TIKHONOV+ACM algorithm, whereas the the maximum score is 515 of simulated model 3 using the
minimum score of the MSSIM index is 0.2129 of simulated =~ TIKHONOV+ACM algorithm, while the minimum score
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SIMULATION MODEL_2

—4—Normal Projection ~ =fl=Normal Projection+ ACM
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= 1500
>
- 1000
w
= 500
0 LBP FBP GAUISSAN NOSER TIKHONOV
=—#—Normal Projection 1726 2304 1989 1405 1335
=f—Normal Projection+ ACM 1384 1889 1561 1190 1024
Fig. 16: MSE Indexes measured on simulation model 2.
SIMULATION MODEL 3
—e—Normal Projection ~ ——Normal Projection+ ACM
5000
= 4000
=)
= 3000
>
- 2000
172}
= 1000
0 LBP FBP GAUISSAN NOSER TIKHONOV
=&—Normal Projection 3310 4348 3833 2662 2495
~—@—Normal Projection+ ACM 2597 3448 2957 2201 1863
Fig. 17: MSE Indexes measured on simulation model 3.
SIMULATION MODEL 1
—4#—Normal Projection ~ =fl=Normal Projection+ ACM
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Fig. 18: PSNR Indexes measured on simulation model 1.
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Fig. 19: PSNR Indexes measured on simulation model 2.

of the MSE index is 4348 of simulated model 1 using the  simulated model 1 using the LBP+ ACM algorithm, while
FBP algorithm. the minimum score of the PSNR index is 12 of simulated

Lastly, PSNR index, the maximum score is 20.8 of model 3 using the FBP algorithm.  Regarding the
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Fig. 20: PSNR Indexes measured on simulation model 3.
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Fig. 21: MSSIM Indexes measured on Experimental model 1.
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Fig. 22: MSSIM Indexes measured on Experimental model 2.
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Fig. 23: MSSIM Indexes measured on Experimental model 3.

image reconstruction algorithms, the TIKHONOV+ACM
algorithm constantly recorded the highest MSSIM value
among the phantom studies, surpassing all the other al-
gorithms. In contrast, the lowest MSSIM value is always
measured by the FBP algorithm, the image reconstruction

algorithms, the TIKHONOV+ACM algorithm constantly
recorded the highest MSE value among the phantom
studies, surpassing all the other algorithms. In contrast,
the lowest MSE value is always measured by the FBP
algorithm, finally the image reconstruction algorithms,
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Fig. 24: MSE Indexes measured on Experimental model 1.
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Fig. 25: MSE Indexes measured on Experimental model 2.
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Fig. 26: MSE Indexes measured on Experimental model 3.
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Fig. 27: PSNR Indexes measured on Experimental model 1.

the LBP+ ACM algorithm constantly recorded the highest ~ the other algorithms. In contrast, the lowest PSNR value
PSNR value among the phantom studies, surpassing all  is always measured by the FBP algorithm.
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Fig. 28: PSNR Indexes measured on Experimental model 2.
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Fig. 29: PSNR Indexes measured on Experimental model 3.

Table 4: Specifications of RF sensor node.

Items Parameters
Certification Wi-Fi Alliance
Protocols 802.11 b/g/n (HT20)

2.4 GHz ~ 2.5 GHz (2400
MHz ~ 2483.5 MHz)

802.11 b: +20 dBm

802.11 g: +17 dBm

802.11 n: +14 dBm

Frequency Range

TX Power

802.11 b: -91 dbm (11
Mbps)

Rx Sensitivity 802.11 g: 75 dbm (54
Mbps)

802.11 n: =72 dbm (MCS7)
PCB Trace, External, IPEX
Connector, Ceramic Chip
25V~36V

Antenna

Operating Voltage

The reconstructed experimental results through each
image reconstruction algorithm subjectively demon-
strate decent overall image quality indexes for all ex-
perimental models. The maximum score of the MSSIM
index is 0.5546 of experimental model 1 using the
TIKHONOV+ACM algorithm, whereas the minimum
score of the MSSIM index is 0.2129 of experimental model
3 using the FBP algorithm. For the MSE index, the
maximum score is 1142 of experimental model 1 using the

TIKHONOV+ACM algorithm, while the minimum score
of the MSE index is 5755 of experimental model 3 using
the NOSER algorithm. Lastly, PSNR index, the maximum
score is 17.6 of experimental model 1 using the NOSER+
ACM and TIKHONOV + ACM algorithm, while the
minimum score of the PSNR index is 10.5 of experimental
model 3 using the NOSER algorithm. Regarding the
image reconstruction algorithms, the TIKHONOV+ACM
algorithm constantly recorded the highest MSSIM value
among the phantom studies, surpassing all the other al-
gorithms. In contrast, the lowest MSSIM value is always
measured by the FBP algorithm, the image reconstruction
algorithms, the TIKHONOV+ACM algorithm constantly
recorded the highest MSE value among the phantom
studies, surpassing all the other algorithms. In contrast,
the lowest MSE value is always measured by the NOSER
algorithm, finally the image reconstruction algorithms,
the NOSER+ ACM and TIKHONOV + ACM algorithm
constantly recorded the highest PSNR value among the
phantom studies, surpassing all the other algorithms. In
contrast, the lowest PSNR value is always measured by
the NOSER algorithm.

