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ABSTRACT
This research will discuss the application of an au-

tomatic voltage regulator based on the feed-forward
back propagation neural network (FFBNN), which is
enhanced by the marine predator algorithm (MPA). The
marine predators algorithm is a method that adopts
marine ecosystem life that is identified in the relationship
between predators and prey. MPA is adopting a natural
approach to arranging the best food search strategies and
finding the latest strategy. The focus of the research
is on the performance of speed and rotor angle. The
performance of the proposed method will be tested
using hidden layer variations. In addition, the proposed
method will be compared with the feed-forward back-
propagation neural network (FFBNN), cascade-forward
backpropagation neural network (CFBNN), Elman recur-
rent neural network (E-RNN), and Focused Time Delay
neural network (FTDNN). The speed and rotor angle of
the proposedmethod have good values. TheMPA-FFBNN
results are not much different from other methods. The
experimental results show that the performance of the
proposed method has promising results.

Keywords: Marine predators algorithm, feed-forward
backpropagation neural network, automatic voltage reg-
ulator, metaheuristic; power system

1. INTRODUCTION
The development of technology, which is increasingly

developing, has an impact on all aspects of life [1]. The
most dominant is electricity. The electricity supply will
increase every year. In an electric system, securing
stable voltage values in assorted situations is the most
prominent control issue. This is related to power quality
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and network reliability [2]. When interference occurs
at the voltage level in the network. This will cause a
system to experience very significant interference. This
relates to the dynamics of the system. This will allow
a decrease in the performance of the devices connected
to the electricity. This will fatally damage the device.
Equipment will work effectively and efficiently when
conditions are in accordance with the nameplate of the
equipment [3].

In power systems, keeping the terminal voltage in
good condition is one focus in maintaining the stability
of the electrical system [4]. In the power system, the
output voltage of the generator will be recognized by
the automatic voltage regulator system (AVR) [5]. The
automatic voltage regulator has a function to maintain
the generator terminal voltage in a stable condition. This
voltage regulation uses exciter voltage in the generator.
The value of the exciter voltage can be adjusted through
the permissible limit. Load changes and high inductance
on the generator become problems for achieving a stable
and fast response [6].

The settings of the automatic voltage regulator will
affect the dynamics and stability of the electricity. To
fulfill control aims, the right control method has an
important role. Some researchers have dealt with a lot
of the control of AVR. Many kinds of control strategies
are used to manage AVR, such as proportional–integral–
derivative (PID) controllers. PID controllers are widely
applied in controls [7, 8]. This is due to its simple
structure and strong performance [9]. The disadvantages
of PID are delay time and linearity. This has become an
obstacle in the industry.

Complexity becomes an obstacle to finding the op-
timum value. The development of research on AVR
is pushing towards artificial intelligence. Some AVR
studies use machine learning methods, such as Particle
Swarm Optimization (PSO) [10]–[12]. Harmony Search
Algorithm (HAS) [13], Monarch Butterfly Optimization
(MBO) [14], Kidney-Inspired Algorithm (KA) [15], Harris
Hawks Optimization (HHO) [16], Salp Swarm Algo-
rithm (SSA) [17]–[19], Ant Lion Optimizer Algorithm
(ALO) [20], [21], Tree Seed Algorithm (TSA) [22], and
Grasshopper Optimization Algorithm [23]–[25].

In this paper, we present improvements in the perfor-
mance of feed-forward backpropagation neural networks
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Fig. 1: System structure.

Fig. 2: Single machine block diagram [28].

(FFBNN) using a nature-inspired optimization approach,
namely the marine predator algorithm (MPA). This was
inspired by the strategy of foraging marine predators
[26]. In this study, we are using MPA to optimize
FFBNN parameters to tune AVR. In this research, MPA-
FFBNN was applied to a single-machine system. The
application of MPA-FFBNN on a single machine system
is emphasized with respect to feed-forward back propa-
gation neural networks (FFBNN), cascade-forward back
propagation neural networks (CFBNN), Elman-recurrent
neural networks (E-RNN), and focused time delay neural
networks (FTDNN) performance against speed and rotor
angle.

