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Classification of Vibration in Coal Mining
Industry via Deep Neural Network
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ABSTRACT

Recently, the electricity from coal mining industry is
still necessary because it serves as a primary electrical
source in many areas in response to high demand for
power. However, coal mining can harm the miners,
environment, and villages near mining site due to ground
vibration from blasts during the operation. Hence, every
coal mine industry is required to report the ground
vibration for safety purposes. Mostly, the ground
vibration data comes from the vibration sensors deployed
around themining site, and the vibration data will be sent
to the control room. Due to tons of the vibration data,
operators have difficulty in classifying the blast vibra-
tions from the records which causes time-consuming and
possible human errors during the process. To solve these
problems, this article proposes the Deep Neural Network
(DNN) model for a blast vibration classification with 3
hidden layers. the ground vibration data used in training
and validating the DNN are collected by the Mae Moh
mine site in Thailand. As the result, the designed DNN
meets the standard with the accuracy of 100%.

Keywords: Vibration Monitoring System, Deep Neural
Network, Classification

1. INTRODUCTION
Coal mining industry can cause fatal injuries to people

and the environment around the area. Researches on
mine industry are continuously published in various
areas such as safety monitoring systems [1-3] and
vibration monitoring systems [4]. The ground vibration
monitoring system is conventionally a fundamental tool
that can prevent the effects of coal mining on humans
and environment by observing the blast vibrations during
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Fig. 1: Ground vibration monitoring system in the Mae
Moh mine area.

the operation. Because all vibration data from the
monitoring system are stored in a single computer in
the control room, the operator spends a large amount of
time deliberately classifying each of the blast vibrations
to analyze the vibration pattern whether it is acceptable
according to the standard.

To overcome this problem, Mae Moh mining area in
Thailand, was selected for this research. This mine used
to be researched regarding air quality improvement [5],
but it has never been studied for to analyze the ground
vibrations. Hence, this study focuses on the classification
of blast vibrations via the machine learning technique
to support the safety standard. To measure the ground
vibrations, this mine site has the wireless vibration
monitoring systems installed around the mining area.

Fig. 1 shows one part of the ground vibration sensor
network consisting of sensor nodes “A” and “B” deployed
in the village near the Mea Moh mining area. The
vibration data from the sensor nodes will be sent to the
control room. Then, the operator will classify the blasting
vibration data with naked eyes.

The vibration data from the sensor nodes are pre-
sented in 3 dimensions: transverse, vertical, and lon-
gitudinal dimension. Fig. 2 shows the blast vibration
in the transverse dimension measured by the vibration
sensor named “Minimate Plus”. The vibration pattern
in time domain has the curve that gradually approaches
zero from negative values as shown in Fig.2(a). Therefore,
it has a low frequency range approximately 0-30 Hz as
shown in Fig. 2(b).
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The vibration pattern that does not result from blast is
shown in Fig. 3. The vibration in time domain, as shown
in Fig.3(a), fluctuates in high amplitude at the beginning
approximately 0-2 s, and then has low amplitude around
zero. In frequency domain, the amplitude of the vibration
gradually decreases to zero from 5-100 Hz as shown in
Fig. 3(b).

Conventionally, manpower would be used to classify
each vibration for safety purposes. As a result, this
process relies on manpower and consumes much time.
Nowadays, computing technology is rapidly developed.

Hence, DNN is widely used in classification applica-
tions. It can learn and classify data into multiple classes.
Thus, this article proposes the application of the DNN to
classify any ground vibration, whichwill serve as a useful
source of knowledge for building a future automatic
system. The rests of this paper consist of background and
relayed works, design system, results and discussion, and
conclusion.

2. BACKGROUND AND RELATEDWORKS
In this article, bold letters are denoted as vectors and

matrices. For example, a vector andmatrix can bewritten
as 𝐚 or 𝐀. Regular letters are denoted as scalars. For
example, a scalar can be written as 𝑠 or 𝐴.