ACM techniques improved performance by up to 34%.
The ACM approach doubles the projection data, increas-
ing spatial resolution. However, there is a disadvantage
to ACM. As the projection data accumulates, the image
becomes more susceptible to noise from more projection
artefacts. 'This is visible in concentration differential
measurements. The ACM percentage difference obtained
on all simulated pictures by ACM approach was increased



14 ECTI TRANSACTIONS ON ELECTRICAL ENGINEERING, ELECTRONICS, AND COMMUNICATIONS VOL.22, NO.2 JUNE 2024

Table 5: MSSIM, MSE and PSNR simulated percentage (%)
improvement by ACM algorithms.

= z > > ™ >Q | >z =
3 PICE | 28 | 2> |28 | BE
g < + 7F < % < g-)] 2 jas
a wn = Q
[= = + Z
o DZ> o
Z <
1149 |78 6.4 5.8 5.1
MSSIM | 2]92 | 139 13.6 5.7 9.3
3183 11.6 11.3 4.7 7.7
1183 |58 4.7 6.2 10.3
MSE 2| 19.8 | 18.0 21.5 153 | 233
3]121.5 (207 22.8 173 | 253
1119 |14 1.9 1.4 2.3
PSNR 2] 6.1 5.9 7.0 4.3 6.8
3]8.1 8.6 9.2 5.9 9.0

Table 6: MSSIM, MSE and PSNR experimental percentage
(%) improvement by ACM algorithms.

2 zZlo|lzE |9 |2zt
S [ [2%|2% |52 |2z 5%
E S| F| g
Z 2
1] 20.4 19.1 12.8 20.5 | 20.5
MSSIM 21134 | 153 | 8.6 14.1 19.3
31330 (344 | 293 273 | 36.5
11 6.7 6.0 3.7 7.1 7.1
MSE 2173 5.2 4.9 18.9 18.9
3154 |6.0 2.4 5.8 2.1
1| 1.7 1.6 1.0 1.9 1.9
PSNR 2127 1.8 0.7 7.8 7.4
311.5 1.1 0.9 2.5 1.0

among the reconstruction algorithms. MSSIM, on the
other hand, is primarily concerned with perceptual image
measurement and is hence unaffected by noise. The
improvement achieved by ACM algorithms are shown
in Table 5 where the minimum percentage improvement
for MSSIM is 4.9 % at simulation model 1, the minimum
percentage improvement for MSE is 4.7 % at simulation
model 1 and the minimum percentage improvement for
PSNER is 1.4 % at simulation model 1. The highest of
MSSIM is 13.9 % at simulation model 1, The highest of
MSE is 25.3 % at simulation model 2 and the highest of
PSNER is 9.2 % at simulation model 3.

Table 6 shows that the ACM approach greatly im-
proves the MSSIM index. As a result, utilising the
ACM approach adds an advantage to the current re-
construction technique. Table 6 summarised the ACM
technique’s improvement as assessed by the MSSIM,
MSE, and PSNER indexes. The improvement of MSSIM
had increased up to 36.5 %, 34.4 %, 33.0 %, 29.3 % and
27.3 % using TIKHONOV+ACM, FBP + ACM, LBP +
ACM, GAUSSIAN+ACM and NOSER+ACM respectively.

The improvement of MSE had increased up to 18.9%,
18.9%, 7.3%, 6.0% and 4.9% using TIKHONOV+ACM,
NOSER+ACM, LBP + ACM, FBP + ACM, and GAUS-
SIAN+ACM respectively. The improvement of PSNER
had increased up to 7.8%, 7.4%, 2.6%, 1.8% and 1% using
NOSER+ACM, TIKHONOV+ACM, LBP + ACM, FBP +
ACM, and GAUSSIAN+ACM respectively.

10. CONCLUSIONS

A radio tomography system for human localisation
was successfully constructed, and its performance was
evaluated and analysed. The Adjacent Criterion Method
(ACM) technique was created to address the problem of
low spatial resolution images by virtually expanding the
projection data. The spatial resolution was enhanced and
the reconstructed tomograms were more precise after
splitting the projection path in two. Several experiments
were conducted and the results had showed encouraging
improvement in tomogram reconstruction using ACM
method.
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