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ABSTRACT

Because of manufacturing constraints, designing ana-
log active filters is highly challenging. Evolutionary
computing is an effective method for automatically
selecting the component values like resistors and ca-
pacitors. This work describes partition-bound particle
swarm optimization (PB-PSO) for efficiently designing
second-order active low-pass state variable filters (SVF),
considering different manufacturing series. PB-PSO
is responsible for efficiently picking components and
minimizing total design error. The filter components
are chosen to be compatible with the E12/ E24/ E96
series. Compared to earlier optimization strategies, the
simulation findings show that PB-PSO reduces the overall
design error.

Keywords: Analog active filter, SVF, Evolutionary
technique, PSO, SPICE

1. INTRODUCTION
Filters are electronic circuits that play a crucial role

in signal processing by allowing signals within a specific
frequency range to pass through while attenuating those
outside the designated range. This unique ability of filters
to selectively permit certain frequencies is known as
frequency selectivity. Filters are broadly classified into
passive and active categories based on the components
employed in their construction. Active filters, frequently
employed in communication systems, leverage active
components such as operational amplifiers to achieve
their desired functionality.

Traditionally, filter design involves setting compo-
nents to equal values, a practice that simplifies the design
process but imposes constraints on flexibility. Com-
ponents are often selected from standardized industrial
series such as E12, E24, or E96 to enhance design flexi-
bility. Existing literature explores various techniques for
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optimizing active analog filters. References [1-2] delve
into utilizing genetic algorithms (GA) for components
and topology optimization in filters. Specifically, these
studies focus on second-order state variable filters (SVF)
and employ design methods that incorporate both con-
ventional approaches and evolutionary algorithms, such
as GA [3], ABC [3], DE [4], HS [4], and PSO [5].

Within the realm of evolutionary techniques applied
to filter design, references [6-8] explore differentmethod-
ologies. This approach involves applying Particle Bound
PSO (PB-PSO) to design second-order SVF using E12,
E24, and E96 series. By combining the strengths of PSO
and particle-based optimization, PB-PSO fine-tunes SVF
parameters for optimal performance.

The structure of this article is organized as follows:
Section II provides a brief overview of the PB-PSO
algorithm. Subsequently, Section III illustrates the
second-order state variable filter (SVF), and the article
expounds on the cost function (CF) employed in the
optimization process in the subsequent section. Section
IV presents the simulation results, offering insights into
the performance of the designed filters. Finally, Section
V concludes the article, summarizing key findings and
potentially suggesting avenues for future research in
active analog filter optimization.

2. PARTITION BOUND PARTICLE SWARM OPTI-
MIZATION
This paper presents the PB-PSO algorithm. To modify

particle velocities depending on iterations in an adaptive
manner, two new parameters, 𝜁1 and 𝜁2, are utilized.
The nonlinear convergence factor (𝛼) and the iteration
number determine the parameter 𝜁1.𝜁2 divides iterations
into two parts to facilitate local and global search.

2.1 Particle Swarm Optimization (PSO)
PSO [9-10] is a metaheuristic method that uses a

swarm of particles to move through a search space. The
particles are updated repeatedly, and their movements
are impacted by their own prior experience as well as the
experience of their swarm neighbor. In PSO, the velocity
and position of particles are modified as:

𝑉 (𝑘+1)
𝑖 = 𝑤 × 𝑉 (𝑘)

𝑖 + 𝐶1 × 𝑟1 × ( pbest (𝑘)
𝑖 − 𝑆(𝑘)

𝑖 )
+ 𝐶2 × 𝑟2 × ( gbest (𝑘) − 𝑆(𝑘)

𝑖 ) 𝑆(𝑘+1)
𝑖 (1)

= 𝑆(𝑘)
𝑖 + 𝑉 (𝑘+1)

𝑖
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Fig. 1: Second order state variable low pass filter.

where 𝑉 (𝑘)
𝑖 denotes the 𝑖th particle’s velocity at iteration

𝑘, 𝑤 represents the weighting function, the weighting
factors are represented by 𝐶1 and 𝐶2, 𝑟1 and 𝑟2 are
random numbers between 0 and 1, 𝑆(𝑘)

𝑖 is the the 𝑖th
particle’s position at iteration 𝑘, 𝑝𝑏𝑒𝑠𝑡(𝑘)

𝑖 and 𝑔𝑏𝑒𝑠𝑡(𝑘) are
the personal best and the group best at iteration 𝑘.

