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ABSTRACT

Total Electron Content (TEC) is one of the most
important parameters in the study of the ionosphere,
especially for determining ionospheric disturbances. The
TEC levels are typically estimated from dual-frequency
GPS observation data. Since the measured TEC contains
discrepancies such as satellite and receiver biases, they
need to be removed to obtain more accurate TEC values.
In this work, we estimate the receiver bias using a neural
network technique. Based on the exhaustive evaluation,
we design a neural network (NN) model with two-hidden
layers, and it is trained with datasets from three GNSS
observation stations in Thailand. The prediction from
the proposed neural network deviates from the baseline
reference using the minimum standard deviation method
with significantly faster computational time. The trained
NN model is also tested for estimating the receiver bias
values at other untrained stations in Thailand.

Keywords: Total ElectronContent, Receiver Bias, Global
Positioning System, Ionospheric Delay, Neural Network

1. INTRODUCTION
The ionosphere is an ionized region at 50-1500 km

above the earth’s surface. The ionosphere is an important
layer for high frequency (HF), very high frequency
(VHF) and ultra high frequency (UHF) radio signal
propagations, including the Global Navigation Satellite
System (GNSS) [1] because it can absorb or bend the
radio waves as well as reflect the signals. Total electron
content (TEC), with the unit of TECU (1 TECU = 1016

electron/m2), is used as one of the important parameters
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for studying and monitoring ionospheric behavior and
disturbances. The TEC is typically estimated from a
linear combination of GNSS signals of two frequencies;
for example, in GPS, the code and carrier phase signals
of two L-band frequencies 1575.42 MHz (f1) and 1227.70
MHz (f2) [2]. The computed TEC from observation data,
however, includes not only the ionospheric TEC, but also
the offsets caused by the internal electronic circuit of the
GPS satellites, known as satellite bias, and by ground
receivers known as receiver bias [3]. In order to obtain
more accurate TEC values, these bias values need to be
estimated and removed from the raw TEC. Although the
satellite bias can be obtained from GNSS data service
providers such as the International GNSS Service (IGS)
[4], the receiver bias values still need to be estimated
using the GNSS observed data.

To estimate the receiver bias, various approaches
have been proposed in the literatures [4-8]. In [5], the
instrumental bias is computed by combining the biased
ionospheric terms from all the available receiver stations
in the Kalman filter process. In this case, the coefficients
of the polynomial terms for each station are treated
as random walk stochastic processes, and the bias is
considered as constant for the entire period (24 hours).
Because of the time variation of the instrumental bias,
frequent calibration or reestimation is required.

In [4], the researchers attempted to estimate both
TEC and receiver bias for several equatorial and low
latitude GNSS observation stations in IGS and GPS Aided
Geo Augmented Navigation (GAGAN). They implement
a five-state Kalman Filter to estimate the receiver bias.
After choosing the initial receiver bias value, a modified
fitted receiver bias (FRB) method is applied to improve
the receiver bias estimation. However, this work
considered only nighttime data in estimating receiver
bias with the FRB method because TEC variations are
relatively small during nighttime.

In [6], least-square fitting technique is used to derive
the instrumentation bias from the collected data from
GPS Earth Observation Network (GEONET) over 1,000
GPS-receiver stations in Japan, and then the minimum
summation of the TEC standard deviation method for
the single GPS-receiver bias estimation is also presented
by considering that vertical TEC from lower elevation
angles is similar to vertical TEC from higher elevation
angles. This method is simple and sufficiently accurate
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to estimate receiver bias for computing the absolute TEC
according to their observation in GEONET.

Moreover, the researchers apply the minimum stan-
dard deviation method to estimate the receiver bias to get
the absolute TEC value in [7]. The paper highlights that
the receiver bias values may not be the same throughout
the day. The gradient descent algorithm is used for
deriving the receiver bias over the GNSS observation data
in Thailand in [8] and the results show that the computa-
tional time is faster than theminimum summation of TEC
standard derivation methods with an accuracy deviation
of less than 10 percent. Alternatively, the singular value
decomposition (SVD) method is employed to eliminate
the receiver bias in Korea GPS network stations [9] and
in stations over China [10].

However, all these estimation methods require long
computational time to estimate the receiver bias. While
neural networks have been intensively applied to predict
TEC in [11] as well as the TEC forecasting models for
low-latitude regions described in [12] and [13], limited
research has been conducted on the application of neural
networks for receiver bias determination, with only one
known study conducted in Japan [14].