2. METHODS

2.1 Automatic Voltage Regulator

Thegenerator is one of the reactive power sources, and
the major source of reactive power control for the gener-
ator is to manage excitation through an AVR. Increasing
stability and ensuring the grade of the electricity system
are seriously affected by the excitation control [20]. The
control of the generator consists of the AVR and PSS.
An automatic voltage regulator (AVR) and power system
stabilizer (PSS) were applied to fix the transient stability
of the generator. The excitation is used by AVR to
maintain synchronous generator terminal voltages at the
appropriate level. Figure 1 displays the system structure.
AVR serves to maintain the stability of the power system
in a steady state. In a transient state, the generator will
experience a disturbance that results in a decrease in the
generator terminal voltage [27].

In this research, generators are modeled in Heffron-
Phillips. Heffron-Phillips model has two loops, namely,
mechanical and electrical loops. Heffron-Phillips model-

Table 1: Symbol list of mechanical loop.

Parameter Function
𝐾1 Heffron-Phillips model coefficients
H Shaft inertia constant

𝐾𝐷 Damping constant
𝑇𝑚 Mechanical torque from turbine
𝜔 Rotor angular speed
𝛿 Rotor angle

Table 2: Symbol list of electrical loop.

Parameter Function
𝐾2 − 𝐾6 Heffron-Phillips model coefficients

𝐾𝐴 DC gain of the AVR
𝑇𝐴 Time constant of the AVR

Δ𝑉𝑟𝑒𝑓 Reference voltage of the AVR
Δ𝐸𝑓𝑑 Field winding voltage that from AVR output
Δ𝐸′

𝑞 Excited voltage

𝑇 ′
𝑑0

d-Axis transient time constant
(provided by manufacturer)

ing can be seen in Figure 2. All variables and parameters
of the Heffron-Phillips model are summarized in Table 1.

2.2 Feed-Forward Backpropagation Neural Net-
work

A neural network is a network of neuron units called
nodes. This computational method is already widely
used in the fields of classification, optimization, control
theory, and to solve regression problems. Artificial
neural networks are very effective for solving classifi-
cation problems by using detection and identification of
targets for processing. Artificial neural networks have
a dynamic character that is often used. This dynamic
character is achieved by adjusting the weight of the
desired reference. Weighting settings are carried out
to get the desired output. Weighting arrangements are
known as learning [29].

Feed-forward back propagation neural networks are
one of the most popular artificial neural networks algo-
rithms for engineering applications. The feed-forward
backpropagation neural network architecture consists of
an input layer, an output layer, and one or more hidden
neuron layers. The feed-forward backpropagation neural
network architecture can be seen in Figure 3. Each
layer has several neurons, and each neuron is related
to an adjustable weighting connection. The activation
function in the hidden layer neurons authorizes the
neural network to suit a general approach. The training
process is to adjust the weighting. This allows the
network to produce the desired response to the given
input. Forward and backward training algorithms can
be applied to minimize errors. This uses the gradient
descent algorithm to decrease it. It is the average
squared difference between the desired output network
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Fig. 3: FFBNN Structure.

and actual [30].
In the feed-forward stage, input data (𝐼𝑛) will be

processed in a hidden layer. It is linking to neuron j
with 𝑊𝑖𝑗 . 𝑊𝑖𝑗 . Is the connection weighty? Summation
functions are recapitulating the inputs: weight (𝑊𝑖𝑗) and
bias (𝑏1) in layer 1. 𝑆2 (𝑡) is the sigmoid function.

𝑆1(𝑡) =
𝑗

∑
𝑖=1

𝑊𝑖𝑗𝐼𝑛(𝑡) + 𝑏1 (1)

𝑆2(𝑡) = 𝑓(𝑆1, (𝑡)) = 1
1 + exp𝑆1

(2)

In layer 2, the output from layer 1 (𝑆2 (t)) is connected
to neurons k with connecting weights in layer 2 (𝑊𝑗𝑘).
The addition function of layer 2 is sum of output layer 1
(𝑆2 (𝑡)), weight (𝑊𝑗𝑘) and bias (𝑏2).

