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ABSTRACT
In this paper, the wireless power transfer system with

intelligent reflecting surface (IRS) assistance is studied
to maximize the total harvested power at multiple users.
The near optimal IRS phase shifts are obtained by two
methods of successive convex approximation (SCA) and
deep learning techniques. In the optimization method
(IRS-OPT), we combine SCA technique with semidefinite
relaxation to find the suboptimal solution with high
harvested power performance. In the deep learning
method (IRS-DL), the deep neutral network is proposed
to learn the harvested power maximization via channel
information. The numerical evaluations show that the
IRS-OPT achieves the higher result while the IRS-DL
provides the solution with almost real-time computation.

Keywords: Wireless Power Transfer, Intelligent Reflect-
ing Surface, Successive Convex Approximation, Deep
Learning, Semidefinite Relaxation

1. INTRODUCTION
Many different sectors of our society such as health-

care, manufacturing, transportation, smart home, etc.,
have applications of Internet-of-Things (IoT) devices
where the limited amount of energy in device batteries is
the bottleneck of the performances of wireless systems.
Moreover, the energy starving of the battery-powered
wireless devices such as low-power physical devices (e.g.,
sensor, actuators, internet-of-things) is a crucial problem
[1–7]. To address this issue, the wireless power transfer
(WPT) with a power beacon is a promising approach
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to provide controllable energy instead of the unstable
natural energy. In addition, the WPT systems eliminate
the high cost of battery replacement and enable far-
field wireless energy transmission, enlarge the near-field
wireless charging distance, and prolong the lifetimes of
wireless devices. However, the severe degradation of
wireless signal via the long distance is a main limited of
the wireless power transfer.

Recently, there is a promising technology, namely
intelligent reflecting surface (IRS), to achieve high energy
efficiency with low power consumption and hardware
cost [8–13] where IRS utilizes the vast low-cost passive
reflecting elements integrated on a planar surface. In
general, an IRS element can independently adjust the
phase of reflected signal to smartly configure favorable
wireless propagation channels. Then, the reflected
signals can be steered to the desired receivers to enhance
the power of received signals. Specifically, we investigate
the design of IRS phase shifts to enhance the total
harvested energy for wireless power transfer.

1.1 Related Works

In [14], the authors investigated the weighted sum
harvested power with semidefinite relaxation (SDR)
method for finding the optimal phase shifts. However,
the Gaussian relaxation method is applied to obtain
the approximate suboptimal solution when the rank-1
condition is not satisfied. In [15], the achievable data rate
wasmaximized in simultaneouswireless information and
power transfer multiple-input multiple-output (MIMO)
system with IRS assistance. In [16], the wireless
power transfer was used to provide energy for sensors,
then the sensors collaborate to send information to the
access point (AP). The sensing and energy consumption
of sensors was considered and the signal-to-noise ratio
(SNR) at the AP was maximized. However, the IRS have
not applied to enhance the power transfer efficiency.

In [17], the energy beamforming and over-the-air
computation were combined to minimize the mean
square error of uplink message in IRS-aided IoT net-
works. In [18], the waveform of signal and passive
beamforming were combined to maximize energy trans-
mission for a group of users. However, the Gaussian
randomization was used to obtain the passive beam-
forming vector. In [19], the author studied the IRS-
assisted wireless powered communication where the
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users harvested radio frequency energy and then sent the
information back to the base station. The time allocation
and passive IRS beamforming were optimized via the
target of user sum-rate maximization.

The drawbacks of the conventional optimization ap-
proach is to require the iterative convex solution that
makes high complexity and limited practical applica-
tions. The recent detonation of successful performance
of machine learning in wireless communication and
optimization have received much of attention in both
academic and industrial [20–23]. In approaches based
on deep learning, the fast computation in comparison
with the conventional iterative non-convex optimization
procedure is a remarkable benefit in real-time applica-
tions. In [24], the authors exploited deep learning in
phase configuration for single user multi-input single-
output system with IRS aid. The deep neutral network
was trained by the received pilot signal as input data,
phase shifts at IRS and beamforming vector at the base
station as output data. In [25], the receiver’s location
and attributes were used to train deep neutral network
to maximize data rate and obtain the optimal IRS phase
shifts instead of the estimated channels or the pilot
signals. We note that the mentioned works utilized
supervised learning method with large data labels gener-
ated by the conventional optimization algorithm. In [26],
the hybrid beamforming with the analog part is assigned
by the deep neutral network method for multiple users.
The aim is to maximize the sum data rate of all users
with unsupervised learning method. To reduce the
overhead of training data generation, the authors in [27]
constructed a DNN to achieve the data rate maximization
for single user IRS-aided system where the input data is
the estimated channel information.

