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ABSTRACT

Oil as an insulating medium is widely used in power
apparatus and it is important to have knowledge about
its breakdown characteristics. Support Vector Machine
(SVM) can be a fruitful tool for estimation of breakdown
voltage (BDV). In this work, the objective is to explore
the application of SVM to estimate breakdown voltage of
vegetable oil. Experiments are carried out on vegetable
oil to obtain its characteristic breakdown voltage using
Weibull distribution. Experiments are carried out using
different electrode geometry and electrode gap. At the
breakdown condition, the electric field distribution is
simulated using FLUX software and various electric field
features such as electric field intensity, energy density,
etc. are extracted. These electric field features are
preprocessed and used to train SVM. The optimum value
of SVM parameters are obtained using grid search and
K - fold cross validation technique. The trained SVM
model is used to estimate the breakdown voltage of the
oil medium under different electrode gap and shape. It
is seen that the estimated BDV fairly matches with the
experimental results.

Keywords: Breakdown Voltage, Weibull Distribution,
Support Vector Machine, Principal Component Analysis,
K - Fold Cross Validation, Grid Search, Mean Square
Error

1. INTRODUCTION

The insulating medium plays vital role for the sys-
tematic and reliable operation of power equipments. Oil
insulating medium is widely used in oil filled cables, oil
circuit breaker, power transformers etc., and breakdown
voltage is one of the dominant characteristics. Many
research is being carried out to understand the break-
down characteristics of oil insulating medium in various
equipments [1-3]. Therefore, estimation of breakdown
voltage is important.

Manuscript received on October 16, 2023; revised on March 31, 2024;
accepted on April 13, 2024. This paper was recommended by Associate
Editor Chawasak Rakpenthai.

"The author is with Department of Electrical Engineering, Indian
Institute of Technology Indore, India.

2The author is with Department of Electrical Engineering, National
Institute of Technology Jamshedpur, India.

Corresponding author: idnan1990@gmail.com

©2024 Author(s). This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivs 4.0 License. To view a copy of
this license visit: https://creativecommons.org/licenses/by-nc-nd/4.0/.

Digital Object Identifier: 10.37936/ecti-eec.2024222.251297

Fig. 1: Experimental set up for breakdown test.

Quantitative assessment of breakdown voltage using
statistical tool is essential [4]. Weibull distribution is
used to quantify breakdown voltage behaviour and is
preferred to normal distribution owing to its asymmetric
nature [5]. On the other hand, statistical machine
learning tools i.e. Support Vector Machine (SVM) is a
state of art technique, and is widely used in non-electrical
domain [6, 7]. In electrical domain, SVM has been
use in the field of high voltage such as impulse fault
identification in transformers, optimization of electric
field in insulators and classification of partial discharge
in XLPE cable joints, prediction of air breakdown voltage,
etc. [8 - 13].

In this work, SVM is used to estimate breakdown
voltage of vegetable oil. Experimental data are analysed
using Weibull distribution. Using FLUX software, electric
field distribution at breakdown condition is simulated.
Various electric field features are extracted from the sim-
ulated field distribution and pre-processed to train SVM.
The trained SVM model is used to estimate breakdown
voltage of vegetable oil under different electrode gap and
electrode shape. An error analysis is done, to compare
the experimental and the SVM estimated breakdown
voltage

2. METHODOLOGY

In this work, breakdown tests are carried out on
vegetable oil as a dielectric medium under different
experimental conditions. The experimental results are
statistically analysed to obtain breakdown voltage char-
acteristics of the oil medium. The breakdown test data are
used to train and test SVM for prediction of breakdown
voltage. The estimation of breakdown voltage using
SVM comprises of (1) Binary labelling of breakdown



2 ECTI TRANSACTIONS ON ELECTRICAL ENGINEERING, ELECTRONICS, AND COMMUNICATIONS VOL.22, NO.2 JUNE 2024

voltage, (2) Extraction of electric field features, (3)
feature dimension reduction and (??) SVM training and
estimation of BDV.