2.1 Vibration sensor
Each blast vibration at Mae Moh mine is measured

using Minimate Plus produced by Instantel as shown in
Fig. 4. This device has a transducer consisting of 3
three geophones to measure the ground vibration in 3
dimensions such as transverse, vertical, and longitudinal
dimension [6].

Normally, Minimate Plus is set to send data to the
computer in the control room when the ground vibration
occurs. Users can utilize the recorded data via the
software named ”Blastware®”. This software can export
the raw data to .txt files which are easy to analyse
with other programs such as MATLAB and Python IDE
(Integrated Development Environment).

In the next subsection, it will explain the architecture
and mechanism of the DNN as well as its calculation
algorithms. Additionally, knowledge from this subsec-
tion will enable readers to understand the details of the
designed system topic.

2.2 Deep Neural Networks
Neural Network (NN) is supervised learning which is

one kind of the machine learning. Because supervision
is required during training, NN needs the correct output
data sets corresponding to the input data sets. It is
utilized to classify data sets by training weights of the
artificial neural branches connecting to the neural nodes.
The neural nodes are arranged in columns, and one
column of nodes is considered as one layer. Initially, NN
necessity has input and output layer. The layer between
the input and output layer is call “hidden layer”. In

addition, DNN is one type of the NN with more than one
hidden layer [7].

Fig. 5 shows the DNN structure with 𝐿 layers. The
first layer is the input layer of the DNN 𝐗1, and the last
layer is the output layer of the DNN 𝐘𝐿. The middle
layers between the input and output layer of the DNN
are the hidden layers. A hidden layer can be output layer
of the previous layer and input layer of the next layer.
Nodes in the layer are connected to those in next layer
by neural branches, and each branch has its own weight
parameter 𝐖. Thus, the number of weights in the DNN
equals to 𝑃 or 𝐿 − 1.

To calculate the output of the DNN, the first data set
is fed to the input layer and stored its values in the nodes
at the 1𝑠𝑡 layer. Then, the values of the input layer can be
presented as an input matrix which can be expressed as

𝐗𝑙 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑥𝑙
1

⋮
𝑥𝑙

𝑚𝑙
⋮

𝑥𝑙
𝑀𝑙

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(1)

where 𝐗𝑙 is input matrix at the 𝑙𝑡ℎ layer, 𝑥𝑙
𝑚𝑙 is the 𝑚𝑡ℎ

𝑙
input node, and 𝑀𝑙 is the number of nodes in the layer.

The next step is to calculate the weighted sum. The
weight between the input layer 𝐗𝑙 and the output layer
𝐘𝑙 + 1 can be expressed as

𝐖𝑝 =
⎡
⎢
⎢
⎢
⎢
⎣

𝑤𝑝
1,1 𝑤𝑝

1,2 𝑤𝑝
1,3 ⋯

𝑤𝑝
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2,2 𝑤𝑝
2,3 ⋯

⋮ ⋮ ⋮ ⋱
𝑤𝑝

𝑀𝑙+1,1 𝑤𝑝
𝑀𝑙+1,2 𝑤𝑝

𝑀𝑙+1,3 ⋯

𝑤𝑝
1,𝑀𝑙

𝑤𝑝
2,𝑀𝑙
⋮

𝑤𝑝
𝑀𝑙+1,𝑀𝑙

⎤
⎥
⎥
⎥
⎥
⎦

(2)

where 𝐖𝑝 is the 𝑝𝑡ℎ weight matrix, 𝑤𝑝 is the weight
member of the 𝑝𝑡ℎ weight matrix, 𝑀𝑙+1 is the number
of the output nodes, and 𝑀𝑙 is the number of the input
nodes.

