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ABSTRACT

Because of manufacturing constraints, designing ana-
log active filters is highly challenging. Evolutionary
computing is an effective method for automatically
selecting the component values like resistors and ca-
pacitors. This work describes partition-bound particle
swarm optimization (PB-PSO) for efficiently designing
second-order active low-pass state variable filters (SVF),
considering different manufacturing series. PB-PSO
is responsible for efficiently picking components and
minimizing total design error. The filter components
are chosen to be compatible with the E12/ E24/ E96
series. Compared to earlier optimization strategies, the
simulation findings show that PB-PSO reduces the overall
design error.

Keywords: Analog active filter, SVF, Evolutionary
technique, PSO, SPICE

1. INTRODUCTION

Filters are electronic circuits that play a crucial role
in signal processing by allowing signals within a specific
frequency range to pass through while attenuating those
outside the designated range. This unique ability of filters
to selectively permit certain frequencies is known as
frequency selectivity. Filters are broadly classified into
passive and active categories based on the components
employed in their construction. Active filters, frequently
employed in communication systems, leverage active
components such as operational amplifiers to achieve
their desired functionality.

Traditionally, filter design involves setting compo-
nents to equal values, a practice that simplifies the design
process but imposes constraints on flexibility. Com-
ponents are often selected from standardized industrial
series such as E12, E24, or E96 to enhance design flexi-
bility. Existing literature explores various techniques for
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optimizing active analog filters. References [1-2] delve
into utilizing genetic algorithms (GA) for components
and topology optimization in filters. Specifically, these
studies focus on second-order state variable filters (SVF)
and employ design methods that incorporate both con-
ventional approaches and evolutionary algorithms, such
as GA [3], ABC [3], DE [4], HS [4], and PSO [5].

Within the realm of evolutionary techniques applied
to filter design, references [6-8] explore different method-
ologies. This approach involves applying Particle Bound
PSO (PB-PSO) to design second-order SVF using E12,
E24, and E96 series. By combining the strengths of PSO
and particle-based optimization, PB-PSO fine-tunes SVF
parameters for optimal performance.

The structure of this article is organized as follows:
Section II provides a brief overview of the PB-PSO
algorithm.  Subsequently, Section III illustrates the
second-order state variable filter (SVF), and the article
expounds on the cost function (CF) employed in the
optimization process in the subsequent section. Section
IV presents the simulation results, offering insights into
the performance of the designed filters. Finally, Section
V concludes the article, summarizing key findings and
potentially suggesting avenues for future research in
active analog filter optimization.

2. PARTITION BOUND PARTICLE SWARM OPTI-
MIZATION

This paper presents the PB-PSO algorithm. To modify
particle velocities depending on iterations in an adaptive
manner, two new parameters, {; and {,, are utilized.
The nonlinear convergence factor («) and the iteration
number determine the parameter {;.{, divides iterations
into two parts to facilitate local and global search.

2.1 Particle Swarm Optimization (PSO)
PSO [9-10] is a metaheuristic method that uses a

swarm of particles to move through a search space. The
particles are updated repeatedly, and their movements
are impacted by their own prior experience as well as the
experience of their swarm neighbor. In PSO, the velocity
and position of particles are modified as:

i

Vi(kH) =wXx Vi(k) +C; Xr| X ( pbest ¥ — S,.(k)>
+Cy Xy X < gbest X — S[(k)> Si(k+l) (1)
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Fig. 1: Second order state variable low pass filter.

where Vi(k) denotes the i particle’s velocity at iteration
k, w represents the weighting function, the weighting
factors are represented by C; and C,, r; and r, are

random numbers between 0 and 1, Si(k) is the the i

particle’s position at iteration k, pbestik) and ghest™ are

the personal best and the group best at iteration k.

2.2 Partition Bound Particle Swarm Optimization
(PB-PSO) Algorithm

This paper suggests employing error-dependent co-
efficients to accelerate convergence. The coefficients,
represented by {; and {,, enhance the learning rate
by accelerating particle velocity in the direction of the
minimum error, as demonstrated by equation (3) [11].