1.2 Main Contributions

In this study, we investigate the WPT system where
the power beacon sends the signals reflected by the IRS
to the multiple users. In the considered WPT system, the
wireless energy signal is severely degraded by blockage,
the IRS can concentrate the energy signals to the users
by surpassing obstacles. Hence, the energy harvesting
performance is guaranteed even in non-light-of-sight
transmission when the IRS design is optimized. As
a result, this work can enhance the wireless power
transfer efficiency with IRS support in high attenuation
environment. The target is to maximize the total
harvested power of all users by optimizing the IRS phase
shifts. A comparative investigation of two approaches
based on the optimization and deep learning techniques
is performed for the IRS-aided wireless power transfer
system with multiple users. The main contributions are
described as follows.

• The IRS-aided WPT system with multiple harvested
energy users is considered for the target of total
harvested power maximization. The optimal phase
shifts is obtained by the first IRS-OPT algorithm
where the rank-1 approximation is solved by the

Table 1: Main symbols

Symbols Meanings
𝑁 Number of IRS elements
𝐾 Number of users
𝐠 Channel vector from PB to IRS
𝐡𝑘 Channel vector from IRS to 𝑘-th user
𝑃 Transmission power at PB
𝜳 Phase shift matrix of IRS
𝜂𝑘 Energy conversion efficiency

at 𝑘-th user
𝜑𝑛 Phase shift at 𝑛-th element

successive convex approximation (SCA) and exact
penalty function method.

• The second IRS-DL approach is proposed via deep
neutral network where the loss function is formu-
lated by the total harvested power and the optimal
phase shifts are obtained at the last hidden layer. In
addition, the deep learning network is trained by the
input data of processing channel information and
loss function via a unsupervising method.

• The numerical results present the convergences of
IRS-OPT and IRS-DL methods. Also, the IRS-OPT
method provides the better harvested power for
users than the IRS-DL method does. In contrast, the
IRS-DL approach obtains results almost real time
computation compared to the IRS-OPT algorithm.

The remain of this work is arranged as follows.
Section 2 presents the system model and the problem
formulation. In Section 3, the IRS-OPT approach is
presented and summarized in Algorithm 1. In Section
4, we present the second IRS-DL approach where the
deep neutral network architecture, the loss function,
and the input/output layers are in details. Finally,
Section 5 presents the numerical results, followed by the
conclusion in Section 6.

Notations. Vectors and matrices are indicated by
boldface uppercase and lowercase letters, respectively.
𝐗𝐻 , Tr (𝐗), and rank (𝐗) are used for the conjugate
transpose, trace, and rank of matrix 𝐗, respectively. We
denote 𝐗 ⪰ 0 for positive semidefinite matrix. By
‖ 𝐱 ‖ and | 𝑥 |, the norm-2 of a complex vector 𝐱 and
the absolute value of a complex scalar 𝑥 are represented,
respectively. We also denote ℂ𝑚×𝑛 for the space of 𝑚 × 𝑛
complex matrices.

2. SYSTEM MODEL

In this part, we introduce the multi-user wireless
power transfer system with the aid of IRS and formulate
the optimization problem of IRS shift-phase design. The
main symbols and their meanings are presented in Table
1.
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Fig. 1: IRS-aided wireless power transfer system.

2.1 IRS-Aided WPT System
As shown in Fig. 1, the IRS-aided wireless power

transfer system includes one power beacon (PB), one
IRS supporting the energy transfer, and multiple energy
harvesting users. The IRS is integrated in wireless
powered communication system as [37, 38] with many
IoT applications for smart home, smart city and wireless
sensor network. The IRS is equipped by 𝑁 reflecting
elements, and 𝐾 single-antenna users harvest energy
from the PB. Since the direct links from the PB to EH
users are assumed to be blocked by the obstacles in the
considered scenario, thus the IRS has the key role to
reflect the energy signal to the energy harvesting (EH)
users.