The weighted sum is the sum of the multiplication of
the weight matrix and input matrix with the bias values
which can be expressed as

𝑣𝑚𝑙+1 = 𝑤𝑚(𝑙+1),𝑖𝑥𝑚𝑖 + 𝑏𝑚𝑙+1 (3)

where 𝑣𝑚𝑙+1 is the 𝑚𝑡ℎ
𝑙+1 weighted sum, 𝑥𝑚𝑖 is the 𝑚𝑡ℎ

𝑖
input value, and 𝑏𝑚𝑙+1 is the 𝑚𝑡ℎ

𝑙+1 bias value. Hence, the
weighted sum matrix can be expressed as

𝐕𝑝 = 𝐖𝑝𝐗𝑙 + 𝐁𝑝 (4)

where 𝐕𝑝 is the 𝑝𝑡ℎ weighted sum matrix and 𝐁𝑝 is the
𝑝𝑡ℎ bias matrix. Therefore, the size of the weighted sum
matrix equals to 𝑀𝑙+1 × 1.

Then, the weighted sum will be transformed to
the designed output value via activation function 𝜑 ().
Hence, the output matrix can be expressed as

𝐘𝑙+1 = 𝜑(𝐕𝑝) (5)
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(a) Time domain

(b) Frequency domain

Fig. 2: Blast vibration report in the transverse dimension.

(a) Time domain

(b) Frequency domain

Fig. 3: Non-blast vibration report in the transverse dimension.

where 𝑌 𝑙+1 is the (𝑙 + 1)𝑡ℎ output matrix and 𝐕𝑝 is the
𝑝𝑡ℎ weighted sum matrix. The examples of the activation
function are Sigmoid function, Softmax function, and
Ramp function (Rectified Linear Unit).

The Sigmoid function is one of the most popular
activation functions, and its output has the value between
zero and one. The output node from the Sigmoid function

𝜎 () can be expressed as

𝑦𝑚𝑙+1 = 𝜎 (𝑣𝑚𝑙+1) = 1
1 + 𝑒−𝑣𝑚𝑙+1

(6)

where 𝑦𝑚𝑙+1 is the 𝑚𝑡ℎ
𝑙+1 output node, 𝑣𝑚𝑙+1 is the 𝑚𝑡ℎ

𝑙+1
weighted sum.

In classification application, the last output layer of
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Fig. 4: Minimate Plus.

the DNN is used to specify the predicted class. Then,
the number of nodes in the last layer will be equal to
the total number of classes, and their values should be
the probability of being in a specific class. Therefore, the
sum of the output nodes in the last layer will be equal to
one which can be expressed as

𝑀𝐿

∑
𝑖=1

𝑦𝐿
𝑖 = 1 (7)

where 𝑦𝐿 is the 𝐿𝑡ℎ output node which is in the last
layer and 𝑀𝐿 is the number of output nodes in the last
layer. Unfortunately, the Sigmoid function can produce
the output nodes with values from zeros to one, but
cannot yield the sum of output nodes in unity. Thus, the
suitable activation function for the last output layer is the
Softmax function 𝒮 () which can be expressed as

𝑦𝐿
𝑚𝐿 = 𝒮 (𝑣𝑃

𝑚𝐿 ) = 𝑒𝑣𝑃
𝑚𝐿

∑𝑀𝐿
𝑖=1 𝑒𝑣𝑃

𝑖
(8)

where 𝑦𝐿
𝑚𝐿 is the 𝑚𝑡ℎ

𝐿 output node at the last layer 𝐿 and
𝑣𝑃

𝑚𝐿 is the 𝑚𝑡ℎ
𝐿 weighted sum at the last weighted sum

matrix 𝑃 .
Following the property of the Softmax function, the

sum of the Softmax function yields the sum of the output
nodes which is equal to one and can be expressed as

𝑀𝐿

∑
𝑖=1

𝒮 (𝑣𝑃
𝑖 ) =

𝑀𝐿

∑
𝑖=1

𝑦𝐿
𝑖 = 1. (9)

In the past recent year, Softmax function was still be
used in many researches [8–11]. Therefore, the complete
algorithm for calculating output nodes of the DNN can
be shown in Table 1.