Vi(kH) = XwX Vi(k) + ..
et HXCy XX (pbest(k) - S[(k)> +.. (2

i

et (1 - €2) X Cz Xry X (gbest(k) _ Sl(k)>

In this case, the variable parameters | and {, change
according to the iteration number (k). Variation in {; is
represented as

k 2a

G =(1-+) ©
where a is a non-linear convergence factor, N is the
maximum number of iterations.

The value of a is affected by the complexity of
the circuit and the design variables. As the design
variables increase, more iterations are required to obtain
an optimal solution. When design complexity increases,
a must decrease to provide more iterations. The trade-off
between a better convergence and lower CF yields a = 4.

{, is a random number within (0, 1). The variation
of {, is divided into two cases. {, is a random number
within (0, 0.5) upto N; th iteration cycle. This controls
the global search in (3). When the iteration count
exceeds Ny, {, is generated randomly within (0.5, 1). This
dominates the local search over the global search in (3).
The value of N; is set to be N/2.

$>(k) =rand(0,0.5); where k < N, )
=rand(0.5, 1); where k > N,

The pseudo-code of PB-PSO is shown below. P is
the swarm size, D is the dimension of the optimization
problem, N is the maximum number of iterations.

Algorithm 1 Pseudo code of PB-PSO algorithm

Input: P, D, N, w, Cy, Co

Output: gbest

iteration < 1

Initialize particles with random positions and ve-

locities

5: Initialize personal best positions (pbest) for each
particle as their initial positions

6: Initialize global best position (gbest) among all

A

particles

7. while iteration < N do

8: for each particle in the swarm do

9: Evaluate each particle’s cost function (CF)

10: if CF < pbest then

11: Update particle’s pbest to current po-
sition

12: end if

13: if CF < gbest then

14: Update gbest to the current position

15: end if

16: end for

17: for each particle in the swarm do

18: Update particle velocity using equation (3)

19: Update particle position using equation
(2)

20: end for

21: iteration < iteration + 1

22: end while
23: Return gbest as the optimized solution

3. ACTIVE LOW PASS FILTER DESIGN
3.1 SVF Design

The SVF is given in Fig. 1 [12]. The transfer function
is expressed as:

R, (R3+Ry)
R3(R;+R;)RsRC| Cy
Ry (R3+Ry4) Ry
R;(R|+Ry)RsC) R3R5R4C,C,

H(s) = 5)

52 +

The cut-off frequency and quality factor are expressed

as follows:
= /(R ) !
PsvE = Ry ) \ C1CyRs5Rs (6)
0 _ Rs(Ri+Ry) [CIRR;
SVE ™ R (Rs+R;) V CR3Rg
The cut-off frequency () is targeted as 10krad/s and

the quality factor (Q,) is targeted as 0.707 [3-4]. The
cutoff frequency deviation ( Aa)o) and the quality factor

deviation (AQt) are expressed as:

Awy = L2l

0
_ |QsvF—0]

AQ, 0,
1
0

V(&) (Gemr: ) ()

@,
R3(R1+Ry) [CIR4Rs -0
Ri(R3+Rq) \| C2R3Re !

o
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Table 1: Component values.

Number of values
in each decade

E series | Tolerance

Values

E12 §10% 12

1.0, 1.2, 1.5, 1.8, 2.2, 2.7, 3.3, 3.9, 4.7, 5.6, 6.8, 8.2

E24 $5% 24

1.0, 1.1, 1.2, 1.3, 1.5, 1.6, 1.8, 2.0, 2.2, 2.4, 2.7, 3.0,
3.3,3.6,3.9,4.3,4.7,5.1,5.6,6.2,6.8, 7.5, 8.2, 9.1