2.1 Experimental Procedure & Statistical Analysis

The breakdown test experiments are carried out on
BAUR DPA 75 C, a oil breakdown voltage tester. The
equipment have applied voltage range from 0 to 75 kV,,,
with varying voltage slew rate from 0.5 kV/sec to 10
kV/sec. In this experiment, using plate — plate electrode
configuration, electrode gap distance is varied from 1.5
mm to 5.5 mm in a step of 0.5 mm. The applied voltage
slew rate or ramp rate is kept constant at 5 kV/sec. For
each electrode gap, ten breakdown tests are conducted
with a time gap of 15 minutes between consecutive
breakdown tests. Also the same breakdown test is carried
out with sphere — sphere electrodes. The experimental
set—up is shown in Fig. 1.

Two parameter Weibull distribution function given by
equation (1) is used to obtain characteristic breakdown
voltage of oil medium. Scale parameter (a) provides
information about breakdown voltage whose probability
of occurrence is 63.2 %, whereas shape parameter (f)
gives information about the nature of breakdown.

F(V)=1-exp [-(%)ﬁ] (1)

Based on the characteristic breakdown voltage or scale
parameter, upper and lower range of breakdown voltage
is selected. If the characteristic breakdown occurs at
V,, then the voltage range V, to V, + 10 kV is assigned
as +1, and V, to V, — 10 kV is assigned as -1. The
voltage range V, to V, + 10 kV pertains to the decision
that breakdown may occur in oil insulation whereas V,,
to V, — 10 kV relates to the decision that oil insulation
may withstand breakdown. The electric field features for
the entire voltage range is extracted from the simulated
electric field distribution.

2.2 Electric Field Feature Extraction and Process-
ing

The electric field distribution with plate - plate and
sphere — sphere electrode geometry is created in FLUX
software. The electric field distribution space is divided
into three areas i.e. (i) Whole Region (WR) — entire oil
filled medium, (ii) Central Region (CR) - oil filled region
between the two electrodes and (iii) Electrode Region
(ER) — solely the surface area of the electrodes. These
areas are selected based on the possibility of occurrence
of breakdown channels. The characteristic breakdown
voltage obtained from weibull distribution for the oil
insulation is used as a boundary condition to simulate
the electric field distribution.

Based on the experimental conditions, eleven electric
field features are extracted from the simulated electric
field distribution space. The electric field features
considered are (i) Maximum electric filed strength: E,, .,

(ii) Average electric field strength: E,,,, (iii) Distortion
factor of the electric field: Epf, (iv) Total Electric Field
energy: U, (v) Energy density: Up,,, (vi) Total Area: A,
(vii) Area ratio of the region which exceeds x % of the
maximum electric field strength: A,,, (viii) Energy ratio
of the region which exceeds x % of the maximum electric
field strength: U,,, (ix) The area of the high voltage
electrode surface: S, (x) The area of the region on the
surface of the high voltage electrode which exceeds x
% of the maximum electric field strength: S,, (xi) Area
ratio of the region on the surface of the high voltage
electrode which exceeds x % of the maximum electric
field strength: S, . Considering these eleven electric field
features, region-wise i.e. Whole Region, Central Region
and Electrode Region thirty-three field components are
extracted. In WR, CR and ER, thirteen, eleven and nine
field components are extracted respectively [11].

2.3 Electric Field Feature Dimension Reduction

In machine learning, Feature Dimension Reduction is
a pre-processing step. This is to select few dimensional
features from a large set of dimensional features. This
reduces the feature space optimally depending on certain
evaluation criterion. This helps to increase computa-
tional efficiency and can eliminate redundancy. The
electric field features considered i.e. field strength,
energy density, area, etc., have different magnitude and
units. To eliminate the influence of different order
of magnitudes and units, the electric field features are
normalized. Also, normalization will accelerate the
training and convergence speed of the prediction model
[14,15]. The features are normalized between the interval
1 and 2. The normalization method is given by equation
(2).
x/=—"" +1 (2)

Xmax — Xmin

where x;’ is the normalized value of a certain feature x;,
Xpin and x,,, . are the minimum and maximum values of
X;.