We denote the PB-IRS and IRS-𝑘th user channels
as 𝐠 ∈ ℂ𝑁×1, 𝐡𝑘 ∈ ℂ𝑁×1, respectively. The
phase-shift matrix at the IRS is denoted by 𝜳 =
𝑑𝑖𝑎𝑔 ([𝑒𝑗𝜑1 , 𝑒𝑗𝜑2 , ..., 𝑒𝑗𝜑𝑁 ]

𝑇
) where 𝜑𝑛 is the phase shift

at the 𝑛-th IRS element, 𝑛 ∈ {1, .., 𝑁}. To reflect
maximum power of the incoming signal, the amplitude
reflecting coefficients are assumed as 1, similar to [28,
29]. As a result, the received signal at the 𝑘-th user is
expressed as

𝑟𝑘 = 𝐡𝐻
𝑘 𝜳𝐠(√𝑃 𝑥) + 𝑛𝑘, ∀𝑘 ∈ {1, .., 𝐾} (1)

where 𝑥 is signal symbol with 𝐸 {|𝑥|2} = 1 and P is the
transmit power at the PB. In addition, 𝑛𝑘 ∼ CN (0, 𝜎2

𝑘)
denotes the additive white Gaussian noise (AWGN) at the
𝑘-th EH user. Then, the amount of harvested power at the
𝑘-th user is given as

Φ𝑘 = 𝜂𝑘𝐸 {|𝑟𝑘|
2
} = 𝜂𝑘𝑃 |𝐡𝐻

𝑘 𝜳𝐠|
2, ∀𝑘, (2)

where 𝜂𝑘 ∈ (0, 1] is energy conversion efficiency for
harvesting power at the 𝑘-th user. We note that the
noise power is omitted since it is small in comparison
to the harvested power amount of signals. Therefore,
the total harvested power of all users is obtained as
𝐾
∑

𝑘=1
𝜂𝑘𝑃 |𝐡𝐻

𝑘 𝜳𝐠|
2.

2.2 Problem Formulation
The aim of IRS-aided WPT system is to maximize

the total harvested power of all users by optimizing the
phase shifts of IRS elements. The energy harvesting
maximization problem is to formulate as follows.

max
{𝜑𝑛}

𝐾

∑
𝑘=1

𝜂𝑘𝑃 |𝐡𝐻
𝑘 𝜳𝐠|

2 (3a)

s.t.: 𝜳 = 𝑑𝑖𝑎𝑔 ([𝑒𝑗𝜑1 , 𝑒𝑗𝜑2 , ..., 𝑒𝑗𝜑𝑁 ]
𝑇

) (3b)

𝜑𝑛 ∈ [0, 2𝜋) , ∀𝑛 (3c)

The objective function is the harvested power sum of
𝐾 users while the constraint is the limit of phase shifts
at the IRS. In this work, we proposed two approaches of
optimization and deep learning for solving the consid-
ered IRS design problem. In the optimization method, the
successive convex approximation is combined with the
exact penalty function method to obtain the suboptimal
solution. In the second method, the deep learning tech-
nique is exploited to find the almost real-time solution
where the unsupervised training process for the deep
neutral network uses the modified channels information.

3. OPTIMIZATION APPROACH FOR IRS DESIGN
In this section, we propose the solution via the

conventional optimization method by utilizing SCA and
penalty function methods instead of the Gaussian ran-
domization method as [18, 40]. We first perform some
manipulations to simplify the expression of the objective
function as follows.

𝐡𝐻
𝑘 𝜳𝐠 = [𝑒𝑗𝜑1 , 𝑒𝑗𝜑2 , ..., 𝑒𝑗𝜑𝑁 ] diag (𝐡𝐻

𝑘 ) 𝐠
= 𝐻 diag (𝐡𝐻

𝑘 ) 𝐠 (4)

where 𝐳 = [𝑒−𝑗𝜑1 , 𝑒−𝑗𝜑2 , ..., 𝑒−𝑗𝜑𝑁 ]
𝑇 . We denote

𝐚𝑘= diag (𝐡𝐻
𝑘 ) 𝐠 ∈ ℂ𝑁×1 and derive |𝐡𝐻

𝑘 𝜳𝐠|
2 =

|𝐳𝐻𝐚𝑘|
2. Thus, by applying Tr (𝐀𝐁) = Tr (𝐁𝐀) via [35],

we obtain

|𝐳𝐻𝐚𝑘|
2 = (𝐳𝐻𝐚𝑘)