2.2 Partition Bound Particle Swarm Optimization
(PB-PSO) Algorithm

This paper suggests employing error-dependent co-
efficients to accelerate convergence. The coefficients,
represented by 𝜁1 and 𝜁2, enhance the learning rate
by accelerating particle velocity in the direction of the
minimum error, as demonstrated by equation (3) [11].

𝑉 (𝑘+1)
𝑖 = 𝜁1 × 𝑤 × 𝑉 (𝑘)

𝑖 + ...
... + 𝜁2 × 𝐶1 × 𝑟1 × (𝑝𝑏𝑒𝑠𝑡(𝑘)

𝑖 − 𝑆(𝑘)
𝑖 ) + ...

... + (1 − 𝜁2) × 𝐶2 × 𝑟2 × (𝑔𝑏𝑒𝑠𝑡(𝑘) − 𝑆(𝑘)
𝑖 )

(2)

In this case, the variable parameters 𝜁1 and 𝜁2 change
according to the iteration number (𝑘). Variation in 𝜁1 is
represented as

𝜁1(𝑘) = (1 − 𝑘
𝑁 )

2𝛼
(3)

where 𝛼 is a non-linear convergence factor, 𝑁 is the
maximum number of iterations.

The value of 𝛼 is affected by the complexity of
the circuit and the design variables. As the design
variables increase, more iterations are required to obtain
an optimal solution. When design complexity increases,
𝛼 must decrease to provide more iterations. The trade-off
between a better convergence and lower CF yields 𝛼 = 4.

𝜁2 is a random number within (0, 1). The variation
of 𝜁2 is divided into two cases. 𝜁2 is a random number
within (0, 0.5) upto N1 th iteration cycle. This controls
the global search in (3). When the iteration count
exceedsN1, 𝜁2 is generated randomlywithin (0.5, 1). This
dominates the local search over the global search in (3).
The value of N1 is set to be N/2.

𝜁2(𝑘) = rand(0, 0.5); where 𝑘 ≤ 𝑁1
= rand(0.5, 1); where 𝑘 > 𝑁1

(4)

The pseudo-code of PB-PSO is shown below. P is
the swarm size, D is the dimension of the optimization
problem, N is the maximum number of iterations.

3. ACTIVE LOW PASS FILTER DESIGN
3.1 SVF Design

The SVF is given in Fig. 1 [12]. The transfer function
is expressed as:

𝐻(𝑠) =
𝑅2(𝑅3+𝑅4)

𝑅3(𝑅1+𝑅2)𝑅5𝑅6𝐶1𝐶2

𝑠2 + 𝑅1(𝑅3+𝑅4)
𝑅3(𝑅1+𝑅2)𝑅5𝐶1

𝑠 + 𝑅4
𝑅3𝑅5𝑅6𝐶1𝐶2

(5)

The cut-off frequency and quality factor are expressed
as follows:

𝜔𝑆𝑉 𝐹 = √(
𝑅4
𝑅3 ) (

1
𝐶1𝐶2𝑅5𝑅6 )

𝑄𝑆𝑉 𝐹 = 𝑅3(𝑅1+𝑅2)
𝑅1(𝑅3+𝑅4) √

𝐶1𝑅4𝑅5
𝐶2𝑅3𝑅6

(6)

The cut-off frequency (𝜔0) is targeted as 10krad/s and
the quality factor (𝑄𝑡) is targeted as 0.707 [3-4]. The
cutoff frequency deviation (Δ𝜔0) and the quality factor
deviation (Δ𝑄𝑡) are expressed as:

Δ𝜔0 = |𝜔𝑆𝑉 𝐹 −𝜔0|
𝜔0

Δ𝑄𝑡 = |𝑄𝑆𝑉 𝐹 −𝑄𝑡|
𝑄𝑡

Δ𝜔0 = |√(
𝑅4
𝑅3 )(

1
𝐶1𝐶2𝑅5𝑅6 )−𝜔0|

𝜔0

Δ𝑄𝑡 = |
𝑅3(𝑅1+𝑅2)
𝑅1(𝑅3+𝑅4) √

𝐶1𝑅4𝑅5
𝐶2𝑅3𝑅6

−𝑄𝑡|
𝑄𝑡

(7)
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Table 1: Component values.