𝑆3(𝑡) =
𝑘

∑
𝑗=1

𝑊𝑗𝑘𝑆2(𝑡) + 𝑏2 (3)

𝑆4(𝑡) = 𝑓(𝑆3, (𝑡)) = 1
1 + exp𝑆3

(4)

Each output neuron accepts a target example that
corresponds to practicing an example of input in back-
propagation algorithm steps. The error estimation
is obtained by multiplying by the derivation of the
activation function.

𝛿𝑘 = (𝑡𝑖 − 𝑆4)𝑓 ′(𝑆3) (5)

2.3 Marine Predators Algorithm
The marine predator algorithm (MPA) is the latest

algorithm inspired by the behavior of predators and
prey patterns in nature. MPA has an algorithm that
naturally manages optimal search strategies and rate
policies between predators and prey in marine ecosys-
tems. The creatures usually aim to find their food and
keep searching. Both prey and predator are seen as
symbols of search because predators are looking for
prey. Meanwhile, the prey itself looks for food . MPA
has a character similar to most of the metaheuristics.
The population-based MPA algorithm has the following
uniform initialization at the beginning:

𝑍0 = 𝑍𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑 (𝑍𝑚𝑎𝑥 − 𝑍𝑚𝑖𝑛) (6)
where 𝑍𝑚𝑖𝑛 and 𝑍𝑚𝑎𝑥 are the lower and upper bounds for
variables. rand is a uniform random vector in the range
of 0 to 1.

According to the theory of survival of the fittest,
the highest predator is a predator who is proficient in
foraging. This predator is most worthy of being called
elite. In the MPA algorithm, prey and predators are
mentioned as agents in the search. The two variables
are initialized in two matrices, namely the elite and prey
matrices. Both matrices must be identified.

𝐸𝑙𝑖𝑡𝑒 =
⎡
⎢
⎢
⎢
⎣

𝑈 𝐼
1.1 𝑈 𝐼

1,2
𝑈 𝐼

2.1 𝑈 𝐼
2.2

⋯ 𝑈 𝐼
1.𝑑

⋯ 𝑈 𝐼
2.𝑑

⋮ ⋮
𝑈 𝐼

𝑛.1 𝑈 𝐼
𝑛.2

⋮ ⋮
… 𝑈 𝐼

𝑛.𝑑

⎤
⎥
⎥
⎥
⎦

(7)

where 𝑈 is the best predator that is duplicated 𝑛 times
with dimension 𝑑 to form an elite matrix. Predators and
prey are assumed to be search agents with algorithms
that predators use to search for prey and prey for their
own food. Elite has an algorithm to replace the top
predators with better ones. On the other hand, prey also
shares the same matrix with predators. Prey become
predator references to determine their position. The
initiation will make the initial prey in accordance with
predators to build an elite. Prey matrices are as follows:

𝑃 𝑟𝑒𝑦 =
⎡
⎢
⎢
⎢
⎢
⎣

𝑃 𝐼
1.1 𝑃 𝐼

1,2
𝑃 𝐼

2.1 𝑃 𝐼
2.2

⋯ 𝑃 𝐼
1.𝑗

⋯ 𝑃 𝐼
2.𝑗

⋮ ⋮
𝑃 𝐼

𝑖.1 𝑃 𝐼
𝑛.2

⋮ ⋮
… 𝑃 𝐼

𝑖.𝑗

⎤
⎥
⎥
⎥
⎥
⎦

(8)

where 𝑃 𝐼
𝑖.𝑗 presents the j-th dimension of the i-th prey.

The metaheuristik has the main goal is to find the
optimal solution. Every initialization will be updated
following the algorithm applied. The MPA algorithm has
three main stages in doing optimization by considering
the ratio of velocity and duplication of its constituent
elements.