2.3 Training Process
Before utilizing the designed DNN, the weight has to

be trained until the DNN can predict input data in the
correct class. Hence, to train the model, the trained data
sets need the correct data to identify if the output of the
DNN is the correct prediction or not. The correct data
can be expressed as

Table 1: Pseudocode of the output calculation.

Table 2: Pseudocode of training algorithm.

𝐂 ∈ a row in 𝐈𝐾 (10)

where 𝐂 is the correct data, 𝐾 is the number of classes,
and 𝐈𝐾 is the 𝐾 ×𝐾 identity matrix. For the classification
of blast vibrations, data sets can be classified into 2 classes
(𝐾 = 2). The class-1 data are blast vibrations, and the
class-2 data are non-blast vibrations. Hence, the correct
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Fig. 5: Structure of the DNN.

Table 3: Parameters of the training process.

data can be set as 𝐂 ∈ {[1 0] , [0 1]}. Then, [1 0] is for
class 1 and [0 1] is for class 2.

When the output of the DNN is computed, the
prediction error of these trained data can be expressed
as

𝐄𝐿 = 𝐂 − 𝐘𝐿 (11)

where 𝐄𝐿 is the error matrix at the last layer, 𝐂 is the
correct data matrix corresponding to input data, and 𝐘𝐿

is the output matrix at the last layer.
To reduces the error, the weights of the DNN have to

be adjusted by the back-propagation algorithm. Fig. 6
shows the back-propagation diagram which consists of 2
processes: calculating the delta and updating the weight
matrix via delta rule. As of the algorithm’s name, the
calculation begins at the last layer and ends at second
layer. First, the error matrix for the last layer of the DNN
is calculated by equation (11). Then, use the Delta rule to
calculate delta matrix by

𝜹𝑙 =
{

𝐄𝐿 , if l = L
𝜑′

(𝐕𝑝)𝐄𝑙 , if l < L
(12)

where 𝜹𝑙 is the delta matrix at the 𝑙𝑡ℎ layer, 𝜑′
(𝐕𝑝) is the

derivative of the activation function of the 𝑝𝑡ℎ weighted
summatrix, and 𝑝 = 𝑙 −1. Then, the delta matrix is used
to find the additional weight by

Δ𝐖𝑝 = 𝛼𝜹𝑙𝐗𝑙−1,𝑇 (13)

where Δ𝐖𝑝 is an additional weight matrix for the 𝑝𝑡ℎ

weight matrix, 𝛼 is the learning rate, and 𝐗𝑙−1,𝑇 is the
transpose of the input matrix at the (𝑙 − 1)𝑡ℎ layer. Then
the updated weight matrix can be expressed as

𝐖𝑝
𝑛𝑒𝑤 = 𝐖𝑝

𝑜𝑙𝑑 + 𝛥𝐖p (14)

To update the previous weight matrix 𝑊 𝑝−1, the error
matrix of the (𝑙 − 1)𝑡ℎ layer is calculated by

𝐄𝑙−1 = 𝐖𝑝,𝑇
𝑜𝑙𝑑𝜹

𝑙 (15)

where 𝐄𝑙−1 is the error matrix of the (𝑙 − 1)𝑡ℎ layer,𝐖𝑝,𝑇
𝑜𝑙𝑑

is the transpose of the 𝑝𝑡ℎ old weight matrix, and 𝜹𝑙 is the
delta of the 𝑙𝑡ℎ layer.

Once all weight matrices in the DNN are updated, the
next trained data set 𝐗 and correct data 𝐂 are used to
train the model. This training process will repeat until
it iterates through all the data sets. The entire iteration
is called ”one epoch”. Only one epoch of training will
not be sufficient to make an accurate prediction system.
To improve the system, the weight matrices must be
trained in many epochs. However, if the training takes
too many epochs which is called ”overtraining”, the DNN
will become too strict with the input data. Such a
situation is called ”overfitting” which will disregard a
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Fig. 6: Back-propagation diagram.