𝐻
(𝐳𝐻𝐚𝑘)

= Tr (𝐚𝐻
𝑘 𝐳𝐳𝐻𝐚𝑘)

= Tr (𝐚𝑘𝐚𝐻
𝑘 𝐳𝐳𝐻 )

(5)

Moreover, by the SDR technique [30, 36] where the
condition𝐙 = 𝐳𝐳𝐻 is equivalent to𝐙 ⪰ 0 and rank () = 1.
We denote 𝐀𝑘 = 𝐚𝑘𝐚𝐻

𝑘 to achieve |𝐳𝐻𝐚𝑘|
2 = Tr (𝐀𝑘𝐙).

Thus, we use the novel matrix variable 𝐙 and reformulate
the optimization problem as follows.

max
𝐙∈ℍ𝑁

𝑃
𝐾

∑
𝑘=1

𝜂𝑘Tr (𝐀𝑘𝐙) (6a)

s.t.: [𝐙]𝑛,𝑛 = 1, ∀𝑛 (6b)
𝐙 ⪰ 0 (6c)
rank (𝐙) = 1 (6d)
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We observe that the rank-1 constraint is non-convex
and the positive semidifinite matrix 𝐙 satisfies Tr (𝐙) ≥
𝜆1 (𝐙) where 𝜆1 (𝐙) is the maximum eigenvalue of 𝐙 and
every eigenvalues of 𝐙 is non-negative [35, 36]. Thus, the
rank-1 constraint can be replaced by the new constraint
Tr (𝐙) − 𝜆1 (𝐙) ≤ 0. We next apply the exact penalty
function method [31] to move the new constraint to the
objective function and utilize the SCA method [34]. The
problem (6) is rewritten as

min
𝐙∈ℍ𝑁

− 𝑃
𝐾

∑
𝑘=1

𝜂𝑘Tr (𝐀𝑘𝐙) + 𝜇 (Tr (𝐙) − 𝜆1 (𝐙)) (7a)

s.t.: [𝐙]𝑛,𝑛 = 1, ∀𝑛 (7b)
𝐙 ⪰ 0 (7c)

where the large parameter 𝜇 is a penalty factor which
penalizes the positive value of (Tr (𝐙) − 𝜆1 (𝐙)). We
exploit the iterative method of SCA to solve the non-
convex optimization problem. We base on the inequation

𝜆1 (𝐙) ≥ 𝜆1 (𝐙(𝑖)) + 𝐯(𝑖)𝐻
1 (𝐙 − 𝐙(𝑖)) 𝐯(𝑖)

1 (8)

for two positive semidefinite matrices 𝐙, 𝐙(𝑖), and the
eigenvector according to 𝜆1 (𝐙(𝑖)) via [34]. Then, we
solve the subproblem with the fixed 𝐙(𝑖) as follows:

min
𝐙∈ℍ𝑁

−𝑃
𝐾
∑

𝑘=1
𝜂𝑘Tr (𝐀𝑘𝐙)

+𝜇 (Tr (𝐙) − (𝜆1 (𝐙(𝑖)) + 𝐯(𝑖)𝐻
1 (𝐙 − 𝐙(𝑖)) 𝐯(𝑖)

1 ))
(9a)

s.t.: [𝐙]𝑛,𝑛 = 1, ∀𝑛 (9b)
⪰ 0 (9c)

The optimal solution 𝐙∗ of Problem (9) is used for
updating the fixed 𝐙(𝑖) in the next iteration. The iterative
values of objective function is descent and convergent
to a local optimal point of the non-convex optimization
problem (6) with rank-1 constraint. The proof is similar
to that in [34] and here we omit it. Lastly, the proposed
algorithm 1 presents the optimization approach in details.

