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Classification of Vibration in Coal Mining
Industry via Deep Neural Network
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ABSTRACT

Recently, the electricity from coal mining industry is
still necessary because it serves as a primary electrical
source in many areas in response to high demand for
power. However, coal mining can harm the miners,
environment, and villages near mining site due to ground
vibration from blasts during the operation. Hence, every
coal mine industry is required to report the ground
vibration for safety purposes. Mostly, the ground
vibration data comes from the vibration sensors deployed
around the mining site, and the vibration data will be sent
to the control room. Due to tons of the vibration data,
operators have difficulty in classifying the blast vibra-
tions from the records which causes time-consuming and
possible human errors during the process. To solve these
problems, this article proposes the Deep Neural Network
(DNN) model for a blast vibration classification with 3
hidden layers. the ground vibration data used in training
and validating the DNN are collected by the Mae Moh
mine site in Thailand. As the result, the designed DNN
meets the standard with the accuracy of 100%.

Keywords: Vibration Monitoring System, Deep Neural
Network, Classification

1. INTRODUCTION

Coal mining industry can cause fatal injuries to people
and the environment around the area. Researches on
mine industry are continuously published in various
areas such as safety monitoring systems [1-3] and
vibration monitoring systems [4]. The ground vibration
monitoring system is conventionally a fundamental tool
that can prevent the effects of coal mining on humans
and environment by observing the blast vibrations during
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Fig. 1: Ground vibration monitoring system in the Mae
Moh mine area.

the operation. Because all vibration data from the
monitoring system are stored in a single computer in
the control room, the operator spends a large amount of
time deliberately classifying each of the blast vibrations
to analyze the vibration pattern whether it is acceptable
according to the standard.

To overcome this problem, Mae Moh mining area in
Thailand, was selected for this research. This mine used
to be researched regarding air quality improvement [5],
but it has never been studied for to analyze the ground
vibrations. Hence, this study focuses on the classification
of blast vibrations via the machine learning technique
to support the safety standard. To measure the ground
vibrations, this mine site has the wireless vibration
monitoring systems installed around the mining area.

Fig. 1 shows one part of the ground vibration sensor
network consisting of sensor nodes “A” and “B” deployed
in the village near the Mea Moh mining area. The
vibration data from the sensor nodes will be sent to the
control room. Then, the operator will classify the blasting
vibration data with naked eyes.

The vibration data from the sensor nodes are pre-
sented in 3 dimensions: transverse, vertical, and lon-
gitudinal dimension. Fig. 2 shows the blast vibration
in the transverse dimension measured by the vibration
sensor named “Minimate Plus”. The vibration pattern
in time domain has the curve that gradually approaches
zero from negative values as shown in Fig.2(a). Therefore,
it has a low frequency range approximately 0-30 Hz as
shown in Fig. 2(b).
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The vibration pattern that does not result from blast is
shown in Fig. 3. The vibration in time domain, as shown
in Fig.3(a), fluctuates in high amplitude at the beginning
approximately 0-2 s, and then has low amplitude around
zero. In frequency domain, the amplitude of the vibration
gradually decreases to zero from 5-100 Hz as shown in
Fig. 3(b).

Conventionally, manpower would be used to classify
each vibration for safety purposes. As a result, this
process relies on manpower and consumes much time.
Nowadays, computing technology is rapidly developed.

Hence, DNN is widely used in classification applica-
tions. It can learn and classify data into multiple classes.
Thus, this article proposes the application of the DNN to
classify any ground vibration, which will serve as a useful
source of knowledge for building a future automatic
system. The rests of this paper consist of background and
relayed works, design system, results and discussion, and
conclusion.

2. BACKGROUND AND RELATED WORKS

In this article, bold letters are denoted as vectors and
matrices. For example, a vector and matrix can be written
as a or A. Regular letters are denoted as scalars. For
example, a scalar can be written as s or A.

