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ABSTRACT

Comprehensive analysis of a global fast terminal
sliding mode control strategy (GFTSMC) for the mul-
tivariable laboratory level control system is presented
in this paper. The performance of conventional slid-
ing mode controller strategies experiences chattering
as switching control input contains the sgn’ function
and singularity issues. Moreover, the performance is
degraded due to parametric uncertainties and external
disturbances. Robustness issues are not well defined in
conventional strategies. Global fast terminals remove the
chattering effect and eliminate the singularity problem.
It has a shorter convergence time and better reaching
precision. It shows the finite-time convergence of output
variables to the command input. Indirect stability is
guaranteed using the direct Lyapunov function. To elicit
the performance of the proposed strategy, simulation
tests have been conducted on the wood-berry distillation
process, while the experimental tests are carried out on
a laboratory multivariable process control system. The
performance of the proposed strategy is compared to that
of conventional sliding mode control and fast terminal
sliding mode control.

Keywords: Global fast terminal sliding mode controller,
Conventional sliding mode control, Multi-input, Multi-
output process, Integral errors, Real-time experimenta-
tion

1. INTRODUCTION
Different control strategies have been proposed for

controlling multivariable processes. The two-input,
two-output (TITO) process is one of the multivariable
processes. A decentralized structure is commonly
used for TITO processes due to its simpler design and
minimum interaction between the state variables of the
system [1]. Various nonlinear control strategies have
been proposed for better tracking performance, which
include adaptive control [2], predictive control [3], fuzzy
control [4], and sliding mode control (SMC) [5]. SMC
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has gained popularity due to its easy, straight-forward
implementation, robustness, and fast response [6]. But
the chattering phenomenon is inevitable in conventional
SMC [7]. System components may get damaged, and
the system’s performance is hampered due to chattering.
Also, the error will not well converge to zero in a finite
time in the case of SMC [8].

The high-order sliding mode control or the nonsin-
gular terminal sliding mode control (NSTSMC) could
resolve the problem. However, the respective defects of
the two methods are obvious. Such as, the high-order
sliding mode control could not be applied to the first-
order system, and the reaching law of the non-singular
terminal sliding mode control is slow when the state of
the system is close to the sliding mode surface. Another
method to overcome the drawbacks of conventional
SMC, the terminal sliding mode controller, was proposed
[9]. The surface in terminal sliding mode control (TSMC)
is a nonlinear one, but the finite-time convergence can
be guaranteed. The performance of closed-loop systems
is improved by TSMC in comparison with SMC [11, 12].
A discontinuous term present in TSMChas the chattering
effect, and it cannot be completely eliminated. TSMC
also suffers from the singularity problem. The speed
of convergence cannot be maintained as the states get
disturbed, which are located away from the equilibrium
point in TSMC [13]. An advanced structure of TSMC,
fast TSMC (FTSMC), is proposed to overcome the above
issues [14]. With FTSMC, the chattering effect can be
eliminated, and the system states perform better for a
closed loop system [15]. To improve the phase elimina-
tion problem in FTSMC and to remove the chattering,
a global sliding mode controller (GSMC) method was
proposed in combination with FTSMC. By adding an
extra term in the sliding mode surface, GSMC performs
better and gives the superior robustness performance
[16]. The combination of FTSMC and GSMC, namely
global fast terminal sliding mode control (GFTSMC),
provides faster convergence to an equilibrium point in a
finite time, and by eliminating the reaching phase, system
performance is improved [13].

In this paper, a decentralized GFTSMC controller
has been proposed for a multivariable process. By
implementing the proposed controller, the convergence
time, settling time, and rise time have been improved.
The wood-berry distillation column problem is presented
to check the efficacy of the GFTSMC controller with
simulation. A controller is implemented on the level
tank system, which is a multivariable process, to validate
the performance. With the design of a decentralized
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GFTSMC controller with a decoupler, the coupling
effect in the multi-input, multi-output (MIMO) system
can be eliminated. With the help of decouplers, the
interactions between the variables are minimized, and
for each system, a decoupled subsystem is formed. An
independent GFTSMC controller is designed for each
decoupled system separately, and the system response is
analyzed.

The paper is organized as follows: The next section
presents a brief study of GFTSMC design with stability
analysis. Section 3 gives a brief description of the
MIMO system and its modeling. The simulation test
on the wood-berry distillation column with GFTSMC is
presented in Section 4. Section 5 is devoted to real-
time experimentation with the results of the proposed
controller. Finally, a work summary has been presented.