In this work, we develop a neural network with the
Levenberg-Marquart algorithm to predict the receiver
bias as an alternative approach. We implement a neural
network model with 2 hidden layers based on the dataset
of three GNSS stations over the Thailand region and
then evaluate the performances of the designed neural
network model in a comparison with the reference
method [6]. The trained model is also tested to compute
the receiver bias values at other untrained stations. The
train neural network model can provide the receiver bias
with faster processing time compared to the reference
method as well.

2. TOTAL ELECTRON CONTENT (TEC) COMPU-
TATION

2.1 Total Electron Content (TEC)

Slant total electron content (STEC) is defined as the
density of electrons along the line-of-sight path between
a satellite and a receiver in the ionosphere layer[15] as
shown in Fig. 1. At a single location, the STEC varies
due to elevation angles of satellites as well as the time of
day. To compute the STEC,we employ the geometric-free
combination of code and carrier phase pseudorange of
two frequencies, in GPS [12].

Based on the GPS signals, STEC can be obtained as
the difference between the pseudorange (𝑃1 and 𝑃2),
𝑆𝑇 𝐸𝐶𝑃 and the difference between the carrier phases
(𝐿1 and 𝐿2), 𝑆𝑇 𝐸𝐶𝐿, of the dual L-band frequencies
[16], i.e.,

𝑆𝑇 𝐸𝐶𝑃 =
2𝑓 2

1 𝑓 2
2

𝑘(𝑓 2
1 − 𝑓 2

2 )
(𝑃2 − 𝑃1), (1)

Fig. 1: Slant total electron content (STEC) illustration.

Fig. 2: Example of raw STEC from code pseudorange of
KMIT observation station on DOY 001, 2021.

and

𝑆𝑇 𝐸𝐶𝐿 =
2𝑓 2

1 𝑓 2
2

𝑘(𝑓 2
1 − 𝑓 2

2 )
(𝐿1𝜆1 − 𝐿2𝜆2), (2)

where 𝑘 is related to ionospheric refraction (80.62 m3/s2),
𝑓1 = 1575.42MHz, and 𝑓2 = 1227.60 MHz, 𝜆1 and 𝜆2
are the wavelengths with respect to f1 and f2, respec-
tively. An example of raw STEC from code pseudorange
measurement of the KMIT observation station on DOY
001, 2021 is shown in Fig. 2. Similarly, Fig. 3 shows the
raw STEC from carrier phase measurements of the KMIT
station on the same day.

As we can see in Figs. 2 and 3, the levels of STEC from
code pseudorange (𝑆𝑇 𝐸𝐶𝑃 ) are relatively noisy while
the variations of STEC from carrier-phase (𝑆𝑇 𝐸𝐶𝐿) are
smooth. In general, 𝑆𝑇 𝐸𝐶𝐿 is more precise, smoother,
and less sensitive to multipath than𝑆𝑇 𝐸𝐶𝑃 , although it
contains integer ambiguity due to cycle slip issue The
𝑆𝑇 𝐸𝐶𝐿 is then adjusted to the𝑆𝑇 𝐸𝐶𝑃 levelswith phase
leveling [17], to obtain adjusted STEC, 𝑆𝑇 𝐸𝐶𝑎𝑑𝑗 ,i.e.,

𝑆𝑇 𝐸𝐶𝑎𝑑𝑗 = 𝑆𝑇 𝐸𝐶𝐿 + 𝑆𝑇 𝐸𝐶𝑃 + 𝑆𝑇 𝐸𝐶𝐿, (3)

where 𝑆𝑇 𝐸𝐶𝑃 − 𝑆𝑇 𝐸𝐶𝐿 is the mean of the difference
between 𝑆𝑇 𝐸𝐶𝑃 and 𝑆𝑇 𝐸𝐶𝐿. An example of the
adjusted STEC after phase leveling on DOY 001, 2021 is
shown in Fig. 4.
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Fig. 3: Example of raw STEC from the carrier-phase
measurement of KMIT observation station on DOY 001,
2021.

Fig. 4: Example of carrier-phase STEC after levelling to
code-STEC at KMIT station on DOY 001, 2021.