2.1 Vibration sensor

Each blast vibration at Mae Moh mine is measured
using Minimate Plus produced by Instantel as shown in
Fig. 4. This device has a transducer consisting of 3
three geophones to measure the ground vibration in 3
dimensions such as transverse, vertical, and longitudinal
dimension [6].

Normally, Minimate Plus is set to send data to the
computer in the control room when the ground vibration
occurs. Users can utilize the recorded data via the
software named "Blastware®”. This software can export
the raw data to .txt files which are easy to analyse
with other programs such as MATLAB and Python IDE
(Integrated Development Environment).

In the next subsection, it will explain the architecture
and mechanism of the DNN as well as its calculation
algorithms. Additionally, knowledge from this subsec-
tion will enable readers to understand the details of the
designed system topic.

2.2 Deep Neural Networks

Neural Network (NN) is supervised learning which is
one kind of the machine learning. Because supervision
is required during training, NN needs the correct output
data sets corresponding to the input data sets. It is
utilized to classify data sets by training weights of the
artificial neural branches connecting to the neural nodes.
The neural nodes are arranged in columns, and one
column of nodes is considered as one layer. Initially, NN
necessity has input and output layer. The layer between
the input and output layer is call “hidden layer”. In

addition, DNN is one type of the NN with more than one
hidden layer [7].

Fig. 5 shows the DNN structure with L layers. The
first layer is the input layer of the DNN X!, and the last
layer is the output layer of the DNN Y. The middle
layers between the input and output layer of the DNN
are the hidden layers. A hidden layer can be output layer
of the previous layer and input layer of the next layer.
Nodes in the layer are connected to those in next layer
by neural branches, and each branch has its own weight
parameter W. Thus, the number of weights in the DNN
equalsto P or L — 1.

To calculate the output of the DNN, the first data set
is fed to the input layer and stored its values in the nodes
at the 1*' layer. Then, the values of the input layer can be
presented as an input matrix which can be expressed as

Xy,
where X! is input matrix at the I’ layer, xﬁnl is the m?h
input node, and M, is the number of nodes in the layer.

The next step is to calculate the weighted sum. The
weight between the input layer X! and the output layer
Y’ + 1 can be expressed as

p p
YL 12 e wll,Mz
wr =| "2 Wy, W3 Wy u, @)
p ) p ) p ’ p
I/U w w e
M1 M2 M3 wMH.],M[

where W” is the p'* weight matrix, w? is the weight
member of the p’* weight matrix, M i+1 is the number
of the output nodes, and M, is the number of the input
nodes.

The weighted sum is the sum of the multiplication of
the weight matrix and input matrix with the bias values
which can be expressed as

Um,+1 = wm(H,l),ixm,- + bml+1 (3)

th h

1+1
input value, and bmz+1 is the mfﬁl bias value. Hence, the
weighted sum matrix can be expressed as

where v, is the m;, , weighted sum, X, is the mf

V2 = WPX! + B? (4)

where V7 is the p'" weighted sum matrix and B? is the
p'" bias matrix. Therefore, the size of the weighted sum
matrix equals to M, X 1.

Then, the weighted sum will be transformed to
the designed output value via activation function ¢ ().
Hence, the output matrix can be expressed as

Y = p(vP) (5)
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Fig. 3: Non-blast vibration report in the transverse dimension.

where Y'*! is the (I + 1) output matrix and Vp is the
p'" weighted sum matrix. The examples of the activation
function are Sigmoid function, Softmax function, and
Ramp function (Rectified Linear Unit).