2. GLOBAL-FASTTERMINALSLIDINGMODECON-
TROL

2.1 Problem formulation
Consider a nonlinear system given by Eq. (1) [17-19],

�̇�1(𝑡) = 𝑥2(𝑡)
�̇�2(𝑡) = 𝑎(𝑥, 𝑡) + 𝑏(𝑥, 𝑡)𝑢(𝑡) + 𝑑(𝑥, 𝑡)
𝑦(𝑡) = 𝑥1(𝑡) (1)

where 𝑥 = [𝑥1 𝑥2]
𝑇 , 𝑥1 and 𝑥2 are system states,

𝑎(𝑥, 𝑡), 𝑏(𝑥, 𝑡) are smooth functions, 𝑏(𝑥, 𝑡) ≠ 0, 𝑑(𝑡)
denotes the uncertainties and |𝑑(𝑡)| ≤ 𝐿 denotes the
disturbances. d(x,t) is a bounded lump uncertainty in Eq.
(1), i.e. |𝑑(𝑥, 𝑡)| ≤ 𝐷𝑚𝑎𝑥. The aim is to design a GFTSMC
such that the state of the system Eq. (1) will converge
to an equilibrium point in finite-time so that the control
efforts are minimal.

2.2 Controller Design
Global fast terminal sliding surface is given by Eq. (2)

[20],
𝑠(𝑡) = ̇𝑒(𝑡) + 𝛼𝑒(𝑡) + 𝛽𝑒𝑞/𝑝 = 0 (2)

where 𝛼 > 0, 𝛽 > 0, 𝑝 and 𝑞 are positive odd numbers,
and 𝑝 > 𝑞. Based on Eq. (2), a new sliding surface for
FTSMC control of higher-order systems is given as

𝑠1(𝑡) = ̇𝑒0(𝑡) + 𝛼0𝑒0(𝑡) + 𝛽0𝑒0(𝑡)𝑞0/𝑝0

𝑠2(𝑡) = ̇𝑒1(𝑡) + 𝛼1𝑒1(𝑡) + 𝛽1𝑒1(𝑡)𝑞1/𝑝1

⋮
𝑠𝑛−1(𝑡) = ̇𝑒𝑛−2(𝑡) + 𝛼𝑛−2𝑒𝑛−2(𝑡) + 𝛽𝑛−2𝑒𝑛−2(𝑡)𝑞𝑛−2/𝑝𝑛−2

(3)

where 𝑛 is the order of the system, 𝑒0 is initial error.
𝛼𝑖, 𝛽𝑖 > 0 and 𝑝𝑖,𝑞𝑖 where, 𝑖 = 1, 2, …, 𝑛 − 2, are positive-
odd-integers. For 𝑛 = 2, the nonlinear sliding variable
[1] is,

𝑠(𝑡) = ̇𝑒(𝑡) + 𝛼𝑒(𝑡) + 𝛽𝑒(𝑡)𝑞/𝑝 (4)
where 𝑒(𝑡) = 𝑦(𝑡) − 𝑦𝑑(𝑡) is the tracking error, 𝑦(𝑡) and
𝑦𝑑(𝑡) are actual output and desired output of the system,

respectively. In finite-time [13, 21], the error signal, 𝑒(𝑡),
on a sliding surface reaches its origin, for 𝑒(0) ≠ 0

𝑡𝑠 = 𝑝
𝛼(𝑝 − 𝑞) ln 𝛽 + 𝛼𝑒(0)(𝑝−𝑞)/𝑝

𝛽 (5)

By selecting 𝛼, 𝛽, 𝑝, 𝑞, the system state attains equilib-
rium in a finite-time 𝑡𝑠.
From Eq. (4),

̇𝑒(𝑡) = −𝛼𝑒(𝑡) − 𝛽𝑒(𝑡)𝑞/𝑝 (6)

When 𝑒(𝑡) is far from the origin, ̇𝑒(𝑡) = −𝛽𝑒(𝑡)𝑞/𝑝, which
is a fast terminal attractor, decides the convergent time.
When 𝑒(𝑡) approaches the origin, convergent time is
determined by, ̇𝑒(𝑡) = −𝛼𝑒(𝑡). Therefore, the terminal
attractor given in Eq. (5) makes the states converge to
zero in a finite-time. Also, the speed of a linear sliding
surface is guaranteed. The surface in Eq. (4) is a global
fast sliding surface.