Fig. 7: Design deep neural network.

sense of flexibility for the prediction. Hence, the number
of prediction errors will increase.

To overcome the overfitting problem without know-
ing the suitable number of epochs, a dropout technique
is presented. Its function is to drop out some input and
weight nodes in the DNN. Consequently, some nodes of
the outputs from hidden layers will be randomly selected
and set to 0. Thus, the dropout function can be expressed
as

(𝐘, 𝐹
𝑀 ) =

⎡
⎢
⎢
⎢
⎢
⎣

𝑦1
⋮

𝑦𝑚
⋮

𝑦𝑀

⎤
⎥
⎥
⎥
⎥
⎦

(16)

where 𝑦𝑚 equals zero when 𝑚 ∈ 𝐎 and equals

𝑦𝑚 (
1

1− 𝐹
𝑀 ) when 𝑚 ∉ 𝐎. 𝐹

𝑀 is a dropout ratio which

is the ratio of the number of the dropout value 𝐹 to the
total number of the output data 𝑀 ,𝐎 is the index matrix
equal to [𝑜1, 𝑜2, … , 𝑜𝑓 , … , 𝑜𝐹 ] which causes 𝑦𝑚 equal to
0, and 𝑜𝑓 is the random positive integer less than or equal
to 𝑀 .

The dropout ratio can be set from 0.2 - 0.5 depending
on the application [12-15]. Hence, the complete training
algorithm can be expressed in Table 2.

3. DESIGNED SYSTEM
The DNN used for this system has 3 hidden layers as

shown in Fig. 7. The input data is the spectrum of ground
vibrations recorded via Minimate Plus with the sample
rate equal to 1024 bits/s. According to Nyquist–Shannon
sampling theorem, the Nyquist frequency equals 1204
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Table 4: Pseudocode of the weight training algorithm for
the designed model.

Hz/2 = 512 Hz. Then, the Fast Fourier Transform (FFT)
is used to convert the vibration data from time domain
to frequency domain with 501 values. Consequently,
the frequency interval between spectrum values is 512
Hz/500 intervals = 1.024 Hz which is an appropriate

Table 5: Pseudocode of the correlation classification.

resolution for this application. To solve the uncertainty
of amplitude of the vibration data, the spectrum needs to
be normalized with its maximum value.

Then, the spectrum is fed into the Input layer which
has the 501 nodes equal to the spectrum values. The
output of the DNN has 2 nodes to classify only 2 classes:
one is vibration from blast operation, and the others are
vibrations from arbitrary sources. Hence, result of these
trained data can either be [1 0] or [0 1], and the output
layer has only 2 nodes. There are 3 hidden layers in the
model. Each hidden layer has 15 nodes corresponding
to 4 weight matrices with the sizes of 15x501, 15x15,
15x15, and 2x15, respectively. The activation function
begins with the Sigmoid function, and the last layer ends
with the Softmax function. All necessary parameters are
shown in Table 3.

There are 200 data sets used in this study. Each data
set is contained in the .txt file. These files are grouped
into 2 categories. The first category is the blast vibration
data consisting of 100 .txt files which are labelled with
their file names from ”Y1” to ”Y100”. The other is the non-
blast vibration data also consisting of 100 .txt files which
are labelled with their file names from ”N1” to ”N100”.
Then, MALAB is used to convert these data in .txt file
format to the normalized-amplitude spectrum in the .mat
file format via the FFT function and unity normalization.
The .mat file contains the data matrix 𝐑 and correct data
matrix 𝐂 which are arranged by the first 100 blast data
sets with the significant order of data.

Next, 20% of all data sets (40 data sets) are used to train
the model, and the rest (160 data sets) are used to validate
themodel. The training algorithm for the designedmodel
is shown in Table 4.

Because the number in the initial weight matrix is
arbitrary, the results of adjusting weight is not constant.
Hence, the training and testing model are repeated 10
times with each of learning rates of 0.1, 0.01, and 0.001.
After each training process, the model will be tested with
80% of the data sets.