Table 2: Constraints for each series.

Table 3: Control parameters of PB-PSO.

Table 4: Component values and performance of PB-PSO for
State variable filter design (E12 series).

The total cost function is written as:

𝐶𝐹SVF = (0.5Δ𝜔0 + 0.5Δ𝑄𝑡) (8)

The PB-PSO will minimize the 𝐶𝐹𝑆𝑉 𝐹 .

3.2 Descript of setting of components
Each component is selected to have a resistance value

between 103 and 106Ω and a capacitance value between

Fig. 2: Convergence profile for E12 series.

10−9 and 10−6 F. Any row vector is determined as:
[𝑝 𝑎 𝑞 𝑏 𝑟 𝑐 𝑠 𝑑 𝑡 𝑒 𝑢 𝑓 𝑣 𝑔 𝑤 ℎ]
If the values of the resistors and capacitors lie outside

this range, then they must be discarded. Since the
probable values vary from three-decade ranges, a coding
scheme is used, as shown in Table 1.

The design constraints for each series are given in
Table 2.

For E12 series, the design constraints are given as
follows: 0.1 ≤ 𝑝, 𝑞, 𝑟, 𝑠, 𝑡, 𝑢, 𝑣, 𝑤 ≤ 0.82 and 2 ≤
𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 , 𝑔, ℎ ≤ 4.

For E24 series, the design constraints are given as
follows: 0.1 ≤ 𝑝, 𝑞, 𝑟, 𝑠, 𝑡, 𝑢, 𝑣, 𝑤 ≤ 0.91 and 2 ≤
𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 , 𝑔, ℎ ≤ 4.

For E96 series, the design constraints are given as
follows:

0.1 ≤ 𝑝, 𝑞, 𝑟, 𝑠, 𝑡, 𝑢, 𝑣, 𝑤 ≤ 0.976 and 2 ≤
𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 , 𝑔, ℎ ≤ 4
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Table 5: Component values and performance of previous methods versus PB-PSO for State variable filter design (E24
series)

Table 6: Component values and performance of previous methods versus PB-PSO for State variable filter low pass design
(E96 series)

3.3 Multi-parameter sensitivity analysis
Let 𝑓𝑖(𝑋) is an objective function, where 𝑋 =

[𝑥1, … .𝑥𝑛]
𝑇 . The single parameter sensitivity [13-14] is

defined as
𝑆𝑓𝑖

𝑥𝑗 ≈
𝑥𝑗
𝑓𝑖

𝜕𝑓𝑖
𝜕𝑥𝑗

(9)

The multi-parameter sensitivity is as follows [14]:

𝑆𝑓𝑗 =
√√√
⎷

𝑛

∑
𝑖=1

|𝑆
𝑓𝑗
𝑥𝑖 |

2
⋅ 𝜎2

𝑥𝑖 (10)

where 𝜎𝑥𝑖 is a variability parameter of 𝑥𝑖.
The multi-parameter sensitivity for the 𝐶𝐹𝑆𝑉 𝐹 is

expressed as:

𝑆𝐶𝐹𝑆𝑉 𝐹 = √(∑6
𝑖=1 |𝑆

𝐶𝐹𝑆𝑉 𝐹
𝑅𝑖 |

2
⋅ 𝜎2

𝑅𝑖
+ 𝐾)

𝐾 = ∑2
𝑖=1 |𝑆

𝐶𝐹𝑆𝑉 𝐹
𝐶𝑖 |

2
⋅ 𝜎2

𝐶𝑖

(11)

where 𝑥𝑖 is substituted by 𝑅𝑖 or 𝐶𝑖.