The global fast sliding surface is selected as

𝑠1(𝑡) = ̇𝑒0(𝑡) + 𝛼0𝑒0(𝑡) + 𝛽0𝑒0(𝑡)𝑞0/𝑝0 (7)

where 𝛼0, 𝛽0 > 0 and 𝑞0, 𝑝0(𝑞0 < 𝑝0) are positive
odd numbers. Differentiating the above equation and
substituting Eq. (1) leads to,

̇𝑠1(𝑡) = ̈𝑒0(𝑡) + 𝛼0 ̇𝑒0(𝑡) + 𝛽0
𝑑
𝑑𝑡𝑒0(𝑡)𝑞0/𝑝0

= 𝑎(𝑥, 𝑡) + 𝑏(𝑥, 𝑡)𝑢(𝑡) + 𝑑(𝑡) + 𝛼0 ̇𝑒0(𝑡)+

𝛽0
𝑑
𝑑𝑡𝑒0(𝑡)𝑞0/𝑝0 (8)

The GFTSMC is,

𝑢(𝑡) = − 𝑏(𝑥, 𝑡)−1[𝑎(𝑥, 𝑡) + 𝛼0 ̇𝑒0(𝑡) + 𝛽0
𝑑
𝑑𝑡𝑒0(𝑡)𝑞0/𝑝0+

𝜙𝑒1(𝑡) + 𝛾𝑒1(𝑡)𝑞/𝑝] (9)

where 𝜙 is the boundary layer thickness and 𝛾 > 0.

2.3 Stability Analysis
The Lyapunov function is selected as Eq. (10) [18, 22],

𝑉 (𝑡) = 1
2𝑠1(𝑡)2 (10)

Because

̂𝑠1= ̂𝑒0(t)+𝛼0 ̂e0(t)+𝛽0
d
dt e0(t)q0/p0

= 𝑎(x, t)+b(x, t)u(t)+d(t)+𝛼0 ̂e0(t)+
𝛽0

𝑑
𝑑𝑡 𝑒0(t)q0/p0

(11)

Substituting Eq. (9) in Eq. (8),

̇𝑠1(𝑡) = −𝜙𝑒1(𝑡) − 𝛾𝑒1(𝑡)𝑞/𝑝 + 𝑑(𝑡) (12)

Taking derivative of Eq. (10) [23],
̇𝑉 (𝑡) = 𝑠1(𝑡) ̇𝑠1(𝑡)

= −𝜙𝑒1(𝑡)2 − 𝛾𝑒1(𝑡)(𝑞+𝑝)/𝑝 + 𝑒1(𝑡)𝑑(𝑡) (13)

(𝑝 + 𝑞) is even because −𝛾𝑒1(𝑡)(𝑞+𝑝)/𝑝 + 𝑒1𝑑(𝑡) ≤ 0
is satisfied and 𝛾 ≥ |

1
𝑒1(𝑡)𝑞/𝑝 | |𝑑(𝑡)| or 𝛾 ≥ |

1
𝑒1(𝑡)𝑞/𝑝 | 𝐿,

therefore ̇𝑉 (𝑡) ≤ 0.
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Fig. 1: Block diagram of decentralized controller.

2.4 Position Control
Let the desired point be 𝑦𝑑 , also 𝑒0 = 𝑦1 −𝑦𝑑 therefore,

̇𝑒0(𝑡) = ̇𝑦1 − ̇𝑦𝑑 and ̈𝑒0(𝑡) = ̈𝑦1 − ̈𝑦𝑑 . Eq. (8) can be
rewritten as

̇𝑠1(𝑡) = ̈𝑒0(𝑡) + 𝛼0 ̇𝑒0(𝑡) + 𝛽0
𝑑
𝑑𝑡𝑒0(𝑡)𝑞0/𝑝0

= 𝑎(𝑥, 𝑡) + 𝑏(𝑥, 𝑡)𝑢(𝑡) + 𝑑(𝑡) − ̈𝑦𝑑 + 𝛼0 ̇𝑒0(𝑡)+

𝛽0
𝑑
𝑑𝑡𝑒0(𝑡)𝑞0/𝑝0 (14)

The controller given by Eq.(9) can be written in modified
form as

𝑢(𝑡) = − 𝑏(𝑥, 𝑡)−1[𝑎(𝑥, 𝑡) − ̈𝑦𝑑 + 𝛼0 ̇𝑒0(𝑡) + 𝛽0
𝑑
𝑑𝑡𝑒0(𝑡)𝑞0/𝑝0+

𝜙𝑒1(𝑡) + 𝛾𝑒1(𝑡)𝑞/𝑝] (15)

3. MIMO SYSTEM
Fig. 1 shows a MIMO linear system with decoupler.

𝐺𝑝(𝑠),𝐷𝑐(𝑠) are the plant and decoupler respectively.
Then,

𝐺𝑝(s) =
⎡
⎢
⎢
⎢
⎣

Gp11 (s) Gp12 (s) … Gp1m (s)
Gp21 (s) Gp22 (s) … Gp2m (s)

⋮ ⋮ ⋮ ⋮
Gpm1 (s) Gpm2

(s) … Gpmm (s)