All the normalised electric field features may or may
not be a significant parameter for oil breakdown. To
identify the significant parameters causing oil break-
down, PCA is carried out. PCA extracts relevant
information and eliminates redundant or insignificant
information. PCA solves the eigenvalue problem of
covariance matrix of the normalised electric field fea-
tures. The cumulative variance of the eigen vectors is
represented by the index value (P) of PCA and is given
by equation (3) [16].

k
P = zi:l Di
d
Zi:lDi

where D; is the i th eigen value, d is the number of
original electric field features and k is the number of
principal components.

From equation (3), the range of P is chosen in such
way that the dominant electric field features lie within

®)



THE ESTIMATION OF BREAKDOWN VOLTAGE OF VEGETABLE OIL USING SUPPORT VECTOR MACHINE 3

'est Data (Voltage
Levels)

Cross Validation Data Eleetric Field I'raining Data
(Breakdown Voltage) Feature Exiraction (Breakdown Vollage)
T T
1 ks ]

* Normalization & 14
5 Mean Subtraction _
Voltage Labelling Voltage Labelling
-1: Withstand -1: Withstand
+1: Breakdown E Dimension +1: Breakdown
T E Reduction
| Yy v
| :— ______ Idc"".““fmm of Mapping of PC and
I ! Prificipal Voltage Labels
| bareens Component (PC) SoAge 2e
1
| 1
| : SVM Train Grid Search
|
I i
1
I 1§
' RS L Best SVM trained
| A SVM Classily ol
I —
| P o
| vy v V¥
Predicted
| Classified Labels |+ e oo P Breakdown Voltage
| for Test Set
I I
I 1 .
| * \ A — Stage | - Training
| Comparing Class = === Stage 2 - CV Prediction
Labels
----- Stage 3 - Test Prediction

¥

Error Analysis & Predicted
Breakdown for CV data

Fig. 2: Flowchart of breakdown voltage prediction model.

Table 1: Weibull parameters for different electrode gap.

Electrode Gap | Scale Parameter Shape
(mm) (kV) Parameter

1.5 18.19 7.37
2 27.46 4.38
2.5 32.32 5.77
3 38.05 5.19
3.5 48.92 5.58
4 50.40 8.15
4.5 58.70 7.01
5 67.71 5.34
5.5 71.20 14.17

the limits. Within this limit, the eigen vectors of the
covariance matrix of normalised electric field features
are used to identify the Principal Component (PC)
responsible for occurrence of breakdown or not. It is seen
that, in case of varying electrode gap with constant ramp
rate, the dominant electric field features lies within 0.78
and 0.99 of index value of P i.e. 0.78 < P < 0.99.

2.4 SVM Training and Estimation of BDV

The estimation of breakdown voltage using SVM
comprises of three steps i.e. Training, Cross Validation
(CV) and Test. The training data is utilised to train SVM
model, while CV data validates the prediction model and
confirms whether SVM will be able to perform on new

test data or not. Fig. 2 shows the flowchart of breakdown
voltage estimation model comprising of SVM training,
classification, Cross Validation and estimation or test.
Initially the SVM is trained and then using K - Fold cross
validation and grid search technique SVM parameters
ie. C and y are optimised. With the optimised SVM
parameters breakdown voltage is estimated.

The SVM classifier is constructed based on dimension-
ally reduced electric field features under different elec-
trode gap and applied voltage ramp rate. The training and
classification of data set using Support Vector Machine
uses Radial Basis Function as Kernel function. The K
- Fold cross validation in association with grid search
optimisation technique is used to estimate the optimal
value of penalty coefficient (C) and kernel parameter
(7). The penalty coefficient (C) and the kernel parameter
(y) are the tuning parameters of SVM model. The
estimation of these parameters is important for optimum
performance of SVM model. In grid search method, the
range of y is taken from 27* to 2* and range of C is taken
from 2 to 2'° with step size of 2*!. The range of C and y
is so selected that less points cover a large range of search
space. The finer the search space, the better will be the
solution obtained however at the cost of computational
burden [14 - 19].

The optimised SVM model is then used to estimate
breakdown voltage. Initially the estimated breakdown
voltage is assumed to be V), and its dimensionally
reduced electric field features are fed to SVM model.
If the output of SVM is - 1, the assumed breakdown
voltage magnitude is increased by dV ie., V, + dV.
This updated breakdown voltage is again fed to SVM
model and its output is recorded. This process continues
until at a critical voltage magnitude such that the SVM
output changes from — 1 to + 1. This critical voltage
magnitude defines the estimated breakdown voltage.
Thus, a regression problem is converted to a binary
classification problem [11].