The Sigmoid function is one of the most popular
activation functions, and its output has the value between
zero and one. The output node from the Sigmoid function

o () can be expressed as

1
ym1+1 =0 <Uml+l) - 1 + e_UmH_] (6)
where Yy, is the m;ﬁl output node, U, is the ml’+ll

weighted sum.
In classification application, the last output layer of
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the DNN is used to specify the predicted class. Then,
the number of nodes in the last layer will be equal to
the total number of classes, and their values should be
the probability of being in a specific class. Therefore, the
sum of the output nodes in the last layer will be equal to
one which can be expressed as

My
doyk=1 ()
i=1

where y& is the L' output node which is in the last
layer and M is the number of output nodes in the last
layer. Unfortunately, the Sigmoid function can produce
the output nodes with values from zeros to one, but
cannot yield the sum of output nodes in unity. Thus, the
suitable activation function for the last output layer is the
Softmax function S () which can be expressed as
eV
Ymy =S (UZL> =, (®)

iz ¢’

where yn];L is the mt]fl output node at the last layer L and

v,’n)L is the m’Lh weighted sum at the last weighted sum

matrix P.

Following the property of the Softmax function, the
sum of the Softmax function yields the sum of the output
nodes which is equal to one and can be expressed as

My My
ZS(U?):ZyiL=1. 9)
i=1 i=1

In the past recent year, Softmax function was still be
used in many researches [8-11]. Therefore, the complete
algorithm for calculating output nodes of the DNN can
be shown in Table 1.

2.3 Training Process

Before utilizing the designed DNN, the weight has to
be trained until the DNN can predict input data in the
correct class. Hence, to train the model, the trained data
sets need the correct data to identify if the output of the
DNN is the correct prediction or not. The correct data
can be expressed as

Table 1: Pseudocode of the output calculation.

Algorithm 1: Output calculation

Initialization

11 Prepare the input data: X* = [x],x3,x3, ..., x}, |
where M, is the number of the input node at the
first layer.

Set the number of layers: L

Set weight matrices: WP with size M;,; X M,
where WP is the p®* weight matrix and [ is the
order of the layer.

Output calculation

W N

1: forp=1:P-1

2: l=p+1

3: VP = wpxi-t
4: Y =0 (VP)
5: Xt =Y

6: end

7: VP = WPXL1

8 YE=85WVD

Table 2: Pseudocode of training algorithm.

Algorithm 2: Training algorithm for one epoch
Initialization

Steps 1-3 are the same as Algorithm 1

4:  Set the correct data: C

5:  Set the number of weight matrices: P

6:  Set dropout ratio: %

7:  Setlearning rate: @
Output calculation
1. forp=1:P-1

2 l=p+1
3 VP = wrx!-t
4 Y! =g (VP)
5 _ F
v =D(¥,1)

6: Xt =Yy
7 end
8 VP = wPxi-t
9 YL =5V
Back propagation

Delta calculation
1: El=Cc-Y*
2: & =E*!
3: forl=1L:—1:2
4: p=1-1
5: EI"1 = wpT§!
6: 81—1 — (p/(vp—l)El—l
7:  end

Weight adjustment
8 forp=P:—-1:1
9: l=p+1
10: AWP = g §'X!-1T
11: WP, = WP + AWP
12: end

Cearowin Iy

(10)

where C is the correct data, K is the number of classes,
and Iy is the K X K identity matrix. For the classification
of blast vibrations, data sets can be classified into 2 classes
(K = 2). The class-1 data are blast vibrations, and the
class-2 data are non-blast vibrations. Hence, the correct
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Table 3: Parameters of the training process.

Parameter Value
Number of Class 1 data sets 20
Number of Class 2 data sets 20
Number of input nodes 501
Number of output nodes 2
Number of hidden layers 3
Number of weight matrices 4

Size of weight matrix W? 15 x 501
Size of weight matrix W2, W3 | 15x 15
Size of weight matrix W* 2x15

Activation function:

Layer 2-4 Sigmoid function
Layer 5 Softmax function
Correct data [10]and [0 1]
Dropout ratio 0.2
o 0.1, 0.01 & 0.001

data can be set as C € {[10],[0 1]}. Then, [1 0] is for
class 1 and [0 1] is for class 2.