⎤
⎥
⎥
⎥
⎦

(16)

and

𝐷𝑐(s) =
⎡
⎢
⎢
⎢
⎣

Dc11 (s) Dc12 (s) … Dc1m (s)
Dc21 (s) Dc22 (s) … Dc2m (s)

⋮ ⋮ ⋮ ⋮
Dcm1 (s) Dcm2 (s) … Dcmm (s)

⎤
⎥
⎥
⎥
⎦

(17)

The multiloop SISO structure is,

𝐹 (𝑠) = 𝐺𝑝(𝑠)𝐷𝑐(𝑠) (18)

where 𝐹 (𝑠) is a diagonal matrix represented by,

𝐹 (𝑠) =
⎡
⎢
⎢
⎢
⎣

𝐹11(𝑠) 0 ⋯ 0
0 𝐹22(𝑠) ⋯ 0
⋮ ⋮ ⋮ ⋮
0 0 ⋯ 𝐹𝑚𝑚(𝑠)

⎤
⎥
⎥
⎥
⎦

(19)

From Eq. (18), decoupler can be given as

𝐷𝑒(𝑠) = 𝐴𝑑𝑗 [𝐺𝑝(𝑠)] 𝑄(𝑠) (20)

where 𝑄(𝑠)= diagonal matrix. From Eq. (16), two
decoupled subsystems are obtained. 𝐹11(𝑠) and𝐹22(𝑠) are
the second-order structure of the MIMO linear system.
The state-space representation of these subsystems is
represented as

�̇�1(𝑡) = 𝑥2(𝑡)
�̇�2(𝑡) = 𝑎1(𝑥, 𝑡) + 𝑏1(𝑥, 𝑡)𝑢1(𝑡) + 𝑑1(𝑥, 𝑡)
𝑦1(𝑡) = 𝑥1(𝑡)
�̇�3(𝑡) = 𝑥4(𝑡)
�̇�4(𝑡) = 𝑎2(𝑥, 𝑡) + 𝑏2(𝑥, 𝑡)𝑢2(𝑡) + 𝑑2(𝑥, 𝑡)
𝑦2(𝑡) = 𝑥3(𝑡)

(21)

where 𝑥 = [𝑥1, 𝑥2, 𝑥3, 𝑥4]
𝑇 is the state vector, 𝑎1, 𝑎2, 𝑏1,

and 𝑏2 are nonlinear functions. 𝑢1 and 𝑢2 are the control
inputs. The lumped uncertainties 𝑑1(𝑥, 𝑡) = Δ𝑎1(𝑥, 𝑡) +
Δ𝑏1(𝑥, 𝑡)𝑢1(𝑡) + 𝛿1(𝑥, 𝑡) and 𝑑2(𝑥, 𝑡) = Δ𝑎2(𝑥, 𝑡) +
Δ𝑏2(𝑥, 𝑡)𝑢2(𝑡) + 𝛿2(𝑥, 𝑡) are assumed to be bounded as
𝑑1(𝑥, 𝑡) ≤ 𝐷𝑚𝑎𝑥1, 𝑑2(𝑥, 𝑡) ≤ 𝐷𝑚𝑎𝑥2.

The Eqs. (18) and (19) represent two decoupled subsys-
tems, where the controlled variables are 𝑦1 and 𝑦2. Using
sliding surfaces, the decentralized control is implemented
as

𝑠1(𝑡) = ̇𝑒1(𝑡) + 𝛼1𝑒1(𝑡) + 𝛽1𝑒1(𝑡)𝑞1/𝑝1

𝑠2(𝑡) = ̇𝑒2(𝑡) + 𝛼2𝑒2(𝑡) + 𝛽2𝑒2(𝑡)𝑞2/𝑝2

(22)

where 𝑒1 = 𝑦1−𝑦𝑑1; 𝑒2 = 𝑦2−𝑦𝑑2; 𝛼1, 𝛼2, 𝛽1, 𝛽2 > 0; 𝑞1 <
𝑝1 and 𝑞2 < 𝑝2 are odd positive integers. The control laws
explained in Section 2.2 for two decoupled subsystems
can be given as,

𝑢1(𝑡) = − 𝑏1(𝑥, 𝑡)−1[𝑎1(𝑥, 𝑡) + 𝛼1 ̇𝑒1(𝑡) + 𝛽1
𝑑
𝑑𝑡𝑒1(𝑡)𝑞1/𝑝1+

𝜙1𝑒1(𝑡) + 𝛾1𝑒1(𝑡)𝑞1/𝑝1 ]

𝑢2(𝑡) = − 𝑏2(𝑥, 𝑡)−1[𝑎2(𝑥, 𝑡) + 𝛼2 ̇𝑒2(𝑡) + 𝛽2
𝑑
𝑑𝑡𝑒2(𝑡)𝑞2/𝑝2+

𝜙2𝑒2(𝑡) + 𝛾2𝑒2(𝑡)𝑞2/𝑝2 ]
(23)

where 𝛾1 ≥ |
1

𝑒1(𝑡)𝑞1/𝑝1 | 𝐿1 and 𝛾2 ≥ |
1

𝑒2(𝑡)𝑞2/𝑝2 | 𝐿2.
The stability discussed in [23,24] is proved in Section

2.3. and can be applied for MIMO system.