4. SIMULATION RESULTS AND DISCUSSIONS
The components of the SVF using E12/E24/E96 series

are obtained using the PB-PSO algorithm. The algorithm
was implemented in MATLAB 7.5 on the core (TM) 2 duo
processor, 3.00 GHz with 2 GB RAM, and the maximum
number of iterations was 1000. The control parameters
for the PB-PSO are shown in Table 3.

4.1 Results for the designed SVF
The components of the SVF are chosen from the E12

series. The E series, also known as the preferred number
series, refers to a set of standardized values used for
various components in engineering and manufacturing.
These series are designed to provide a convenient selec-
tion of values that follow a logarithmic scale, making
it easier to choose appropriate values for components
such as resistors, capacitors, and other electronic parts.
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Fig. 3: Convergence profile for E24 series.

Fig. 4: Convergence profile for E96 series.

The ”E” stands for ”exponential” or ”decadic”. Every
subsequent resistor or capacitor in the E12 series is
within -10% to +10% of the preceding value. There are
further E24 and E96 series for components with tighter
tolerance, with 24 and 96 distinct values within each
decade, respectively. These E series are standardized by
organizations such as the International Electrotechnical
Commission (IEC) and the Electronic Industries Alliance
(EIA). They help streamline the selection and use of com-
ponents in various industries, ensuring compatibility,
availability, and ease of design. The target 𝐶𝐹𝑆𝑉 𝐹 is
smaller than 0.0057. The 𝐶𝐹𝑆𝑉 𝐹 value achieved is 0.0036
for PB-PSO-based SVF filter design. At iteration 361,
PB-PSO achieved the target 𝐶𝐹𝑆𝑉 𝐹 in 15.021 seconds.
PB-PSO-based results are shown in Table 4. The E12

Fig. 5: Box and whisker plots for E12 series over 50 runs.

Fig. 6: Box and whisker plots for E24 and E96 series over 50
trials for each series.

Fig. 7: Amplitude response for E12 series.

series contains five components.
For E24 series, the target 𝐶𝐹𝑆𝑉 𝐹 is smaller than 3.2 ×

10−5 [4]. The 𝐶𝐹𝑆𝑉 𝐹 obtained is 2.8356 × 10−5 for PB-
PSO-based SVF filter design. At iteration 661, PB-PSO
achieved the target 𝐶𝐹𝑆𝑉 𝐹 in 37.321 seconds. PB-PSO-
based results are given in Table 5. Four components of
SVF belong to E24 series.

For E96 series, the target 𝐶𝐹𝑆𝑉 𝐹 is smaller than 1.6 ×
10−5[4]. The 𝐶𝐹𝑆𝑉 𝐹 attained is 4.1358 × 10−6 for PB-
PSO-based SVF filter design. At iteration 721, PB-PSO
obtained the target 𝐶𝐹𝑆𝑉 𝐹 in 43.089 seconds. PB-PSO-
based results are given in Table 6. Five components of
SVF belong to the E96 series.

Figs. 2-4 demonstrate the plots of 10 log10 (𝐶𝐹𝑆𝑉 𝐹 )
vs iteration cycle for E12, E24 and E96 series, respectively.
Parameters of state variable low pass filters for different
series are given in Table 7.

Figs. 5 and 6 demonstrate the box and whisker plots
of PB-PSO based SVF design for each series over 50
runs. The minimal range of variance in 𝐶𝐹𝑆𝑉 𝐹 indicates
that the designs are stable and robust. The SVFs are
constructed utilizing the LM741 model in the SPICE [3, 5]

Fig. 8: Amplitude response for E24 series.
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Fig. 9: Amplitude response for E96 series.