3. RESULTS AND DISCUSSION

This section presents the experimental results and the
estimated breakdown voltage using SVM. The breakdown
test and estimation of breakdown voltage using SVM are
carried out for two different electrode configurations i.e.
plate — plate and sphere — sphere. The electrode gap
distance is varied and the ramp rate of applied voltage
is maintained constant.

3.1 Plate - Plate Electrodes

The breakdown test of oil insulating medium is carried
out using oil insulation breakdown voltage tester. The
electrode gap is varied from 1.5 mm to 5.5 mm. The
applied voltage ramp rate is kept constant at 5 kV/sec.
At each electrode gap, ten breakdown tests are carried
out. Weibull analysis is carried out using these ten
breakdown test data. The table 1 shows the Weibull
parameters i.e. scale parameter and shape parameter of
the oil breakdown test. It is observed that with increase
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Fig. 3: Weibull plot for different electrode gap.
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Fig.4: Percentage cumulative variance of the principal
components for Whole Region.

in electrode gap the breakdown voltage magnitude
increases. It is obvious that with increase in electrode
gap, higher voltage is required to create electric field
strength more than the breakdown strength of oil to
cause breakdown. The shape parameter lies between
4 to 15 which indicates intrinsic breakdown of oil [5].
Fig. 3 shows the Weibull plot of oil medium for different
electrode gap.

The electric field features for three areas of possible
breakdown channels were extracted namely: (i) Whole
Region, (ii) Central Region and (iii) Electrode Region. The
details of eleven electric field features are discussed in
section 2.2. The breakdown voltage prediction using SVM
is discussed region wise.

Whole Region: Electric field features corresponding
to entire region of oil medium are extracted. Features
are post processed by normalization and dimension
reduction is carried out using PCA. Fig. 4 shows the per-

log, C

Fig. 5: Accuracy vs. log, C vs logyy for Whole Region.

+  lrain
& Test
! Support Vectors

(]

'E & jiS mm ':_
] il ms M 3 4 .:
=0 [ " oY :;
: | B % d + o
B3 BR B . ot P
1| S mm R’E iﬁl ‘; : =
- iR o
E g % B t 1.5 men
"\ 20 mm
2 50 mm
4.0 mm h
& Degislon Flane
b -
- 4
o0 PC 3 L1} =

Fig. 6: Trained SVM model for Whole Region.

centage cumulative variance vs the number of principal
components arranged in ascending order of Eigen values.
It is observed that the first 3 components show significant
cumulative variance. These 3 components are considered
to be dominant electric field feature for breakdown of oil
medium. The Eigen values of these dominant principal
components accounts to an index value P ie. 0.78 < P
<0.99. These components hold major information of the
original features while reducing the number of features.
The tuning of SVM model depends on C and y parameters.

The range of C and y considered to estimate optimum
value is mentioned in section 2.4. In Grid Search method,
for different combination of C and y, the prediction
accuracy will be different. Fig. 5 shows the effect of
change of C and y on the accuracy of the prediction
model. With best values of C = 6.69 and y = 1.23, a
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Fig. 7: Comparison of experimental and estimated break-
down voltage for Whole Region.

maximum accuracy of 83.55 % is obtained. In the search
space due to exponential range of C and y, x and y axes
are plotted with log base 2 i.e. log,C and log,y. This is
done to obtain to show uniform scaling.

The SVM plot of the trained model considering 3
principal components i.e., by 1¥ PC, 2" PC and 3" PC
respectively is shown in Fig 6. The plot shows electric
field features corresponding to the applied voltage for
a particular electrode gap have clustered, and when
dimensionally reduced electric field features correspond-
ing to the applied voltage will cross the SVM plane, a
breakdown is recorded. Also it is seen that the support
vectors are placed on the hyperplane and lies along the
line of the training data. Also, from the graph it can be
clearly seen than that the 1% PC captures the maximum
variance of the electric field features followed by 2"
and 3™ PC respectively. Even though the cumulative
variance contribution of 2"¢ and 3" PC is not much
in comparison to the 15" PC, still there must be a non-
linear relationship between the features of electric field
and breakdown voltage. Fig. 7 shows the comparison
of the estimated breakdown voltage and experimental
breakdown voltage.