E96 $1% 96

1.00, 1.02, 1.05, 1.07, 1.10, 1.13, 1.15, 1.18, 1.21,
1.24, 1.27, 1.30, 1.33, 1.37,1.40, 1.43, 1.47, 1.50,
1.54, 1,58, 1.62, 1.65, 1.69, 1.74, 1.78, 1.82,
1.87,1.91, 1.96, 2.00, 2.05, 2.10, 2.16, 2.21, 2.26,
2.32, 2.37, 2.43, 2.49, 2.55,2.61, 2.67, 2.74, 2.80,
2.87, 2.94, 3.01, 3.09, 3.16, 3.24, 3.32, 3.40,
3.48,3.57, 3.65, 3.74, 3.83, 3.92, 4.02, 4.12, 4.22,
4.32, 4.42, 4.53, 4.64, 4.75, 4.87, 4.99, 5.11, 5.23,
5.36, 5.49, 5.62, 5.76, 5.90, 6.04, 6.19, 6.34, 6.49,
6.65, 6,81, 6.98, 7.15, 7.32, 7.50, 7.68, 7.87, 8.06,
8.25, 8.45, 8.66, 8.87, 9.09, 9.31, 9.53, 9.76

Table 2: Constraints for each series.

Components

Constraints

E12 01<p,q,r, s bu,v,w <082 and 2 < a,b,c,d,e, f,g,h < 4.

E24 0.1<p,q,r s t,u,v,w <091 and 2 < a,b,c,d,e, f,g,h < 4

E96 0.1 <p,q,r, s, t,u,v,w <0976 and 2 < a,b,c,d,e, f,g,h < 4

Table 3: Control parameters of PB-PSO.

Parameters PB-PSO
Population size 10
Iteration cycles 1000

Table 4: Component values and performance of PB-PSO for
State variable filter design (E12 series).

Components CRPSO [6] | PB-PSO

R1(kQ2) 100 82

R2(kQ) 47 20

R3(kQ) 17 a7

RA(KQ) 1 172

R5(kQ) 82 115

R6(k) 5.6 10

Cl(nF) 1 6.8

C2(nF) 4.7 4.7

Cut-off frequency

deviation (Awp) | 0.0071 0.0022

Quality factor

deviation (AQ:) | 0.0058 0.0050

Total design

error (CFsyp) 0.0065 0.0036

Iteration cycle

required 757 361

Execution Time

(second) 29.14 15.021
The total cost function is written as:

CFSVF = (OSACOO + OSAQI) (8)

The PB-PSO will minimize the CFgqy .

3.2 Descript of setting of components

Each component is selected to have a resistance value
between 10* and 10°Q and a capacitance value between

10l0g, (CF,)

100 200 300 400 500 600 700 800 900 1000
Iteration cycle

Fig. 2: Convergence profile for E12 series.

1072 and 107% F. Any row vector is determined as:
[pagbrcsdteufvgwh]

If the values of the resistors and capacitors lie outside
this range, then they must be discarded. Since the
probable values vary from three-decade ranges, a coding
scheme is used, as shown in Table 1.

The design constraints for each series are given in
Table 2.

For E12 series, the design constraints are given as
follows: 0.1 < p,q,r,s,t,u,v,w < 0.82 and 2 <
a,b,c,d,e, f,g,h <4

For E24 series, the design constraints are given as
follows: 0.1 < p,q,r,s,t,u,v,w < 091 and 2 <
a,b,c,d,e, f,g,h <4

For E96 series, the design constraints are given as
follows:

01 < pagrstuv,w < 0976 and 2 <
a,b,c,d,e, f,g,h <4
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Table 5: Component values and performance of previous methods versus PB-PSO for State variable filter design (E24
series)

Components GA [3] PSO[3, 5] ABCI3] DE[4] HS[4] PB-PSO
Ry (k) 13 10 62 560 13 1.8
Ra(k) 56 1.65 i 1.6 82 391
R3(kQ) 24 30.11 91 30 33 11
Ru(k) 280 212 13 750 75 a7
R5(kQ) 14 1.0d 27 17 27 1.2
Ro(k2) 9.2 3.9 1.8 62 13 143
C, (uF) 180 470 2.7 390 2.7 9.1
C,(nF) 16 37 3.6 2.2 2.4 27.36

Cut-off frequency
deviation (Awg) | 3.613 x 10~ | 4.082 x 10~ | 1.434 x 10~4 NA NA 3.5 % 1075
Quality factor
deviation (AQ,) | 0.734 x 104 | 3.239 x 10~* | 6.176 x 10~* NA NA 2.1712 x 10~°
Total design 2.174 x 1074 | 3.661 x 10~ | 3.801 x 10* | 3.2 x 1075 | 1.9 x 10~4 | 2.8356 x 10~5
error (CFsyr)
Tteration cycle 1541 110 2219 34,652 232,138 661
required
Execution Time 312 270 3.4 36.7 79.8 37.321
(second)