4. DEEP LEARNING APPROACH FOR IRS DESIGN
In recent years, machine learning techniques have

witnessed multiple successes in other fields such as
computer vision and natural language processing. A
deep neural network (DNN) can serve as an alternative to
the iterative IRS optimization process, as it can approx-
imate the output of the optimization problem directly
by learning the input. Furthermore, contrary to the
higher computational complexity of the backpropagation
process during the initial training stage, upon being
deployed, its forward passes in the inference stage only
involves simple arithmetic operations, thus offering this
approach computational superiority over the iterative
algorithm, rendering it viable for real-time use. In this
work, the unsupervised learning and new loss function of

Algorithm 1: Proposed IRS-OPT algorithm for opti-
mizing IRS-aided wireless power transfer
Input: Accuracy value 𝜀𝑎𝑐𝑐 , maximum iteration

number 𝐼max, penalty factor 𝜇.
Output: ∗, {𝜑∗

𝑛}.
1 For 𝑖 = 1, ..., 𝐼max do
2 Solve convex subproblem (9) by Matlab’s

CVX tool [32], thus obtain optimal solution
𝐙∗, 𝜆1 (𝐙∗), 𝐯1 (𝐙∗).

3 If Tr (𝐙∗) − 𝜆1 (𝐙∗) ≤ 𝜀𝑎𝑐𝑐 do
4 Break for loop.
5 End If
6 Update 𝐙(𝑖+1) ← 𝐙∗, 𝜆1 (𝐙(𝑖+1)) ← 𝜆1 (𝐙∗),

𝐯(𝑖+1)
1 ← 𝐯1 (𝐙∗).

7 End For

. . . . . .

. . .

. . .

. . .

. . . . . .

. . .

. . . . . .

Fig. 2: Deep neutral network architecture.

Table 2: DNN architecture parameters

Layer Output shape Param.#
Input Layer [2𝑁 , 1] 0
FC Layer 1 [512, 1] 512 × (2𝑁 + 1)
FC Layer 2 [256, 1] 131,328
FC Layer 3 [128, 1] 32,896
FC Layer 4 [64, 1] 8,256

Lambda Layer [64, 1] 0

the harvested power are exploited to find the IRS phase-
shifts solution instead of the supervised learning with
labeled data or different loss function of mean square
error (MSE) as [22, 24, 28]. The second deep learning
method achieves the near optimal phase shifts with the
almost real-time solution.
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4.1 Network Architecture
We implement our customized fully-connected DNN

which consists of one input layer and four hidden layers
as shown in Fig. 2. The output of each hidden layer can
be expressed as:

𝜮out = 𝐖0 + 𝐖1𝐗1 + 𝐖2𝐗2 + ... + 𝐖𝐿𝐗𝐿 (10)

where 𝐖0 and 𝐖𝑖 are the biases weights of the layer,
and 𝐗𝑖 is the output of the previous layer. Through the
training process, our model will gradually correct its set
of weights which allows it to obtain the optimal solution.
A custom Lambda layer is put at the end of the last fully-
connected layer. The Lambda layer’s output provides the
estimated phase shifts {𝜑𝑛}, then the Euler formula is
applied to obtain the phase shift vector in complex form
as

[𝑒𝑗𝜑1 , … , 𝑒𝑗𝜑𝑁 ]
= [cos (𝜑1) + 𝑗 sin (𝜑1) , … , cos (𝜑𝑁 ) + 𝑗 sin (𝜑𝑁 )]

(11)
Different from conventional DNNs which often use mean
square error (MSE) as loss function to evaluate the
accuracy of the labels of the predicted samples to that
of training samples, we define a custom loss function
directly related to the objective:

𝐿𝐹THP = − 1
𝑇

𝑇
∑
𝑡=1

𝐾
∑

𝑘=1
𝜂𝑘𝑃 |𝐡𝐻

𝑘 𝜳𝐠|
2

= − 1
𝑇

𝑇
∑
𝑡=1

𝐾
∑

𝑘=1
𝜂𝑘𝑃 |[𝑒𝑗𝜑1 , … , 𝑒𝑗𝜑𝑁 ] (diag (𝐡𝐻

𝑘 ) 𝐠)|
2

(12)
where 𝐿𝐹THP denotes as the loss function of total
harvested power at all users and 𝑇 represents the number
of training samples. This combined with the custom
Lambda layer allows the IRS-DLmodel to output the total
harvested power directly through the inference stage.