Central Region: Electric field features correspond-
ing to central region are extracted from simulated electric
field distribution. It is observed that the last six field
components of the central region did not change because
of the uniformity of the electric field in this region.
Therefore the analysis was further carried out with the
rest 27 components of electric field. The field features
are post processed by normalization and dimension
reduction using PCA. Fig. 8 shows the percentage
cumulative variance vs the number of PC’s arranged
in ascending order of eigen values. It is seen that
only 3 components are dominant out of 27 components
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Fig. 8: Percentage cumulative variance vs.
Components in central region.

Principal

considered. The PC’s corresponding to the eigen values
whose cumulative contribution of variance accounted
to an index value P (0.78 < P < 0.99) are selected.
These components are significant and dominant electric
features for breakdown.

Grid search is employed and for different combination
of C and y, the prediction accuracy will be different for
the proposed model. Fig. 9 shows the effect of change
of C and y on the accuracy of the prediction model. It is
seen that with C = 4 and y = 1.14, maximum accuracy is
82.89%. The SVM plot of the trained model considering
first 3 principal components ie. 1% PC, 2" PC and
3" PC is shown in Fig. 9. In Fig. 10, the support
vectors on the hyperplane coincides with the training
data. It is observed, similar to Whole Region, that 1%
PC is more dominant than 2" and 3"¢ components.
However all 3 components are the most significant to
cause breakdown. Fig. 11 shows the comparison of
the estimated breakdown voltage and the experimental
value.

Electrode Region: Similar to whole Region and
Central Region, electric field features corresponding to
Electrode Region are extracted and processed. All 33
components of electric field features are considered. Fig.
12 shows the percentage cumulative variance vs the
number of PC’s arranged in ascending order of Eigen
values. Similar to the previous regions, 1* PC, ond
PC and 3" PC are dominant. The index value (P)
of Principal Components corresponding to the Eigen
values are seen to lie within 0.78 < P < 0.99. Using
Grid search technique, the optimum value of C and
y ie. the tuning parameters of SVM is found to be
12.99 and 1.14 respectively and with highest accuracy of
84.87 %. Fig. 13 shows the variation of C and y with
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Fig. 10: Trained SVM model for Central Region.

the accuracy of the prediction model. The plot of the
trained SVM model considering 1*' PC, 2" PC and 3¢
PC is shown in Fig. 14. Comparing to other regions,
similar observation is recorded. The electric field features
corresponding to the applied voltage have clustered for
a particular electrode. Also, the 1* PC captures the
maximum variance of the electric field features followed
by 2™ and 3" PC respectively. However, all the 3
components are significant. The support vectors lie on
the hyperplane and superimposed with the training data.
Fig. 15 shows the comparison of the experimental and
estimated breakdown voltage.

Breakdown voltage of vegetable oil medium is esti-
mated considering three different regions of the electric
field distribution space. Comparing all 3 regions, it is
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Fig. 11: Comparison of experimental and estimated break-
down voltage for Central Region.
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Electrode Region.

seen that experimental breakdown voltage fairly matches
with the estimated values. However, it is not clear
which region corresponds to better prediction. The
error analysis is carried out to identify the region that
provides nearly accurate estimated breakdown voltage.
The experimental breakdown data is compared with the
estimated values of each region and the Mean Square
Error (MSE) is calculated. MSE ensures that the trained
model has no outlier predictions with huge errors.

Table 2 shows the experimental and estimated break-
down voltage values. It is observed that mean square
error is least for Electrode Region compared to other
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Table 3: Weibull parameters for different Sphere — Sphere
electrode gap.

™ pe

Electrode beale Shape
Gap (mm) Farameter Parameter
(kV)

1.5 29.8515 2.6878
2 32.7908 4.2880
2.5 38.1990 8.1537
3 49.8777 6.2251
3.5 56.9057 4.4135
4 61.7906 4.5838
4.5 64.8723 3.0360
5 67.4841 4.2815
5.5 76.4111 4.3095

Fig. 14: Trained SVM model for Electrode Region.