4. SIMULATION RESULTS
To check the efficacy of the proposed controller, a

Wood-Berry binary distillation column example is used
for simulation. The process transfer function matrix can
be given as Eq. (24) [25],

𝐺𝑊 𝐵𝑝 (𝑠) =
[

12.8𝑒−𝑠

1+16.734𝑠
−18.9𝑒−3𝑠

1+21.019𝑠
6.6𝑒−7𝑠

1+10.9052𝑠
−19.4𝑒−3𝑠

1+14.405𝑠
]

(24)
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For design, the ideal decoupler is chosen as

𝐷𝑊 𝐵𝐶 (𝑠) = 𝐴𝑑𝑗 [𝐺𝑊 𝐵𝑝 (𝑠)] 𝑄(𝑠) (25)

where 𝑄(𝑠) is a diagonal matrix. The common pole-zero,
common dead time, and smallest gain from 𝑖𝑡ℎ column of
𝐴𝑑𝑗 [𝐺𝑊 𝐵𝑝(𝑠)] are removed for obtaining the elements
of the 𝑄(𝑠) (𝑘𝑖(𝑠)). From Eq. (24), the decoupler can be
given Eq. (26) as

𝐷𝑊 𝐵𝑐 (𝑠) = [
𝐷11(𝑠) 𝐷12(𝑠)
𝐷21(𝑠) 𝐷22(𝑠)] (26)

where 𝐷11(𝑠) = 2.9347
1+14.402𝑠 , 𝐷12(𝑠) = 1.477𝑒−2𝑠

1+21.019𝑠 , 𝐷21 =
𝑒−4𝑠

1+10.9052𝑠 , and 𝐷22(𝑠) = 1
1+16.734𝑠 .

From Eq. (16),

𝐹 (𝑠) =𝐺𝑊 𝐵𝑝 (𝑠)𝐷𝑊 𝐵𝑐 (𝑠)

𝐹11(𝑠) = 37.63𝑒−𝑠

(1 + 16.734𝑠)(1 + 14.402𝑠)−

18.9𝑒−7𝑠

(1 + 21.019𝑠)(1 + 14.402𝑠)
𝐹12(𝑠) =𝐹21(𝑠) = 0

(27)

and

𝐹22(𝑠) = 9.75𝑒−9𝑠

(1 + 10.9052𝑠)(1 + 21.019𝑠)−

19.4𝑒−3𝑠

(1 + 14.402𝑠)(1 + 16.734𝑠)
(28)

where 𝐹11(𝑠) and 𝐹22(𝑠) are of higher order. The
frequency response fitting method at two points is used
to obtain the first-order system plus dead-time (FOPDT)
model. The two frequencies are given by Eq. (29),

𝐺𝑖(0) = 𝐹𝑖(0)
|𝐺𝑖 (𝑗𝜔𝑐𝑖)| = |𝐹𝑖 (𝑗𝜔𝑐𝑖)|
∠𝐺𝑖 (𝑗𝜔𝑐𝑖) = ∠𝐹𝑖 (𝑗𝜔𝑐𝑖)

(29)

given 𝜔 = 0 and 𝜔 = 𝜔𝑐𝑓 , where 𝜔𝑐𝑓 is phase crossover
frequency [26]. From the above result, FOPDT model
parameters are calculated as Eq. (30) [27]

𝐾𝑖 = 𝐹𝑖(0)

𝑇𝑖 =
√√√√
⎷

𝐾2
𝑖 − |𝐹𝑖 (𝑗𝜔𝑐𝑓 )|

2

|𝐹𝑖 (𝑗𝜔𝑐𝑓 )|
2 𝜔2

𝑐𝑓

𝜏𝑖 =
𝜋 + tan−1 (−𝜔𝑐𝑓 𝑇𝑖)

𝜔𝑐𝑓 𝑇𝑖
(30)

Using Eqs. (28) and (29) the FOPDT model can be
represented as

𝐺𝑖𝐹 𝑂𝑃 𝐷𝑇 (𝑠) = 𝐾𝑖𝑒−𝜏𝑖𝑠

𝑇𝑖𝑠 + 1 , 𝑖 = 1, 2 (31)