Phase 1: High-Velocity Ratio (𝑣≥10)
This phase is called the phase with a high speed ratio.

Prey is exploring the area to find food. On the other hand,
predators are waiting and monitoring the movements
of prey. This scenario occurs at the beginning of an
iteration. At a high speed ratio, the best strategy is that
the predator does not move. This phase has an algorithm
that is formulated as follows:

𝑤ℎ𝑖𝑙𝑒 𝑖𝑡𝑒𝑟 < 1
3 × max_iter

⃖⃖⃖⃖⃗𝑆𝑠𝑖 = ⃖⃖⃖⃗𝑅𝑏 ⊗ (⃖⃖⃖⃖⃖⃖⃗𝐸𝑙𝑖𝑡𝑒𝑖 − ⃖⃖⃖⃗𝑅𝑏⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗⊗𝑃 𝑟𝑒𝑦𝑖) 𝑖 = 1, 2 … .𝑛 (9)

⃖⃖⃖⃖⃖⃖⃗𝑃 𝑟𝑒𝑦𝑖 = ⃖⃖⃖⃖⃖⃖⃗𝑃 𝑟𝑒𝑦𝑖 + 𝑃 × ⃖⃖⃗𝑅 ⊗ ⃖⃖⃖⃖⃗𝑆𝑠𝑖 (10)

The ⃖⃖⃖⃗𝑅𝑏 notation is a vector containing random num-
bers following the normal distribution that represents the
movements of the Brownian. This notation ⊗ shows
possible multiplications. This is RB by the prey, which
imitates the motion of the prey. R is a uniformly
conditioned random number vector with values ranging
from 0 to 1, and P = 0.5 is a constant number. The scenario
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occurs when the size of the velocity movement is large
and occurs in the initial third of the iteration.

Phase 2: Unit Velocity Ratio (𝑣≈1)
The scenario occurs when predators and prey have

the same speed. The scenario occurs in the intermediate
phase. In this phase, the character of exploration changes
to exploitation. This results in the same composition
between the tasks of exploration by prey and exploitation
by predators. The predators mimic brownian movements
and duplicate Levy flight models.

𝑤ℎ𝑖𝑙𝑒 1
3 × max_iter < iter < 2

3 × max_iter

- For the first half of the population

⃖⃖⃖⃖⃗𝑆𝑠𝑖 = ⃖⃖⃖⃖⃗𝑅𝐿 ⊗ (⃖⃖⃖⃖⃖⃖⃗𝐸𝑙𝑖𝑡𝑒𝑖 − ⃖⃖⃖⃖⃗𝑅𝐿⊗⃖⃖⃖⃖⃖⃖⃗𝑃 𝑟𝑒𝑦𝑖) 𝑖 = 1, 2 … .𝑛/2
(11)

⃖⃖⃖⃖⃖⃖⃗𝑃 𝑟𝑒𝑦𝑖 = ⃖⃖⃖⃖⃖⃖⃗𝑃 𝑟𝑒𝑦𝑖 + 𝑃 × ⃖⃖⃗𝑅 ⊗ ⃖⃖⃖⃖⃗𝑆𝑠𝑖 (12)

where ⃖⃖⃖⃖⃗𝑅𝐿 is a random vector formed from the levy
distribution that describes the levy movement? This
session can support exploitation.