After that, the performance of the DNN model will
be compared with the other two classification techniques
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such as correlation coefficient and coefficient of determi-
nation.

3.1 Correlation Coefficient
The correlation coefficient is a numerical indicator

of the relation between two variables. The correlation
coefficient technique can be used to reduce the data di-
mensions for detecting linear and non-linear correlation
[16]. It also can be applied in power analysis [17] and
energy-efficient MIMO (Multiple-Input Multiple-Output)
applications [18].

This article uses the Pearson correlation coefficient
to classify the vibration by setting the reference blast
vibration data set as the matrix 𝐗′ = [𝑥′

1, 𝑥′
2, … , 𝑥′

𝑁 ]
and the test vibration data set as the matrix 𝐗″ =
[𝑥″

1 , 𝑥″
2 , … , 𝑥″

𝑁 ]. Then, the Pearson correlation coeffi-
cient 𝒞𝑐 can be computed by

𝒞𝑐 =
∑𝑁

𝑛=1 (𝑥′
𝑛 − 𝑥′)(𝑥″

𝑛 − 𝑥″)

√∑𝑁
𝑛=1 (𝑥′

𝑛 − 𝑥′)
2
√∑𝑁

𝑛=1 (𝑥″
𝑛 − 𝑥″)

2
(17)

= 𝑁𝐗′𝐗″𝑇 − ∑𝐗′ ∑𝐗″

√𝑁∑𝐗′2 − (∑𝐗′)
2
√𝑁∑𝐗″2 − (∑𝐗″)

2

where 𝑥′ is the mean of the reference blast vibration data
set and 𝑥″ is the mean of the test vibration data set.

The Pearson correlation coefficient has the value
between - 1 to 1 where 1 represents the two data
sets are perfectly correlated. In contrast, 0 means the
two data sets are uncorrelated. Therefore, the value
of the correlation of the test data set being the blast
vibration. Then, the output of the correlation coefficient
classification 𝑦𝑐 can be set as the probability like the DNN
and expressed as

𝑦𝑐 = {
𝑦𝑐 , 𝒞c > 0
0 , 𝒞c ≤ 0 . (18)

Table 5 shows the pseudocode of correlation classifi-
cation for this research. First is the initial process. The
200 vibration data sets are loaded from file “data.mat” to
the matrix 𝐑. Then, the 21𝑠𝑡 - 100𝑡ℎ (blast vibration) and
121𝑠𝑡 - 200𝑡ℎ (non-blast vibration) data sets are stored in
the matrix 𝐗. After that the 1st data set of the matrix 𝐗
is set to the reference blast vibration data set and stored
in the matrix 𝐗′

.
Second is the computational process. Each data set

from matrix 𝐗 is stored in the test data set matrix 𝐗″
.

Next, Pearson correlation coefficient between matrix 𝐗′

and 𝐗″
is computed. Then, the probability of being

the blast vibration 𝑦𝑐 is only the positive value of the
coefficient, otherwise is set to 0.

3.2 Coefficient of Determination
Coefficient of determination or R-squared is a numer-

ical indicator of the similarity between two variables via
proportion of variance which can be computed by

(a) 𝛼 = 0.1

(b) 𝛼 = 0.01

(c) 𝛼 = 0.001

Fig. 8: Graph of the number of prediction error versus the
number of epochs in different learning rates.

ℛ2 = 1 −
∑𝑁

𝑛=1 (𝑥′
𝑛 − 𝑥″

𝑛 )
2

∑𝑁
𝑛=1 (𝑥′

𝑛 − 𝑥′)
2 (19)

= 1 −
∑ (𝐗′ − 𝐗″)

2

∑ (𝐗
′ − 𝐗′

)
2 . (20)
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Table 6: Pseudocode of the R-squared classification.

The product of R-square has a value between 0-1
which can be implied as the probability of one variable
being the other. R-squared can be used for analyzing the
performance of the machine learning models [19], and
also applied in the detection application for extracting
data [20]. The concept of applying R-squared for vibra-
tion classification is similar to the correlation coefficient
classification in the previous subsection.