When the output of the DNN is computed, the
prediction error of these trained data can be expressed
as

El=Cc-Y! (11)
where EL is the error matrix at the last layer, C is the
correct data matrix corresponding to input data, and Y’
is the output matrix at the last layer.

To reduces the error, the weights of the DNN have to
be adjusted by the back-propagation algorithm. Fig. 6
shows the back-propagation diagram which consists of 2
processes: calculating the delta and updating the weight
matrix via delta rule. As of the algorithm’s name, the
calculation begins at the last layer and ends at second
layer. First, the error matrix for the last layer of the DNN
is calculated by equation (11). Then, use the Delta rule to
calculate delta matrix by

,if1=L

& = E7 (12)
| e (V)E Lifl<L

where &' is the delta matrix at the /" layer, (p’ (Vp ) is the

derivative of the activation function of the p”* weighted
sum matrix, and p = [ — 1. Then, the delta matrix is used
to find the additional weight by

AW? = o8/ X/I71T (13)

where AW? is an additional weight matrix for the p™
weight matrix, a is the learning rate, and X/7LT is the
transpose of the input matrix at the (I — 1) layer. Then
the updated weight matrix can be expressed as

Wﬁew =W

g T AWP

(14)
To update the previous weight matrix W?~!, the error
matrix of the (I — 1)"” layer is calculated by

-1 _ ywpT sl
E-l=wWhs (15)

where E/"! is the error matrix of the (I — 1)/" layer, WIO’ lg
is the transpose of the p' old weight matrix, and &' is the
delta of the I'" layer.

Once all weight matrices in the DNN are updated, the
next trained data set X and correct data C are used to
train the model. This training process will repeat until
it iterates through all the data sets. The entire iteration
is called “one epoch” Only one epoch of training will
not be sufficient to make an accurate prediction system.
To improve the system, the weight matrices must be
trained in many epochs. However, if the training takes
too many epochs which is called "overtraining”, the DNN
will become too strict with the input data. Such a
situation is called “overfitting” which will disregard a
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sense of flexibility for the prediction. Hence, the number
of prediction errors will increase.

To overcome the overfitting problem without know-
ing the suitable number of epochs, a dropout technique
is presented. Its function is to drop out some input and
weight nodes in the DNN. Consequently, some nodes of
the outputs from hidden layers will be randomly selected
and set to 0. Thus, the dropout function can be expressed
as

(v.37) = Y (16)
Yar

where y, equals zero when m € O and equals

when m & O. % is a dropout ratio which

is the rai\’gio of the number of the dropout value F to the
total number of the output data M, O is the index matrix
equal to [0y, 09, ..., Ofyenes or] which causes y,, equal to
0, and o is the random positive integer less than or equal
to M.

The dropout ratio can be set from 0.2 - 0.5 depending
on the application [12-15]. Hence, the complete training
algorithm can be expressed in Table 2.

3. DESIGNED SYSTEM

The DNN used for this system has 3 hidden layers as
shown in Fig. 7. The input data is the spectrum of ground
vibrations recorded via Minimate Plus with the sample
rate equal to 1024 bits/s. According to Nyquist—-Shannon
sampling theorem, the Nyquist frequency equals 1204
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Table 4: Pseudocode of the weight training algorithm for

the designed model.