Table 6: Component values and performance of previous methods versus PB-PSO for State variable filter low pass design
(E96 series)

Components GA [3] PSO[3,5] ABCJ3] DE[4] HS[4] PB-PSO
R1(kQ) 69 10.2 59 953 95.3 105
Ra (k) 2.55 8.66 88.7 4.64 6.34 127.28
R3 (k) 65.3 14.7 54.9 7.87 4.42 23.7
R4 (k) 237 187 90.9 442 57.6 133
R (k) 2.87 1.13 10 4.22 97.6 18.7
Re (k) 1.43 2.94 51.1 2.94 42.2 15.261
C1(nF) 110 164 75 953 9.53 113
Cy(nF) 80.4 82.5 4.32 47.5 3.32 17.402
Cut-off frequency
deviation (Awp) 3.627 x 107° | 1.457 x 10~* | 0.295 x 10~* NA NA 1.5x 1076
Quality factor
deviation (AQ;) 1.045 x 1074 | 4.759 x 107* | 0.047 x 1074 NA NA 6.7716 x 1076
Total design error (CFsyr) | 1.045 x 10~7 | 3.108 x 10=1 [ 0.171 x 1077 [ 1.9 x 107° [ 1.6 x 10~° | 4.1358 x 10~
Tteration cycle 4441 1028 175 47169 | 298,725 721
required
Execution Time 444 336 26 50 102.7 43.089
(second)
3.3 Multi-parameter sensitivity analysis where x; is substituted by R; or C;.

Let f;(X) is an objective function, where X =
T . o . 4. SIMULATION RESULTS AND DISCUSSIONS
[xl, .xn] . The single parameter sensitivity [13-14] is
defined as The components of the SVF using E12/E24/E96 series
) are obtained using the PB-PSO algorithm. The algorithm
was implemented in MATLAB 7.5 on the core (TM) 2 duo
processor, 3.00 GHz with 2 GB RAM, and the maximum
number of iterations was 1000. The control parameters
for the PB-PSO are shown in Table 3.

(10)

4.1 Results for the designed SVF

where o, is a variability parameter of x;. The components of the SVF are chosen from the E12
The multi-parameter sensitivity for the CFgy p is  series. The E series, also known as the preferred number
expressed as: series, refers to a set of standardized values used for
various components in engineering and manufacturing.
2, These series are designed to provide a convenient selec-
Or T K> (11) tion of values that follow a logarithmic scale, making
it easier to choose appropriate values for components

such as resistors, capacitors, and other electronic parts.

CF. _ 6 CFsyFr
SCEsvF — <Zi=1‘SRI-

2
O'C_

1

2
_y2 CFgyp
K=Y, ’SC[
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Fig. 3: Convergence profile for E24 series.

10"Iog1 a(CFSVF)

60 . . \ . . . L 2 .
0 100 200 300 400 500 600 700 800 900 1000
Iteration cycle

Fig. 4: Convergence profile for E96 series.

The "E” stands for “exponential” or “decadic”. Every
subsequent resistor or capacitor in the E12 series is
within -10% to +10% of the preceding value. There are
further E24 and E96 series for components with tighter
tolerance, with 24 and 96 distinct values within each
decade, respectively. These E series are standardized by
organizations such as the International Electrotechnical
Commission (IEC) and the Electronic Industries Alliance
(EIA). They help streamline the selection and use of com-
ponents in various industries, ensuring compatibility,
availability, and ease of design. The target CFgy p is
smaller than 0.0057. The C F gy  value achieved is 0.0036
for PB-PSO-based SVF filter design. At iteration 361,
PB-PSO achieved the target CFgy r in 15.021 seconds.
PB-PSO-based results are shown in Table 4. The E12

0.03
0.025
0.02 T

0.015 - '
0.01 3
0.005 -

SVF(E12)

# Lower Quartile (Q1)
M Minimum
Median

CFgyr values

- X Maximum
X Upper Quartile (Q3)

Fig. 5: Box and whisker plots for E12 series over 50 runs.

x10°

X @ Lower Quartile (Q1)

B Minimum

Median

->§ X Maximum
. ; }

SVF(E24)  SVF(E96)

N~ O

CFgyr values

X Upper Quartile (Q3)

Fig. 6: Box and whisker plots for E24 and E96 series over 50
trials for each series.