To classify ground vibration into blast vibration, the
probability of being blast vibration with R-squared is set
as

𝑦𝑅2 which is equal to the R-squared value. Then, Table
6 shows the pseudocode of the R-squared classification.
The first initial process is similar to the correlation
coefficient classification. The R-squared has one more
step which is calculation of mean of the reference blast
vibration data. In the computational process, the Pearson
correlation coefficient formula is replaced by the R-
squared formula, and “if” condition is eliminated.

4. RESULTS AND DISCUSSION

During the training process, the number of the
prediction error decreases depending on the learning rate
as shown in Fig. 8.

The graph clearly reveals that the size of the learning
rate is directly proportional to the number of epochs.
For the learning rate equal to 0.1, the number of the
prediction error becomes zero after 220 epochs. For the
learning rate equal to 0.01, the number of the prediction
error is zero after 14400 epochs. Due to lager number
of the training epochs, the training process takes longer
time than that with smaller learning rates.

Table 7 shows the percentage of the class prediction
in training and testing process. For training process,
the models with learning rate 0.1 and 0.01 can correctly
classify the vibration data. For learning rate 0.001, the
model has 5% mistake from predicting class 2 as class 1.

For testing process, the prediction error occasionally
occurs in all learning rates, but a larger learning rate can
produce a larger error. The learning rate equal to 0.001
yields 7.5% maximum prediction error in class-2 data.
Meanwhile, the learning rate equal to 0.1 yields only 5%
maximum prediction error in class-2 data. However, all
learning rates can produce weight matrices which have

Fig. 9: Probability of being the blast vibration.

0% prediction error. Thus, to reduce training time and
yield smaller probable errors, the learning rate equal to
0.01 is appropriate.

Due to the Softmax function, every output of the DNN
has the value between 0 to 1 which can be considered as
probability measure. For the correlation coefficient, the
minus value from -1 to 0 means unlikelihood between
two signals. Besides, the positive value from 0 to 1
presents the likelihood which can also be considered as
the probability.

To compare the prediction performance of two ap-
proaches, Fig. 9 shows the probability of being the blast
vibration of the DNN and correlation technique. The
DNN (red line) has better performance than correlation
(blue line). If the threshold probability is set to 0.5, the
correlation will make the wrong prediction for 3 data sets
with the probabilities of 0.8113, 0.7442, and 0.5287. As
the results, it is clear that the DNN is more a suitable
technique than the correlation.

For calculation time, functions ”tic” and ”toc” are used.
Table 8 shows the calculation time for testing 160 data
sets in 5 times. R-squared uses the longest time around
0.17 s while DNN uses the shortest time around 0.0046 s.
Correlation spends time slightly longer than DNN about
0.0015 s.

As the results, it is clear that the DNN is more a
suitable technique than the correlation and R-squared in
both accuracy and calculation time.

5. CONCLUSIONS

In this article, the DNNwith 3 hidden layers is applied
to classify the blast vibration for the coal mining in
order to reduce the human process which causes time
inefficiency and human error. The proposed DNN model
classifies the vibration data into 2 classes which are the
blast vibration (Class 1) and non-blast vibration (Class
2). The suitable learning rate for training process is
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Table 7: Percentage of the class prediction in different learning rate and epochs.

Table 8: Calculation time for testing 160 data sets.

0.001, and the trained DNN model can classify the blast
vibration with the 100% accuracy under the condition
that the non-blast vibration has discrete and multiple
frequencies. In addition, DNN outperforms Pearson
correlation coefficient and coefficient of determination
(R-squared).

Furthermore, this work could be extended in the
future to modify the DNN structure by reducing the
weight size or the number of hidden layers which
can reduce the calculation time. This work can also
be applied to automatic blast vibration reports with a
high level of security which makes data reporting via
blockchain technology more reliable to inspectors from
an environmental organization.
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