4.2 Hyperparameters
Hyperparameters in DNN context usually is a com-

bination of the number of neurons, learning rate, batch
size, activation function, optimization algorithm. The
details of DNN architecture and parameters are presented
in Table 2. Through empirical trials, we settle for the
following configurations where the hidden layers are
implemented with 512, 256, 128, 64 neurons, respectively.
We tested a variety of different combinations of learning
rate and batch size, and our simulations suggested that
an initial learning rate 10−5 and a batch size of 128
offers the best in terms of convergence and performance.
We utilize Adam [41] as optimization algorithm, as it
offers faster convergence compared to stochastic gra-
dient descent (SGD). Our training is performed on a
training set consisting of 105 samples, in which 104

samples are reserved for validation. The well-known
Adam optimization method provides the convergence of
loss function values in training stage. We test our model
on a testing set of 200 samples to obtain the final result.

users
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xIRS
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Fig. 3: System setup in the simulation.
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Fig. 4: Convergence behaviour of proposed algorithm 1 for
the number of IRS elements, 𝑁 = 8.

5. SIMULATION RESULTS

In this section, the numerical results of the proposed
IRS-OPT and IRS-DL approaches are presented to show
the effectiveness of proposed solutions. The schematic
network model for IRS-aided WPT design is plotted in
Fig. 3. The positions of PB and IRS are (0, 0) and
(𝑥IRS, 𝑦IRS) where 𝑥IRS = 5m, 𝑦IRS = 3m, unless
otherwise stated. Moreover, the users’ positions are
uniformly distributed in the circle with the center point
(𝑥cen = 10m, 0m) and the radius 𝑟 = 0.5m. The
channels include the large-scale path loss and small-scale
Rayleigh fading. The path-loss exponents of the channels
between the PB and the IRS, between the IRS and the
users are 2.2, similar to [33]. The transmission power at
the PB is 𝑃 = 40 dBW, the accuracy factor 𝜀𝑎𝑐𝑐 = 10−5,
and the penalty factor 𝜇 = 102.

The simulations of both method are realized on a
system configured with a Core i5-8400 and 8GB of RAM.
We use Tensorflow library version 2.0, Python 3.7 and
Matlab R2016a.

5.1 IRS-OPT Algorithm Results

The convergence behavior of the IRS-OPT algorithm
with𝑁 = 8 is shown in Fig. 4. It can be seen that the total
harvested power of users increases and converges within
30 iterations for different channel realizations. Thus, we
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set the maximum iteration number 𝐼max = 30 for the
convergent guarantee in the simulation.

Fig. 5 illustrates the total harvested power of all users
versus the number of IRS elements when the number of
users 𝐾 = 2, 3, 5. It can be observed that the amount of
harvested power rises as increasing the element number
𝑁 . For example, when 𝐾 = 3, the results are 4.47
dBm, 9.87 dBm with 𝑁 = 16, 32, respectively. The
reason is that the IRS can focus the reflecting signal to
the users better when having more reflecting elements.
Moreover, we can exploit the larger degree of freedom of
a variable number in IRS phase-shift vectors to achieve
higher objective value of harvested energy in Problem (3).
In addition, the greater number of users harvests more
energy in the case of the same IRS element number.

Fig. 6 presents the total harvested power versus IRS
position where 𝑥IRS is adjusted from the PB to the centre
point of user circle and 𝑦IRS is fixed for 𝑁 = 8, 16. It can
be observed in Fig. 6, the IRS position achieves the low
performance in the middle of the PB and the devices, and
the high power in the short distance from the PB or the
devices. The reason is that the signal attenuation is high
when the IRS is around of the middle and vice versus.
Nevertheless, the investigation of the IRS deployment
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Fig. 7: Total harvested power versus number of IRS
elements, 𝑁 .
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Fig. 8: Total harvested power versus number of IRS
elements, 𝑁 .