Table 2: Prediction and error calculation for three cases of
discharge channel.

Table4: Prediction and error calculation for electrode
region with Sphere — Sphere electrode.

Electrode Expt. SVM Estimated (kV)
Gap (mm) (kV) WR CR ER
1.5 18.0 18.0 16.0 16.0
2.5 32.5 31.0 30.5 30.5
3.5 49.0 45.5 46.0 46.0
4.0 50.5 51.5 52.0 52.0
4.5 58.5 59.5 61.0 60.5
5.5 71.0 77.0 69.5 70.0
MSE 1.2076 | 0.8779 | 0.8207

regions. Therefore, it can be expected that the breakdown
occurred near the electrode region and of an intrinsic

Electrode Gap Experimental SVM estimated

(mm) (kV) (kV)

1.5 30.0 27.0

2.5 38.0 40.5

3.5 57.0 57.0

4.0 61.5 62.0

4.5 65.0 68.0

pie) 76.0 72.0

MSE 1.06

nature.

3.2 Sphere — Sphere Electrodes

The breakdown voltage test is carried out using sphere
— sphere electrode configuration. The sphere electrodes
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or ball type electrodes are as per IEC 60156. The electrode
gap is varied from 1.5 mm to 5.5 mm and the ramp rate of
applied voltage is kept constant at 5 kV/sec. Ten break-
down tests are carried out for each electrode gap. The
table 3 shows the Weibull parameters of the breakdown
test. The electric field distribution is simulated in FLUX
software with sphere - sphere electrode shape. All the 11
electric field features and its 33 components are extracted
for varying electrode gap. Similar to the plate — plate
electrodes, these extracted features are post processed
by normalization and dimension reduction was carried
out using PCA. The electric field features are extracted
for all 3 regions i.e., WR, CR and ER. In case of plate
— plate electrodes, it is seen that electrode region gives
better prediction accuracy compared to other regions.
Therefore, in sphere — sphere electrodes the results of
Electrode Region is reported. According to PCA, 3
components of electric field features are dominant. The
PCA index corresponding to the Eigen values whose
cumulative contribution of variance is significant ranges
from 0.9003 < P < 0.9988. According to grid search
technique, prediction model highest accuracy of 89.02 %
is obtained for C = 12.99 and y = 1.07. Similar to plate -
plate electrodes, 1*' PC is more significant and dominant
compared to 2" PC and 3" PC. Fig. 16 shows the
comparison of experimental and estimated breakdown
voltage from the optimized SVM model for Electrode
Region. The experimental and estimated values fairly
match. Table 4 shows the SVM estimated breakdown
voltage values and calculated error. The calculated Mean
Square Error between the experimental and estimated
value is found to be 1.06. Comparing Table 2 and Table 4,
it is observed that estimated breakdown voltage based on
ER is higher with Sphere — Sphere electrodes compared

to plate — plate electrode. Given the size of the sphere or
ball electrodes, this may be attributed to non — uniformity
of electric field near the electrode region. Therefore, the
accuracy may be less.

4. CONCLUSIONS

The breakdown test of vegetable oil, as an oil insula-
tion medium, is carried out. The tests are done under
varying electrode gap and electrode shape. The break-
down test results are analysed using Weibull distribution
parameters. The characteristics breakdown voltage value
used as a boundary condition to simulate the electric
field distribution at breakdown condition. The electric
field features are extracted from the simulated field
distribution and processed to train SVM model. The
trained SVM model is used to predict breakdown voltage.

With plate — plate electrodes, the breakdown voltage
estimated using trained SVM model fairly matched with
the experimental results. However, estimated breakdown
value obtained considering electrode region has the least
mean square error. It is seen that among all the 33
components, only 3 components are dominant and plays
vital role in prediction of breakdown voltage. Similarly
for sphere - sphere electrodes, the 3 components of
electric field features are significant to estimate the
breakdown voltage using SVM. It is understood that the
mean square error is large and can be reduced using large
set of experimental data for SVM training. Also it is
possible other optimization technique might give better
accuracy for estimation of SVM parameters.
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