Using Eq. (30), the FOPDT subsystems are

𝐺11𝐹 𝑂𝑃 𝐷𝑇 = 18.73𝑒−3.45𝑠

1 + 68.24𝑠

𝐺22𝐹 𝑂𝑃 𝐷𝑇 = −9.65𝑒−6.47𝑠

1 + 52.38𝑠
(32)

Using Taylor series approximation, the delayed term in
Eq. (30) is given as

𝑒−𝜏𝑖𝑠 = 1
1 + 𝜏𝑖𝑠

(33)

The FOPDT subsystems are,

𝐺11𝑟𝑒 = 18.73
(1 + 68.24𝑠)(1 + 3.45𝑠)

𝐺22𝑟𝑒 = −9.65
(1 + 52.38𝑠)(1 + 6.47𝑠)

(34)

Eqs. (22) and (23) gives the two separate GFTSMC
decoupled systems,

𝑢1(𝑡) = − 0.0045𝑦1 − (0.3017 + 𝛼1) ̇𝑦1 − 𝛽1
𝑑
𝑑𝑡𝑒1(𝑡)(𝑞1/𝑝1)+

𝛼1 ̇𝑦𝑑1 + ̈𝑦𝑑1 − 𝜙1𝑒1(𝑡) − 𝛾1𝑒1(𝑡)(𝑞1/𝑝1)

𝑢2(𝑡) = − 0.0032𝑦2 − (0.1763 + 𝛼2) ̇𝑦2 − 𝛽2
𝑑
𝑑𝑡𝑒2(𝑡)(𝑞2/𝑝2)+

𝛼2 ̇𝑦𝑑2 + ̈𝑦𝑑2 − 𝜙2𝑒2(𝑡) − 𝛾2𝑒2(𝑡)(𝑞2/𝑝2)

(35)

where

𝑠1(𝑡) = ̇𝑒1(𝑡) + 𝛼1𝑒1(𝑡) + 𝛽1𝑒1(𝑡)𝑞1/𝑝1

𝑠2(𝑡) = ̇𝑒2(𝑡) + 𝛼2𝑒2(𝑡) + 𝛽2𝑒2(𝑡)𝑞2/𝑝2

(36)

For simulation studies, values of the constants in Eqs. (34)
and (35) are taken as, 𝛼1 = 1.347, 𝛼2 = 1.6132, 𝛽1 =
0.5167, 𝛽2 = 0.834, 𝜙1 = 0.0149, 𝜙2 = 0.0276, 𝐿1 =
0.832, 𝐿2 = 0.9637, and 𝑦𝑑1 = 𝑦𝑑2 = 1.

From Eqs. (32) and (33), the control signals, 𝑢1(𝑡) and
𝑢2(𝑡) are designed such that they are used to track the
given setpoint, for the wood-berry distillation column. A
numerical simulation using MATLAB/Simulink platform
is carried out. Figs. 2 and 3 show the results for setpoint
tracking and controller efforts without any disturbances.
The GFTSMC controller performs better than the other
strategies. Figs. 4 and 5 show the result of a multi-
level setpoint change and the disturbances to check the
robustness of the controller. Table 1. gives the summary
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Table 1: Summary of simulation results: 𝑀𝑝, peak
overshoot (%); 𝑡𝑟, rise time(sec); 𝑡𝑠, settling time; ISE,
integral square error; IAE, integral absolute error.

Controller Type 𝑀𝑝 𝑡𝑟 𝑡𝑠 𝐼𝑆𝐸 𝐼𝐴𝐸
GFTSMS 0 4.35 32.9 48.6 83.10
FTSMS 0 5.01 41.23 50.67 88.79
SMC 0 6.26 55.2 53.25 91.27

Fig. 2: Output response without disturbances.

Fig. 3: Controller efforts.

of simulation results for time-domain specifications and
performance indices such as integral square error (ISE)
and integral absolute error (IAE).

To check the robustness of the proposed controller,
0.5% of external disturbances are added at 800 and 1500
seconds with 15% parametric uncertainty in the system
model. Similarly, the setpoint is changed from 40% to
50% for 600 to 1000 seconds and 40% to 34% from 1400
to 1700 seconds. From Figs. 4 and 5, it is observed that
the suggested controller rejects external disturbances and
setpoint changes.

5. EXPERIMENTALWORK
5.1 System Modeling

Experimental tests are conducted on a nonlinearly
coupled tank level system to check the applicability
and efficiency of the proposed method. Fig. 6 shows,
laboratory experimental setup. An adjustable valve (𝑉1)
is used to interlink the coupled tanks. Control valve
𝑉2 and 𝑉3 are provided for discharge. Each tank has
a level transmitter (LT) to have 4-20mA supply output

Fig. 4: Output response with disturbance and multilevel
setpoint change with 15% parametric uncertainty.