still needs to choose the IRS coordinate in future works.
For comparison, the Gaussian randomization, upper-

bound, and random phase-shifts approaches are pre-
sented as follows. First, the Gaussian randomization
in [40] is performed to obtain the approximate phase-
shift vector as follows. The problem (6) without rank-1
constraint is solved by CVX to obtain optimal solution,
𝐙∗. When rank (𝐙∗) > 1, the eigendecomposition of
𝐙∗ is performed as 𝐙∗ = 𝐕Λ𝐕𝐻 where 𝐕 ∈ ℂ𝑁×𝑁

is a unitary matrix where the column vectors are the
eigenvectors corresponding to the eigenvalues in the
diagonal matrix 𝜦 ∈ ℂ𝑁×𝑁 . We repeat 𝐼𝐺𝑅 iterations
for generating the vector ̃𝐳 = 𝐕𝜦1/2𝐰where𝐰 is a circu-
larly symmetric complex Gaussian distribution random
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Fig. 9: Training and validation losses for 105 data samples
of channel realizations with 𝑁 = 8, 𝐾 = 2.

vector, 𝐰 ∼ CN (0, 𝐈𝑁 ). Then, we derive the candidate
vector 𝐳 = 𝑒𝑗 arg( ̃𝐳), and thus the total harvested power at
EH users is achieved for each iteration. The phase-shifts
{𝜑∗

𝑛} with the best harvested power value is selected in
𝐼𝐺𝑅 iterations. Second, in the baseline of upper-bound,
the value is obtained by solving Problem (6) without
rank-1 constraint while in the second baseline, the phase-
shifts at the IRS are assigned by random values in [0, 2𝜋).

The simulation results of the different methods are
presented for comparison in Figs. 7 and 8. In Fig. 7,
when the rank of optimal solution of Problem (6) without
rank-1 constraint is larger than 1, the proposed IRS-OPT
achieves the better harvested power in comparison to
Gaussian randomization method while the upper-bound
case gives the highest values. The reason is that the rank-
1 constraint does not need to satisfy in the upper-bound
case. Moreover, the IRS-OPT provides the approximate
solution of rank-1 phase-shift matrix. In Fig. 8, the
IRS-OPT also achieves the much higher harvested power
than that of the random phase-shifts since when the
phase-shifts are optimized in IRS-OPT method.

5.2 IRS-Deep Learning Method Results

The effect of different batch sizes on the training loss
of our IRS-DL model can be observed in Fig. 9. We
notice that with a batch size of 128, the training loss
value decreases faster initially but all three batch size
configurations in our simulations converge identically
after about 10 epochs. A similar trend was observed with
validation losses. The difference is even less negligible
in Fig. 10, where we test different initial learning rate
configurations.

As illustrated in Fig. 11, the simulation results
of different batch size configurations for our IRS-DL
method are identical and closely match the performance
of the IRS-OPT method. The harvested power value
also increases correspondingly to the number of IRS
elements. We attribute this insensitivity of our network
performance towards its hyper-parameters to our choice
of network architecture and our simulation dataset of
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Fig. 10: Training and validation losses for 105 data samples
of channel realizations with different learning rates.
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Fig. 11: Total harvested power versus number of IRS
elements, 𝑁 .

105 samples. The combination of an appropriate network
designwith a relatively large dataset allow us tominimize
the need of hyper-parameter tuning.

As for the inference time, i.e. the time required to
predict the harvested power value of an input sample, is
shown in Fig. 12. It can be observed that our IRS-DL
model can offer approximate performance to the IRS-
OPT method, while consuming order of magnitude less
amount of time.

It should be noted that the training time of the IRS-DL
approach is not included, as the training phase itself is
realized during the offline stage of the network, and does
not affect the inference stage which is realized entirely
online afterwards once the network has been deployed.
The performance of our IRS-DL approach combined with
its modest computation time suggests that it can be
applied in real-time scenarios.
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6. CONCLUSION
In the considered IRS-aided wireless energy transfer

system, the harvested energy of all users is maximized
by configuring the optimal IRS phase shifts under
the two approaches of optimization and deep learning
methods. The fast convergences of IRS-OPT and IRS-
DL approaches to obtain the optimal points are shown
in numerical simulations. In addition, the Gaussian
randomization, upper-bound and random phase-shifts
methods are performed in comparison to the proposed
approaches. The IRS-OPT method provides better per-
formance in terms of total harvested energy while the
IRS-DL method enable to obtain almost real-time phase
shift design. Finally, the extensions of the proposed
works with multiple transmit antennas at the PB and the
imperfect channel information are valuable to investigate
in the future.
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