Algorithm 3: Weight training algorithm
Initialization
1: Load data matrix R from the file “data.mat”
2:  Prepare test data sets with 80% of all data in R:
X=[]landD =[]
for i = 1: 2 classes
for j = 1: 20 data
X=[X:R((i—1)100 +j)]
D =[D: C((i —1)100 + )]

end
end
3:  Set weight matrices with the initial values
between -1 to 1
W! = 2rand(15,501) — 1
W? = 2rand(15,15) — 1
W3 = 2rand(15,15) — 1
W* = 2rand(2,15) — 1
4. Set dropout ratio: % =0.2
5:  Set learning rate: @

Weight training
l:  fori = 1:epochs
2; for k = 1:40 data sets
Output calculation
3: X! =R"(k,:) // Store k" train
// data set to X*
4: C=D"(k,:) // Store ktcorrect

// data set to C
Calculate data from the 1% to 4" layer

5 forp=1:3
6: l=p+1
7. VP = wpxi-t
8: Y! =0 (VP)
9 _ F

v =D(¥,5)
10: Xt=Y!
11: end

Calculate data for the last layer

12: V4 = wx4
13: Y5 =SV

Back propagation
Delta calculation

14: ES =CT(k,:)-Y°
15: 8° =E°
16: forl =5:-1:2
17 p=1-1
18: Ei-1 = wPT§!
19: 871 = @' (VP HE!?
20: end
Weight adjustment
21: forp =4:-1:1
22: l=p+1
23: AWP = 8'X!-LT
24: W2, = WP, + AWP
25: end
26: end
27. end

Hz/2 = 512 Hz. Then, the Fast Fourier Transform (FFT)
is used to convert the vibration data from time domain
to frequency domain with 501 values. Consequently,
the frequency interval between spectrum values is 512
Hz/500 intervals = 1.024 Hz which is an appropriate

Table 5: Pseudocode of the correlation classification.

Algorithm 4: Correlation classification

Initialization

Steps 1-2 are the same as Algorithm 3

3:  X'=X(1,:) // Setthe reference blast vibration data
Output calculation

1:  for k = 1:160 data sets

2. X" =X(k,:)
3: NX’X”T—ZX’ZX”
C. =
JNZX’z—(ZX')Z\/NZX”Z—(ZX”)Z
4 ife, >0
5 Ve =C¢
6: elseif C. <0
7 y.=0
&: end
9: end

resolution for this application. To solve the uncertainty
of amplitude of the vibration data, the spectrum needs to
be normalized with its maximum value.

Then, the spectrum is fed into the Input layer which
has the 501 nodes equal to the spectrum values. The
output of the DNN has 2 nodes to classify only 2 classes:
one is vibration from blast operation, and the others are
vibrations from arbitrary sources. Hence, result of these
trained data can either be [1 0] or [0 1], and the output
layer has only 2 nodes. There are 3 hidden layers in the
model. Each hidden layer has 15 nodes corresponding
to 4 weight matrices with the sizes of 15x501, 15x15,
15x15, and 2x15, respectively. The activation function
begins with the Sigmoid function, and the last layer ends
with the Softmax function. All necessary parameters are
shown in Table 3.

There are 200 data sets used in this study. Each data
set is contained in the .txt file. These files are grouped
into 2 categories. The first category is the blast vibration
data consisting of 100 .txt files which are labelled with
their file names from "Y1” to ”Y100”. The other is the non-
blast vibration data also consisting of 100 .txt files which
are labelled with their file names from "N1” to "N100”.
Then, MALAB is used to convert these data in .txt file
format to the normalized-amplitude spectrum in the .mat
file format via the FFT function and unity normalization.
The .mat file contains the data matrix R and correct data
matrix C which are arranged by the first 100 blast data
sets with the significant order of data.

Next, 20% of all data sets (40 data sets) are used to train
the model, and the rest (160 data sets) are used to validate
the model. The training algorithm for the designed model
is shown in Table 4.

Because the number in the initial weight matrix is
arbitrary, the results of adjusting weight is not constant.
Hence, the training and testing model are repeated 10
times with each of learning rates of 0.1, 0.01, and 0.001.
After each training process, the model will be tested with
80% of the data sets.

After that, the performance of the DNN model will
be compared with the other two classification techniques
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such as correlation coefficient and coefficient of determi-
nation.