Fig. 5: Controller efforts with disturbance and multilevel
setpoint change with 15% parametric uncertainty.

Fig. 6: Laboratory setup.

equivalent to 0-100% of tank level.

To provide flow in each tank, a positive displacement
pump is used. A DAQ card, PCI 6014E, is used for inter-
facing the system with a personnel computer. Through
a current- to-voltage converter, the level transmitter
is connected to analog input channel BNC 2120. For
variable frequency drives (VFD), the controller signal 0-
5V is converted to 4-20mA; through BNC 2120. Using
MATLAB and Simulink, the controller algorithm is
implemented. By using the system identification method
[27], the real-time system’s overall transfer function
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matrix is,

𝐺𝑇 (𝑠) =
[

0.43𝑒−5𝑠

1+29𝑠
0.145𝑒−10𝑠

1+40𝑠
0.172𝑒−10𝑠

1+35𝑠
0.37𝑒−5𝑠

1+27𝑠
]

(37)

From Eq. (26), the decoupler is calculated as

𝐴𝑑𝑗[𝐺𝑇 (𝑠)] =
[

0.37𝑒−5𝑠

1+27𝑠
−0.172𝑒−10𝑠

1+40𝑠
−0.145𝑒−10𝑠

1+35𝑠
0.43𝑒−5𝑠

1+29𝑠
]

(38)

𝐾(𝑠) =
[

𝑒5𝑠

0.145 0
0 𝑒5𝑠

0.172
]

(39)

𝐷𝑒𝑇 (𝑠) =
[

2.55
1+27𝑠

𝑒−5𝑠

1+40𝑠
−𝑒−5𝑠

1+35𝑠
2.5

1+29𝑠
]

(40)

The decoupled subsystems are computed as,

𝐹11(𝑠) = 1.0965𝑒−5𝑠

(1 + 27𝑠)(1 + 29𝑠) − 0.172𝑒−15𝑠

(1 + 35𝑠)(1 + 40𝑠)
𝐹12(𝑠) =𝐹21(𝑠) = 0

(41)

and

𝐹22(𝑠) = 0.925𝑒−5𝑠

(1 + 27𝑠)(1 + 29𝑠) − 0.145𝑒−3𝑠

(1 + 35𝑠)(1 + 40𝑠) (42)

With delay approximation, the reduced forms of 𝐹11(𝑠)
and 𝐹22(𝑠) are

𝐺11𝑟𝑒 = 0.9245𝑒−12.7𝑠

(1 + 113.2𝑠) ≈ 0.9245
(1 + 113.2𝑠)(1 + 12.7𝑠)

𝐺22𝑟𝑒 = 0.78𝑒−12.7𝑠

(1 + 113.2𝑠) ≈ 0.78
(1 + 113.2𝑠)(1 + 12.7𝑠)

(43)

State models of 𝐺11𝑟𝑒 and 𝐺22𝑟𝑒 are used for obtaining the
Control signals 𝑢1 and 𝑢2 as,

𝑢1(𝑡) = − 0.0007012𝑦1 − (0.0967 + 𝛼1) ̇𝑦1−

𝛽1
𝑑
𝑑𝑡𝑒1(𝑡)(𝑞1/𝑝1) + 𝛼1 ̇𝑦𝑑1+

̈𝑦𝑑1 − 𝜙1𝑒1(𝑡) − 𝛾1𝑒1(𝑡)(𝑞1/𝑝1)

𝑢2(𝑡) = − 0.00065409𝑦2 − (0.0851 + 𝛼2) ̇𝑦2−

𝛽2
𝑑
𝑑𝑡𝑒2(𝑡)(𝑞2/𝑝2) + 𝛼2 ̇𝑦𝑑2+

̈𝑦𝑑2 − 𝜙2𝑒2(𝑡) − 𝛾2𝑒2(𝑡)(𝑞2/𝑝2)

(44)

Through the decoupler, these control signals are applied
to the plant. Results obtained from simulation tests
for the proposed controller are validated with real-time
experiments conducted on a laboratory setup.

Control law constants in Eqs. (36) and (37) are, 𝑝1 =
𝑝2 = 9, 𝑞1 = 𝑞2 = 5, 𝛼1 = 2.1057, 𝛼2 = 2.625, 𝛽1 =
2.5265, 𝛽2 = 2.8614, 𝜙1 = 0.1085, and 𝜙2 = 0.2253.

Table 2: Summary of experimental results for Tank1: 𝑀𝑝,
peak overshoot (%); 𝑡𝑟, rise time(sec); 𝑡𝑠, settling time; ISE,
integral square error; IAE, integral absolute error.