The STEC can then be converted to vertical total
electron content (VTEC) which is the density of electrons
in the ionosphere along the vertical path as shown in Fig.
5. VTEC can be calculated by multiplying with the slant
factor with respect to the elevation angles of satellites
based on the Single Layer Ionospheric Model (SLIM) [6],
i.e.,

𝑉 𝑇 𝐸𝐶 = 𝑆𝑇 𝐸𝐶𝑎𝑑𝑗 cos 𝑥, (4)

where cos 𝑥 is the slant factor related to elevation angles
of GPS satellites which can be computed from

cos 𝑥 = √1 − ( 𝑅𝐸
𝑅𝐸 + ℎ𝑖𝑜𝑛𝑜

cos 𝜃)2, (5)

where 𝑅𝐸 is the radius of the earth (6,378,137 meters
in WGS84 standard), ℎ𝑖𝑜𝑛𝑜 is the assumed height of the
ionosphere at 350 km, and 𝜃 is the elevation angle of the
satellite as shown in Fig. 5.

Since, in reality, the STEC contains inherent delays
from satellite bias and receiver bias as discussed in
the previous section, the VTEC without instrumental
satellite bias and receiver bias can be expressed as

𝑉 𝑇 𝐸𝐶 = (𝑆𝑇 𝐸𝐶𝑎𝑑𝑗 − 𝐵𝑠 − 𝐵𝑟) cos 𝑥, (6)

where 𝐵𝑠 is the satellite bias and 𝐵𝑟 is the receiver bias.
The satellite bias of the GPS satellites can be obtained
from the International GNSS Service (IGS) by the Center
of Orbit Determination in Europe (CODE) [18] and the

Fig. 5: Conversion of vertical total electron content from
slant total electron content based on SLIM.

Fig. 6: Example of VTEC after removing the instrumental
bias (satellite and receiver bias) of the KMIT observation
station on DOY 001, 2021.

receiver bias still needs to be estimated based on these
computed adjusted STEC from Eq. (3) after removing the
satellite bias.

2.2 Receiver Bias Computation

Firstly, we review the minimum standard deviation
method [16] which is a well-known approach to estimate
the receiver bias of a single receiver. The computed
receiver bias from this method is used as the baseline
solution and the target values during training and testing
the NNmodel. In this method, the receiver bias is derived
after the satellite bias is removed from the adjusted STEC.
It is assumed that the VTECwith the low elevation angles
should not be different from the VTEC computed from
high elevation angles since VTEC is computed from the
GPS observation of all satellites. The sum of the standard
deviation of VTEC (𝜎𝑇 𝑜𝑡𝑎𝑙) will be minimized when we
select the appropriate receiver bias. It can be computed
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Fig. 7: Structure of a neural network model.

from [8]

𝜎𝑇 𝑜𝑡𝑎𝑙 =
𝑁𝑡

∑
𝑗=1

𝜎𝑉 𝑇 𝐸𝐶,𝑗 , (7)

where 𝑁𝑡 is the number of visible satellites at the same
time and standard deviation of VTEC (𝜎𝑉 𝑇 𝐸𝐶,𝑗 ) at time 𝑗
is

𝜎𝑉 𝑇 𝐸𝐶,𝑗 =
√√√√
⎷

1
𝑁𝑠𝑎𝑡,𝑗

𝑁𝑠𝑎𝑡,𝑗

∑
𝑖=1

(𝑉 𝑇 𝐸𝐶𝑗,𝑖 − 𝑉 𝑇 𝐸𝐶𝑗)2, (8)

where 𝑁𝑠𝑎𝑡,𝑗 is the number of satellites at time 𝑗,
𝑉 𝑇 𝐸𝐶𝑗,𝑖 is the VTEC of the 𝑖𝑡ℎ satellite at time 𝑗 and
𝑉 𝑇 𝐸𝐶𝑗 is the mean of the VTEC of visible satellites at
time 𝑗.

To estimate the receiver bias, various receiver bias
values are applied for converting the STEC to VTEC with
respect to Eq. (6). After that, the standard deviation of
the VTEC is computed, and the receiver bias value which
can give the minimum standard deviation of VTEC is
assumed to be the correct receiver bias based on Eqs. (6)
and (7). An example of VTEC after removing receiver
bias is shown in Fig. 6. We will be using this method as
a reference method.

3. NEURAL NETWORK METHOD
Neural networks are artificial adaptive systems in-

spired by the human brain’s operations [19]. Neural
networks are made up of three node layers: input layer,
output layer, and hidden layers and each node connects
to others with weight and bias values. Currently,
various types of NN have been considered including
deep learning, recurrent neural network (RNN), and
long short-term memory network (LSTM) among others.
However, in this work, we consider a simple NN model
as shown in Fig. 7.