- For the second half of the population

⃖⃖⃖⃖⃗𝑆𝑠𝑖 = ⃖⃖⃖⃗𝑅𝑏 ⊗(⃖⃖⃖⃖⃗𝑅𝑏 ⊗ ⃖⃖⃖⃖⃖⃖⃗𝐸𝑙𝑖𝑡𝑒𝑖 − ⃖⃖⃖⃖⃖⃖⃗𝑃 𝑟𝑒𝑦𝑖) 𝑖 = 𝑛/2, … .𝑛 (13)

⃖⃖⃖⃖⃖⃖⃗𝑃 𝑟𝑒𝑦𝑖 = ⃖⃖⃖⃖⃖⃖⃗𝑃 𝑟𝑒𝑦𝑖 + 𝑃 × 𝐶𝐹 ⊗ ⃖⃖⃖⃖⃗𝑆𝑠𝑖 (14)

𝐶𝐹 = (1 − 𝐼𝑡𝑒𝑟
𝑀𝑎𝑥_𝑖𝑡𝑒𝑟 )

(2 𝐼𝑡𝑒𝑟
𝑀𝑎𝑥_𝑖𝑡𝑒𝑟 )

(15)

where 𝐶𝐹 is an adaptive controller that is used to
regulate the steps of predator mobility.

Phase 3: In Low-Velocity Ratio (𝑣 = 0.1)
In the low-velocity ratio phase, the predator is moving

faster than the prey. This phase is at the end of the
scenario and is identical to high exploitation.

𝑤ℎ𝑖𝑙𝑒 𝑖𝑡𝑒𝑟 > 2
3 × max_iter

⃖⃖⃖⃖⃗𝑆𝑠𝑖 = ⃖⃖⃖⃖⃗𝑅𝐿 ⊗ (⃖⃖⃖⃖⃗𝑅𝐿 ⊗ ⃖⃖⃖⃖⃖⃖⃗𝐸𝑙𝑖𝑡𝑒𝑖 − ⊗⃖⃖⃖⃖⃖⃖⃗𝑃 𝑟𝑒𝑦𝑖) 𝑖 = 1 … .𝑛
(16)

⃖⃖⃖⃖⃖⃖⃗𝑃 𝑟𝑒𝑦𝑖 = ⃖⃖⃖⃖⃖⃖⃗𝑃 𝑟𝑒𝑦𝑖 + 𝑃 × 𝐶𝐹 ⊗ ⃖⃖⃖⃖⃗𝑆𝑠𝑖 (17)

The explanation can be summarized by saying that the
predator does not move in phase 1, phase 2 movements
mimic the Brownian strategy, and phase 3 movements
show the Levy strategy. The scenario can also turn
prey into other potential predators, e.g., sharks and
tuna. Both are predatory fish. On the other hand,
tuna can fall prey to sharks. The predators in the
sea will experience changes in habits caused by several
environmental factors, such as the formation of eddies or

the effect of fish aggregating devices (FADs). The effect
of FAD is formulated as follows:

⃖⃖⃖⃖⃖⃖⃗𝑃 𝑟𝑒𝑦𝑖 =

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

⃖⃖⃖⃖⃖⃖⃗𝑃 𝑟𝑒𝑦𝑖 + 𝐶𝐹
× [𝑍0 = 𝑍𝑚𝑖𝑛 + ⃖⃖⃗𝑅 ⊗ (𝑍𝑚𝑎𝑥 − 𝑍𝑚𝑖𝑛)] ⊗ 𝐴

if 𝑟 ≤ 𝐹 𝐴𝐷𝑠
⃖⃖⃖⃖⃖⃖⃗𝑃 𝑟𝑒𝑦𝑖
+ [𝐹 𝐴𝐷𝑠 (1 − 𝑟) + 𝑟] (⃖⃖⃖⃖⃖⃖⃗𝑃 𝑟𝑒𝑦𝑟1 − ⃖⃖⃖⃖⃖⃖⃗𝑃 𝑟𝑒𝑦𝑟2)

if 𝑟 > 𝐹 𝐴𝐷𝑠
(18)

where the trend value is 0.2. This value indicates the
search process is influenced by FAD. R is a uniform
random value with a range of 0 to 1. A value is a vector
containing the values 0 and 1. This value contains an
array that is set up with an algorithm if the value is below
0.2, The value is assumed to be 0. On the other hand, if
the value is greater than 0.2. The value will be set to 1.
Marine predators are able to record the best position ever
achieved. They can remember where they caught their
prey. This is an important point of the MPA algorithm.
The capability is implemented in memory in MPA.