Gain (dB)

00Kz 300Hz 1.0KHz 3.0KHz 10KHz 30Kz 100KHz
5 DB(U(12)/V(1))
Frequency

Fig. 7: Amplitude response for E12 series.

series contains five components.

For E24 series, the target C Fgy, r is smaller than 3.2 X
1075 [4]. The CFgy  obtained is 2.8356 x 107> for PB-
PSO-based SVF filter design. At iteration 661, PB-PSO
achieved the target C Fgy  in 37.321 seconds. PB-PSO-
based results are given in Table 5. Four components of
SVF belong to E24 series.

For E96 series, the target C Fgy,  is smaller than 1.6 X
107°[4]. The CFgy p attained is 4.1358 x 107 for PB-
PSO-based SVF filter design. At iteration 721, PB-PSO
obtained the target C Fqy 1 in 43.089 seconds. PB-PSO-
based results are given in Table 6. Five components of
SVF belong to the E96 series.

Figs. 2-4 demonstrate the plots of 101log, (CFSVF)
vsiteration cycle for E12, E24 and E96 series, respectively.
Parameters of state variable low pass filters for different
series are given in Table 7.

Figs. 5 and 6 demonstrate the box and whisker plots
of PB-PSO based SVF design for each series over 50
runs. The minimal range of variance in C Fgy,  indicates
that the designs are stable and robust. The SVFs are
constructed utilizing the LM741 model in the SPICE [3, 5]

Gain (4B)

1004z 300Hz 1.0KHz 3.0KHz 16KHZ 30KHz 100KHZ
5 DB(U(12)/U(1))
Frequency

Fig. 8: Amplitude response for E24 series.
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Gain (dB)
/

1002 300Kz 1.0KHz 3.0KHz 10KHz 30KHz 100KH2
a DB(U(12)/U(1)
Frequency

Fig. 9: Amplitude response for E96 series.
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Fig. 10: Multi-parameter sensitivity of CFqyp for E12
series.

to verify the outcomes of PB-PSO optimization.

The amplitude responses of the SVFs are shown in
Figs. 7-9, respectively. In these figures, the X-axis
denotes the frequency, and the Y-axis is the amplitude
response in decibels (Gain (dB)). V (1) and V (12) illustrate
the input and output voltages of the SVF for SPICE
simulation. The suggested optimization strategy offers a
maximum flat response and a cut-off frequency of 10.038
krad/s, 10.038 krad/s, and 9.993 krad/s, respectively for
E12, E24 and E96 series.

Figs. 10-12 exhibit the multi-parameter sensitivity of
CFgyr computed by (16), with ¢ = 1% for the SVFs
having components compatible with E12, E24 and E96
series, respectively. Figs. 10-12 demonstrate that the low

0018

0016

oo4 |-

0012

L H i L i H H H i
001 002 0 004 005 006 007 008 009 01
CFsve

Fig. 11:
series.

Multi-parameter sensitivity of CFgy g for E24

003%-

o5

Fig. 12: Multi-parameter sensitivity of CFgqy for E9%
series.

Table 7: Parameters of State variable low pass filter for
different series.

Series E12 E24 E96
Cut-off frequency
(wp(krad/s)) 10.022 | 10.00035 | 10.000015
Quality factor
(0)) 0.710 | 0.707015 | 0.7070047
Gain in
Pass Band (dB) -2.711 1.5683 -3.8

CFgy r indicates lower multi-parameter sensitivity.

5. CONCLUSIONS

In this paper, PB-PSO is utilized for SVF design.
Components are selected from different manufactured
series for SVF. For SVF design with E24 and E96 series,
PB-PSO attains lower CF compared to the previous
techniques. SPICE results demonstrate that PB-PSO-
based filters offer flat response in the pass band. Thus,
PBPSO establishes itself as a useful optimization method
for analog filter design.
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