Controller Type 𝑀𝑝 𝑡𝑟 𝑡𝑠 𝐼𝑆𝐸 𝐼𝐴𝐸
SMC 0 25.9 73.7 63.75 99.37
GFTSMS 0 25 70 52.38 88.71

Table 3: Summary of experimental results for Tank2: 𝑀𝑝,
peak overshoot (%); 𝑡𝑟, rise time(sec); 𝑡𝑠, settling time; ISE,
integral square error; IAE, integral absolute error.

Controller Type 𝑀𝑝 𝑡𝑟 𝑡𝑠 𝐼𝑆𝐸 𝐼𝐴𝐸
SMC 0 26.62 86.1 69.53 96.21
GFTSMS 0 26.03 74.7 59.01 90.83

Fig. 7: Nominal output response for Tank1.

Fig. 8: Error signal for Tank1.

5.2 Experimental Results

Controller outputs, 𝑢1(𝑡) and 𝑢2(𝑡) are designed such
that they are used to track the output. An experiment is
performed on a coupled tank using MATLAB/Simulink,
and results for Tank1 and Tank2 are shown. Figs. 7, 8, 9,
and 10 show the setpoint tracking without disturbance,
error signal 𝑒1(𝑡), sliding surface 𝑠1(𝑡) and controller
efforts 𝑢1(𝑡) respectively, for Tank 1, SMC, and GFTSMC.
Similarly, Figs. 11, 12, 13, and 14 show the responses
for Tank 2. Tables 2 and 3 give the summary of the
experimental results for Tank1 and Tank2 in terms of
time domain and performance indices such as ISE and
IAE for both controllers.

For testing, the robustness of the controller, setpoint is
been changed from 40% to 50% for 600 -1000 seconds and
from 50% to 40% for 1000 – 1400 seconds as a step signal.
Also, from 1400- 1700 seconds, the setpoint is changed
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Fig. 9: Sliding surface of Tank1.

Fig. 10: Controller efforts for Tank1.

Fig. 11: Nominal output response for Tank2.

Fig. 12: Error signal for Tank2.

Fig. 13: Sliding surface of Tank2.

Fig. 14: Controller efforts for Tank2.

Fig. 15: Output response for Tank1 with external distur-
bances and setpoint change.

Fig. 16: Error signal for Tank1.

Fig. 17: Sliding surface of Tank1.

Fig. 18: Controller efforts for Tank1.
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Fig. 19: Output response for Tank2 with external distur-
bances and setpoint change.

Fig. 20: Error signal for Tank2.

Fig. 21: Sliding surface of Tank2.

Fig. 22: Controller efforts for Tank2.

from 40% to 34% and from 34% to 40% for 1700 - 2000
seconds for both tanks.

In between, for 20 seconds, a 0.5% disturbance is added
from 800- 820 seconds and 1500- 1520 seconds for both
tanks. Figs. 15, 16, 17, and 18 show the setpoint tracking
with setpoint change and external disturbance added,
error signal 𝑒1(𝑡), sliding surface 𝑠1(𝑡) and controller
efforts 𝑢1(𝑡) respectively for Tank1, SMC, and GFTSMC.
Similarly, Figs. 19, 20, 21, and 22 show the responses for
Tank2.

From Figs. 7 and 11, it can be seen that the GFTSMC
controller converges rapidly as compared to conventional

SMC.The chattering is also minimized using GFTSMC, as
can be verified from Figs. 10 and 14. Figs. 15 and 19 show
the responses for the proposed controller in Tanks 1 and
2, respectively, for multi-level setpoints and disturbances
for checking the robustness of the controller. 0.5%
disturbance is added by opening a tap above the two
tanks for 20 seconds to disturb the level. 0.5% disturbance
means the level is changed from 50% to 52.5% by adding
water. From Figs. 15 and 19, the GFTSMC controller
performs far better in the presence of setpoint changes
and disturbances. Also, from Figs. 18 and 22, it can be
seen that, the chattering is minimized. Overall results,
show that, the proposed scheme can effectively handle
setpoint change and external disturbances.

6. CONCLUSION

In this paper, the GFTSMC method for multivariable
processes is analyzed. Based on the developed algorithm,
the proposed controller has minimal chattering and a
fast convergence time as compared to other control
strategies. To validate the performance of the proposed
controller, simulation is carried out on a Wood-Berry
distillation column, and experimentation is carried out
on a nonlinearly coupled tank system. The results were
compared with those of conventional SMC and FTSMC.
The simulation and experimental results confirm that
the proposed controller performs effectively for setpoint
tracking, disturbances, and parametric uncertainty. The
controller efforts are minimal for GFTSMC as compared
to FTSMC and SMC.
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