2.4 The Proposed MPA-FFBNN Model
TheAVR settings using the MFA-FFBNN hybrid model

will be applied. The steps to adapt MPA-FFBNN for
tuningAVR are illustrated in Figure 4. The initialization is
the first step for all meta-heuristic algorithms. The initial
values of the top predator and the weights of the FFBNN
are arranged randomly at the start. Initial weighting is a
random value between -1 and 1. The output of the MPA
will be a potential weighter for FFBNN. Potential weights
can be used on the network. The error is the difference
between output and target.

3. RESULTS AND DISCUSSION
To confirm the effectiveness and efficiency of the

MPA-FFBNN controller, this section discusses the results
of comparisons with the FFBNN, CFBNN, Elman-RNN,
and FTDNN algorithms. The parameters of the system
are assumed to have the same value. In Figure 5, the
novelty of the MPA-FFBNNAVRmodel has been plugged
in to replace the regular AVR.

Performance measurement of AVR will use the max-
imum overshoot, understood, and settling time of the
input. The first experiment is using hidden layer 4. The
results of the experiment are the speed response and the
rotor angle, which can be seen in Figs. 6 and 7. The
results of the comparison between the 4 methods of the 5
methods used show very thin differences in speed and
rotor angle. Different results are shown when using
the E-RNN algorithm. The application of the proposed
method gives different results for maximum undershoot
and overshoot on the speed response value. The peak of
the undershoot result produces the lowest value, while
the peak of the overshoot value produces the highest
value. The settling time value for speed response when
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Fig. 4: The proposed MPA-FFBNN flowchart.
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Table 3: Results of training with 4 layers.

Methods Iteration Time Performance Iter Speed Response Rotor Angle Response

Under
Shoot

Over
Shoot

Time
Settlling

(s)

Under
Shoot

Over
Shoot

Time
Settlling

(s)
FFBNN 00:00:13 7.86e-09 344 -0.6557 0.4791 52 -3.6471 0.8126 48
CFBNN 00:00:02 6.45e-17 4 -0.6554 0.4821 52 -3.6900 0.8138 49
E-RNN 00:00:13 4.68e-10 927 -0.6592 0.5216 56 -3.7732 0.9865 93
FTDNN 00:00:06 9.98e-11 28 -0.65619 0.4789 52 -3.6920 0.8147 49

MPA-FFBNN 00:00:10 1.66e-10 420 -0.6512 0.4835 52 -3.6666 0.8155 49

Table 4: Results of training with 8 layers.

Methods Iteration Time Performance Iter Speed Response Rotor Angle Response

Under
Shoot

Over
Shoot

Time
Settlling

(s)

Under
Shoot

Over
Shoot

Time
Settlling

(s)
FFBNN 00:00:02 9.86e-11 54 -0.653 0.4847 48 -3.6471 0.8126 58
CFBNN 00:00:01 2.83e-18 5 -0.655 0.4822 48 -3.6613 0.8053 59
E-RNN 00:00:09 4.74e-10 194 -0.655 0.5204 70 -3.7708 0.9850 92
FTDNN 00:00:23 2.22e-10 731 -0.654 0.4844 48 -3.6190 0.8147 57

MPA-FFBNN 00:00:15 5.28e-12 431 -0.652 0.4821 48 -3.6130 0.8094 54

Table 5: Results of training with 12 layers.

Methods Iteration Time Performance Iter Speed Response Rotor Angle Response

Under
Shoot

Over
Shoot

Time
Settlling

(s)

Under
Shoot

Over
Shoot

Time
Settlling

(s)
FFBNN 00:00:02 9.23e-11 45 -0.652 0.4845 54 -3.6904 0.8147 57
CFBNN 00:00:01 3.05e-16 6 -0.655 0.4822 54 -3.6613 0.8053 57
E-RNN 00:00:12 7.94e-10 109 -0.661 0.5220 70 -3.7649 0.9825 95
FTDNN 00:00:23 2.22e-10 731 -0.654 0.4785 54 -3.6881 0.8132 57

MPA-FFBNN 00:00:09 3.74e-12 249 -0.649 0.4859 54 -3.6381 0.8155 65

Table 6: Results of training with 16 layers.