The neural network node contains input data: 𝑥,
weights: 𝑤, bias: 𝑏, and output: 𝑦. Neural networks can

be viewed as highly non-linear functions with the basic
form as

𝐹 (𝑥, 𝑤) = 𝑦, (9)

where 𝑤 is generally ordered by the weights of each
neuron plus each bias, i.e.,

𝑚

∑
𝑖=1

𝑤𝑖𝑥𝑖 + 𝑏 = 𝑤1𝑥1 + 𝑤2𝑥2 + ... + 𝑤𝑛𝑥𝑛 + 𝑏, (10)

By modifying the weight and bias values to minimize
network errors, neural network learning is essentially a
function of the optimization problem.

3.1 Levenberg-Marquardt Algorithm
The Levenberg-Marquart algorithm (LM) is the

damped-least square (DLS) method which provides a
numerical solution to the problem of minimizing a
function (usually non-linear) function throughout the
space of parameters in the function [20]. The Levenberg-
Marquart includes solving the equation, i.e.,

(𝐉𝑡𝐉 + 𝜂𝐈)𝜹 = 𝐉𝑡𝐄, (11)

where 𝐉 is the Jacobian matrix for the system, 𝜂 is the
Levenberg’s damping factor, and 𝜹 is the weight update
vector which is adjusted at each iteration and guides the
optimization process. The error vector 𝐄 contains the
output errors for each input vector. It is derived using
the mean square error (MSE), i.e.,

𝑀𝑆𝐸 = 1
𝑛

𝑛

∑
𝑖=1

(𝑦𝑖 − ̃𝑦𝑖)2, (12)

where 𝑛 is the number of data points, 𝑦𝑖 is the actual
value, and 𝑦𝑖 is the predicted value.

The Jacobian matrix is an 𝑁-by-𝑊 matrix of all
first-order partial derivatives of a vector-valued function
where 𝑁 is the number of entries in the training set and
𝑊 is the total number of parameters (weights + biases) of
our network. It is obtained by taking partial derivatives
of each output in terms of each weight, i.e.,

𝐉 =
⎛
⎜
⎜
⎜
⎝

𝜕𝐹 (𝑥1,𝜔)
𝜕𝐹 𝜔1

… 𝜕𝐹 (𝑥1,𝜔)
𝜕𝐹 𝜔𝑤

⋮ ⋱ ⋮
𝜕𝐹 (𝑥𝑁 ,𝜔)

𝜕𝐹 𝜔1
⋯ 𝜕𝐹 (𝑥𝑁 ,𝜔)

𝜕𝐹 𝜔𝑤

⎞
⎟
⎟
⎟
⎠

, (13)

where 𝐹 (𝑥𝑖,, 𝜔) is the network function evaluated for the
𝑖𝑡ℎ input vector of the training set using the weight vector
𝐰 and 𝜔𝑗 is the 𝑗𝑡ℎ element of the weight vector 𝐰 of the
network.

The Hessian matrix 𝐇 does not need to be calculated
based on least-squares like LM. It can be estimated from
the Jacobian matrix, i.e.,

𝐇 ≈ 𝐉𝑡𝐉, (14)

A small value such as 0.1 would be used as starting
point for 𝜂. Then, the Levenberg-Marquardt equation
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Fig. 8: Hyperbolic tangent sigmoid transfer function.

is solved with the LU decomposition. The weights 𝐰
is updated using 𝜹 and network errors for each entry
in the training set are computed once the equation is
solved. When the new sum of squared errors is smaller,
𝜂 is smaller and the iterations finish. Otherwise, the
new weights are discarded, and the method is repeated
with a higher value for 𝜂. There are some variations in
the algorithm, but it is the same method implemented
internally by the MATLAB Deep Learning Toolbox [21]
which is used during this study.

3.2 Hyperbolic Tangent Sigmoid Transfer Function
The hyperbolic tangent sigmoid transfer function,

often known as “tansig,” is used in this study for its speed
in the backward-propagation algorithm. It is a non-linear
transfer function for neural network optimization. The
output of a layer is computed using a transfer function
based on its input.