Fig. 10: Multi-parameter sensitivity of 𝐶𝐹𝑆𝑉 𝐹 for E12
series.

to verify the outcomes of PB-PSO optimization.
The amplitude responses of the SVFs are shown in

Figs. 7-9, respectively. In these figures, the X-axis
denotes the frequency, and the Y-axis is the amplitude
response in decibels (Gain (dB)). V (1) and V (12) illustrate
the input and output voltages of the SVF for SPICE
simulation. The suggested optimization strategy offers a
maximum flat response and a cut-off frequency of 10.038
krad/s, 10.038 krad/s, and 9.993 krad/s, respectively for
E12, E24 and E96 series.

Figs. 10-12 exhibit the multi-parameter sensitivity of
𝐶𝐹𝑆𝑉 𝐹 computed by (16), with 𝜎 = 1% for the SVFs
having components compatible with E12, E24 and E96
series, respectively. Figs. 10-12 demonstrate that the low

Fig. 11: Multi-parameter sensitivity of 𝐶𝐹𝑆𝑉 𝐹 for E24
series.

Fig. 12: Multi-parameter sensitivity of 𝐶𝐹𝑆𝑉 𝐹 for E96
series.

Table 7: Parameters of State variable low pass filter for
different series.

Series E12 E24 E96
Cut-off frequency

(𝜔0(krad/s)) 10.022 10.00035 10.000015
Quality factor

(𝑄𝑡) 0.710 0.707015 0.7070047
Gain in

Pass Band (dB) -2.711 1.5683 -3.8

𝐶𝐹𝑆𝑉 𝐹 indicates lower multi-parameter sensitivity.

5. CONCLUSIONS
In this paper, PB-PSO is utilized for SVF design.

Components are selected from different manufactured
series for SVF. For SVF design with E24 and E96 series,
PB-PSO attains lower CF compared to the previous
techniques. SPICE results demonstrate that PB-PSO-
based filters offer flat response in the pass band. Thus,
PBPSO establishes itself as a useful optimization method
for analog filter design.

REFERENCES
[1] R. S. Zebulum, M. A. Pacheco and M. Vellasco,

“Artificial evolution of active filters: a case study,”
Proceedings of the First NASA/DoD Workshop on
Evolvable Hardware, Pasadena, CA, USA, 1999, pp.
66-75.

[2] H. Xu and Y. Ding, “OptimizingMethod for Analog
Circuit Design Using Adaptive Immune Genetic
Algorithm,” 2009 Fourth International Conference
on Frontier of Computer Science and Technology,
Shanghai, China, 2009, pp. 359-363.

[3] R. A. Vural, T. Yildirim, T. Kadioglu and A.
Basargan, “Performance Evaluation of Evolution-
ary Algorithms for Optimal Filter Design,” in IEEE
Transactions on Evolutionary Computation, vol. 16,
no. 1, pp. 135-147, Feb. 2012.

[4] R. A. Vural, U. Bozkurt and T. Yildirim, “Analog
active filter component selection with nature in-



OPTIMAL DESIGN OF STATE VARIABLE FILTER USING PARTITION-BOUND PARTICLE SWARM OPTIMIZATION 7

spired metaheuristics,” AEU - International Journal
of Electronics and Communications, vol. 67, no. 3,
pp. 197-205, 2013.

[5] R. A. Vural and T. Yildirim, “State variable filter de-
sign using Particle SwarmOptimization,” 2010 XIth
International Workshop on Symbolic and Numerical
Methods, Modeling and Applications to Circuit De-
sign (SM2ACD), Gammarth, Tunisia, 2010, pp. 1-4.

[6] B. P. De, R. Kar, D. Mandal, and S. P. Ghoshal,
“Optimal analog active filter design using craziness
based particle swarm optimization algorithm”,
International Journal of Numerical Modelling: Elec-
tronic Networks, Devices and Fields, vol. 28, no. 5,
pp. 593-609, 2015.

[7] B. P. De, R. Kar, D. Mandal, and S. P. Ghoshal, “Par-
ticle Swarm Optimization with Aging Leader and
Challengers for Optimal Design of Analog Active
Filters”, Circuits, Systems & Signal Processing, vol.
34, no. 13, pp. 707-737, 2015.