Methods Iteration Time Performance Iter Speed Response Rotor Angle Response

Under
Shoot

Over
Shoot

Time
Settlling

(s)

Under
Shoot

Over
Shoot

Time
Settlling

(s)
FFBNN 00:00:03 9.81e-11 73 -0.651 0.4849 57 -3.6867 0.8154 58
CFBNN 00:00:01 6.67e-14 5 -0.655 0.4822 57 -3.6860 0.8121 58
E-RNN 00:00:04 9.99e-11 13 -0.659 0.5219 95 -3.7688 0.9840 98
FTDNN 00:00:23 2.22e-10 731 -0.653 0.4780 57 -3.6893 0.8177 62

MPA-FFBNN 00:00:16 1.02e-11 306 -0.650 0.4823 65 -3.6329 0.8174 66
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Fig. 5: The proposed MPA-FFBNN flowchart.

Fig. 6: Speed response in the regular operating.

Fig. 7: Rotor angle response in the regular operating.

using the MPA-FFBNN method yields the same results as
4 out of 5 methods as a comparison method. The value
is 52. Different results are shown when using the E-RNN
method. It is 56. This can be seen in Figure 6.

In the measurement of the rotor angel, it was found
that the undershoot value of the MPA-FFBNN was good,
and the result was -3.667. The results of overshoot
from MPA-FFBNN have the highest value of the other
methods. The settling time value of the MPA-FFBNN
gives the same results as the CFBNN and FTDNN
methods. The highest settling time is using the E-RNN
method. The value is 93. The lowest value is using
FFBNN. The value is 48. This can be seen in Figure 7.

The complete results of applying the four hidden
layers can be seen in Table 3. The results of the
iteration and performance of the MPA-FFBNN method
show better values than the FFBNN, E-RNN, and FTDNN
methods. The second test is to apply eight hidden
layers. The results of the simulation can be seen in
Table 4. The results of overshoot and undershoot on
the speed response show the best value when using the

MPA-FFBNN method. On the other hand, the results of
the rotor angle response are different for overshoot and
undershoot. The undershoot results obtained the best
value, which is equal to -3,613. While the overshoot value
of the MPA-FFBNN is under the CFBNN method. The
value is 0.8053.

The third experiment involves applying 12 hidden
layers for each method. The speed response for the
undershoot of MPA-FFBNN is -0,649. This value is below
the CFBNN value. While the overshoot value of MPA-
FFBNN is 0.4859. The value is better than the E-RNN
method. The values of the rotor angle for overshoot and
undershoot in MPA-FFBNN are 0.8155 and -3.681. The
undershoot value of MPA-FFBNN is the best. On the
other hand, the overshoot value of MPA-FFBNN is still
below that of the FFBNN, CFBNN, and FTDNN methods.
The details can be seen in Table 5.

The last experiment uses 16 hidden layers. The
undershoot result for speed and rotor angle on MPA-
FFBNN is the best. The results are -0.650 and -3.629.
On the other hand, the overshoot value for the speed
response is still below the CFBNN method, and the
overshoot value for the rotor angle response is still below
the CFBNN and FFBNN methods. The detail can be seen
in Table 6.

4. CONCLUSION

This research is to introduce the new marine predator
algorithm (MPA)method by Faramarzi (2020). The author
conducts research by integrating with existing neural
networks, namely FFBNN.The integration between MPA
and FFBNN resulted in a hybrid system. Namely
MPA-FFBNN. This is installed on an AVR that is on a
single machine. The type of single machine is Heffron-
Phillips. Tests using hidden layer variations obtained
good performance from the proposed method, although
not the best. From the experimental results, the proposed
method has produced promising results.
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