As shown in Fig. 8, 𝐴 = 𝑡𝑎𝑛𝑠𝑖𝑔(𝑁) takes an 𝑁 and
returns the 𝐴 of the elements of 𝑁squashed into (-1 -1)
[22]. It calculates output as,

𝐴 = 2
1 + 𝑒−2𝑁 − 1. (15)

3.3 Neural Network Design
In this proposedNNmodel, we use the STEC data from

7 satellites, the minimum number of visible satellites for
the entire time as the input, and the output of the model
is a single receiver bias value. We design an NN model
with 2 hidden layers as shown in Fig. 9. To find the
optimum number of neurons, the network is investigated
for various number of hidden neurons ranging from 10 to
60 in each layer. The same number of neurons is used in
each layer for simplicity. Assuming that the receiver bias
is fixed, or its variation is negligibly small within 12-hour
of daytime and nighttime, the mean value of the 12-hour
prediction of receiver bias will be used as the final output.

3.4 Datasets
In this study, we try to predict the receiver bias from

STEC after the satellite bias is already removed. For the
target values, the receiver bias datasets for each station

Fig. 9: Neural networks design used in this study.

Table 1: Coordinates of 3 GNSS observation stations where
data are used in the neural network training.

Stations Locations Duration

KMIT Lat: 13.6394° N
Long: 100.772° E

Jan 1, 2018 – Dec 31, 2020

STFD Lat: 13.6471° N
Long: 100.661° E

Jan 1, 2018 – Dec 31, 2020

RUTI Lat: 14.893° N
Long: 102.120° E

Jan 1, 2018 – Dec 31, 2020

are computed separately at daytime (UTC 00:00 to 12:00
hr at 7:00 am to 7:00 pm local time) and nighttime (UTC
12:00 to 24:00 hr at 7:00 pm to 7:00 am local time) using
the minimum standard deviation method [6]. For the NN
model, STEC is used as the input dataset while receiver
bias is the output. The STEC and receiver bias datasets
with 5-minute resolution for 3 years are prepared from
3 stations within Thailand as shown in Table 1. The
locations of the receiver stations are shown in Fig. 10.
Fig. 4 shows the example of 1-day STEC datasets before
removing the receiver bias and Fig. 11 shows the example
of a 1-day receiver bias dataset. The receiver bias values
for daytime and nighttime are computed separately. The
receiver bias values are high during the daytime, but
become low during the nighttime. However, we cannot
see each satellite for the whole day as it orbits the earth
approximately twice a day. So, there are some NaN
values in the STEC dataset while the receiver cannot
see the satellites. So, we only use the STEC based on
the minimum numbers of visible satellites in order to
eliminate the NaN values. In this work, we select STEC of
7 visible satellites at each time sorted by ascending PRN.
During this study process, datasets are randomly divided
into 75 percent for training, 15 percent for validation, and
10 percent for testing, respectively.

4. RESULTS AND DISCUSSIONS
In this work, the neural network is trained with the

STEC and receiver bias datasets from 2018 to 2020 from
3 stations. After that, STEC datasets from some days
in 2021 are used to predict the receiver bias in testing
and the results are analyzed by comparing the estimated
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Fig. 10: Location of 3 GNSS observation stations used in
training of neural network.

Fig. 11: Example of 1-day receiver bias datasets fromKMIT
station on DOY 001, 2021.

receiver bias using the reference method.

4.1 Training Results

Firstly, the performances of the neural network with
2 hidden layers are investigated with 10, 20, 30, 40, 50,
and 60 neurons in each hidden layer on the datasets
from the KMIT station. The performances of neural
networkswith different numbers of neurons in each layer
are shown in Fig. 12. According to the results, the
NN model with 50 neurons in each hidden layer gives
the lowest mean square error (MSE) and there is no
noticeable improvement after 50 neurons. Therefore, the
neural network model with two hidden layers in which
50 neurons in each hidden layer are considered in this
study.

To check the training performance of the model, we
examine the regression of the training between the target
receiver bias and the predicted receiver bias which is
found during training on the datasets of KMIT, RUTI, and
STFD stations as shown in Fig. 13. We notice that the
trained model provides the highest regression on STFD
station with R = 0.94432 and but lowest regression on
KMIT station with R = 0.86309.

Fig. 12: Performance of the neural networks with different
numbers of neurons in each hidden layer at the KMIT
station.

Fig. 13: Training regression between the target receiver
bias and the predicted receiver bias on the dataset of (a)
KMIT station, (b) STFD station, and (c) RUTI stations by
using the neural network approach.