[8] B. P. De, R. Kar, D. Mandal, and S. P. Ghoshal, “Op-
timal Selection of Components Value for Analog
Active Filter Design Using Simplex Particle Swarm
Optimization”, International Journal of Machine
Learning and Cybernetics, vol. 6, no. 4, pp. 621-636,
2015.

[9] J. Kennedy and R. Eberhart, “Particle swarm op-
timization”, Proceedings of the IEEE International
Conference on Neural Network, vol. 4, 1995, pp.
1942-1948.

[10] R. Eberhart and Y. Shi, “Comparison between ge-
netic algorithm and particle swarm optimization”,
Evolutionary Programming-VII, pp. 611-616, 1998.

[11] K. G. Shreeharsha, R. K. Siddharth, M. H. Vasantha,
and Y. B. N. Kumar, “Partition Bound Random
Number-Based Particle Swarm Optimization for
Analog Circuit Sizing,” in IEEE Access, vol. 11, pp.
123577-123588, 2023.

[12] R. Schaumann and M.V. Valkenburg, Design of
Analog Filters, Oxford University Press, NY, 2001.

[13] P. V. Ananda Mohan, “Sensitivity analysis of
third and fourth-order filters”, Circuits Syst Signal
Process, vol. 29, no. 5, pp. 999-1005, 2010.

[14] M. S. Ghausi and K. R. Laker,Modern Filter Design:
Active RC and switch capacitor, Prentice Hall, 1981.

Suvashish Kund is a teaching Associate at
KIIT University, School of Electronics En-
gineering, and was previously a Assistant
Professor in Bhubaneswar college of Engi-
neering. His research interests include nano-
scale device modelling and characterization,
analog and mixed signal IC dsign, and RF
integrated circuit design.

Bishnu Prasad De received the B.Tech de-
gree in Electronics and Communication En-
gineering from Jalpaiguri Government En-
gineering College, West Bengal, India, in
2007. He received the M. Tech degree in
VLSI Design from the Indian Institute of
Engineering Science and Technology, Shibpur
(Formerly Bengal Engineering and Science
University, Shibpur), in 2009. He received
his PhD from the National Institute of Tech-
nology, Durgapur, West Bengal, India, in

2016. Presently, he is attached to the KIIT Deemed to be University,
Bhubaneswar, Odisha, India, as an Assistant Professor in the School
of Electronics Engineering. His research interests include nano-scale
device modelling and characterization, analog and mixed signal IC
dsign, and RF integrated circuit design.

Rajib Kar received a B.E. degree in Electron-
ics and Communication Engineering from Re-
gional Engineering College, Durgapur, Dur-
gapur, India, in 2001, and the M.Tech. and
PhD degrees from the National Institute
of Technology Durgapur, Durgapur, India,
in 2008 and 2011, respectively. Presently,
he is attached to the National Institute of
Technology, Durgapur, West Bengal, India,
as an Associate Professor in the Electron-
ics and Communication Engineering depart-

ment. His research interests include VLSI circuit optimization and
signal processing via evolutionary computing techniques. He has
published more than 450 research papers in international journals and
conferences.

DurbadalMandal received the B.E. degree in
Electronics and Communication Engineering
from Regional Engineering College, Durga-
pur, West Bengal, India, in 1996. He received
the M.Tech. and PhD degrees from the
National Institute of Technology, Durgapur,
West Bengal, India, in 2008 and 2011, re-
spectively. Presently, he is attached to the
National Institute of Technology, Durgapur,
West Bengal, India, as an Associate Professor
in the Electronics and Communication En-

gineering department. His research interest includes array antenna
design, filter optimization via evolutionary computing techniques. He
has published more than 500 research papers in international.

Bhargav Appasani has completed his Ph.D.
from Birla Institue of Technology in 2018.
He works as an Associate Professor in the
School of Electronics Engineering, Kalinga
Institute of Industrial Technology, India. He
has published over 125 articles in reputed
international journals and conferences. He
has five patents filed to his credit and has
published a book with Springer. He is the
academic editor of the Journal of Electrical
and Computer Engineering (Hindawi). His

research interests include Terahertz Sensing, Smart Grid, 5G, Wireless
Sensor Networks, etc.