4.2 Prediction Results
We investigate the prediction results from the neural

network model with the testing dataset. The prediction
results of the neural network model from three stations
(KMIT, STFD, and RUTI) included in the study are shown
in Fig. 14. The x-axis represents the timesteps in
every 5-minute and the y-axis represents the percentages
of errors which deviate from the reference method
computed by

𝐸𝑟𝑟𝑜𝑟(%) = |
𝐵𝑅,𝑁𝑁 − 𝐵𝑅,𝑅𝐸𝐹

𝐵𝑅,𝑅𝐸𝐹 | × 100, (16)

where 𝐵𝑅,𝑁𝑁 is the estimated receiver bias from neural
network model and 𝐵𝑅,𝑅𝐸𝐹 is the receiver bias from
reference method, respectively.

The neural model shows the capability to predict
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Fig. 14: Percentage of errors during the testing from (a)
KMIT station (b) STFD station and (c) RUTI station.

receiver bias at different stations and most of the errors
are less than 10 percent from the reference method in all
three stations although there are some spikes.

In addition, one-day data from various seasons of the
year 2021 are selected as DOY 80 for the vernal equinox,
DOY 172 for the summer solstice, DOY 266 for the
autumnal equinox, and DOY 356 for the winter solstice,
respectively, to test the prediction performances of the
neural network models. We test the neural network
model with the KMIT station which is included in the
training data as well as the AER1 station which is not
included in the training data. Since we want the receiver
bias in 12-hour resolution, the mean value of the 12-hour
prediction of receiver bias will be used to compare with
the reference method for daytime and nighttime. Fig.
15 shows the trend of receiver bias from the reference
method and receiver bias from neural network models at
the KMIT station during testing. The prediction values
are close to the reference method, and it also shows
high values during the daytime and low value during the
nighttime. Fig. 16 shows the percentages of errors that
deviated from the baseline reference method. We can see
that the predicted receiver bias from the neural network
approach can follow the trend of the reference method
quite well with a deviation of less than 5 percent.

We also analyze the effects of receiver bias estimation
errors by the neural network on the vertical total electron
content (VTEC). We compute the VTEC by using the
receiver bias from the neural network based on Eq.
(4). The maximum deviation of VTEC on each day by
using the receiver bias from neural network approaches
compared to the reference method is described in Fig.
17. The VTEC based on the estimated receiver bias
from the neural network is higher than the VTEC
computed by the reference method because the neural
network mostly underestimates the receiver bias value.
However, the maximum deviations of VTEC in each
tested day as shown in Fig. 17 are still acceptable in

Fig. 15: Comparison of the estimated receiver bias between
the reference method and the proposed neural network at
the KMIT station.

Fig. 16: Percentages of errors during testing the neural
network model at KMIT station.

Fig. 17: Maximum deviation in VTEC by using receiver
biases from neural network approach compared to the
reference method at KMIT station.

most cases such as general TEC Map, Global Ionospheric
Maps (GIMs) released by Ionosphere Associate Analysis
Centers (IAACs) might have a deviation of approximately
5 TECU in some case[23].

4.3 Prediction at Other Stations

We also examine the prediction performances of the
proposed trained model with observation data from
another station, AER1 station at the Suvarnabhumi
International Airport, Bangkok, which are not the used
in the training process. The comparison of the receiver
bias from the reference method and the neural network
models at AER1 stations is shown in Fig. 18 and the
percentages of errors from the baseline reference method
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Fig. 18: Comparison of the estimated receiver bias between
the reference method and the proposed neural network at
the AER1 station.

Fig. 19: Percentage of errors between receiver bias values
from baseline reference method and a neural network
(trained by interpolated dataset) at AER1 station.

in Fig. 19. As we can see in the figures, we can still
use the NN model to estimate the receiver bias from the
neural network at another stationwith the slightly higher
deviation, around 10 percent in some cases. However, the
receiver bias can still follow the trend and it still shows
high values during the daytime and low values during the
nighttime.

5. CONCLUSION

In this work, the receiver bias is predicted from slant
total electron content (STEC) after removing satellite bias
using a neural network with the Levenberg-Marquart
algorithm over the 3-year datasets of GNSS ground-based
receiver stations over Thailand. Two hidden layers are
used for the neural network and the model is trained
with the various number of neurons. We get the optimal
result at 50 neurons in each layer during training. Most
predicted receiver biases differ less than 10 percent from
the calculated receiver bias by the reference method.
The trained neural network model can also predict the
receiver bias from other stations which are not part of
the training process. The neural model shows faster
performance over the baseline reference method when
testing on the same hardware and software parameters.
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