3.1 Correlation Coefficient

The correlation coefficient is a numerical indicator
of the relation between two variables. The correlation
coeflicient technique can be used to reduce the data di-
mensions for detecting linear and non-linear correlation
[16]. It also can be applied in power analysis [17] and
energy-efficient MIMO (Multiple-Input Multiple-Output)
applications [18].

This article uses the Pearson correlation coefficient
to classify the vibration by setting the reference blast
vibration data set as the matrix X' = [x],x},...,x]
and the test vibration data set as the matrix X" =
[x;',xg, ,x;(]]. Then, the Pearson correlation coeffi-
cient C, can be computed by

N — —n
Zn:l (X;, - X )(x;z’ - X )

VEX, (=% Z, (v %)

NX/X//T _ ZX/ ZX//
¢Nzx%{2xf¢Nzw?wzxﬁ2

where X' is the mean of the reference blast vibration data
set and X" is the mean of the test vibration data set.

The Pearson correlation coefficient has the value
between - 1 to 1 where 1 represents the two data
sets are perfectly correlated. In contrast, 0 means the
two data sets are uncorrelated. Therefore, the value
of the correlation of the test data set being the blast
vibration. Then, the output of the correlation coefficient
classification y, can be set as the probability like the DNN
and expressed as

— { yC > CC > 0
Ye=10 ,c.<0
Table 5 shows the pseudocode of correlation classifi-
cation for this research. First is the initial process. The
200 vibration data sets are loaded from file “data.mat” to
the matrix R. Then, the 21*" - 100" (blast vibration) and
121% - 200" (non-blast vibration) data sets are stored in
the matrix X. After that the 1st data set of the matrix X
is set to the reference blast vibration data set and stored
in the matrix X .
Second is the computational process. Each data set

17)

(18)

from matrix X is stored in the test data set matrix X ,
Next, I:earson correlation coefficient between matrix X
and X is computed. Then, the probability of being
the blast vibration y, is only the positive value of the
coefficient, otherwise is set to 0.

3.2 Coeflicient of Determination

Coeflicient of determination or R-squared is a numer-
ical indicator of the similarity between two variables via
proportion of variance which can be computed by

Number of prediction error
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Table 6: Pseudocode of the R-squared classification.

Algorithm 5: R-squared classification
Initialization

Steps 1-3 are the same as Algorithm 4
4: x' = mean(X')

Output calculation

1:  for k = 1:160 data sets

2: X" =X(k,:)

3: _ Z(X’ II)
ez = 15 iy

4: end

The product of R-square has a value between 0-1
which can be implied as the probability of one variable
being the other. R-squared can be used for analyzing the
performance of the machine learning models [19], and
also applied in the detection application for extracting
data [20]. The concept of applying R-squared for vibra-
tion classification is similar to the correlation coefficient
classification in the previous subsection.

To classify ground vibration into blast vibration, the
probability of being blast vibration with R-squared is set
as

yg2 which is equal to the R-squared value. Then, Table
6 shows the pseudocode of the R-squared classification.
The first initial process is similar to the correlation
coeflicient classification. The R-squared has one more
step which is calculation of mean of the reference blast
vibration data. In the computational process, the Pearson
correlation coefficient formula is replaced by the R-

squared formula, and “if” condition is eliminated.

4. RESULTS AND DISCUSSION

During the training process, the number of the
prediction error decreases depending on the learning rate
as shown in Fig. 8.

The graph clearly reveals that the size of the learning
rate is directly proportional to the number of epochs.
For the learning rate equal to 0.1, the number of the
prediction error becomes zero after 220 epochs. For the
learning rate equal to 0.01, the number of the prediction
error is zero after 14400 epochs. Due to lager number
of the training epochs, the training process takes longer
time than that with smaller learning rates.

Table 7 shows the percentage of the class prediction
in training and testing process. For training process,
the models with learning rate 0.1 and 0.01 can correctly
classify the vibration data. For learning rate 0.001, the
model has 5% mistake from predicting class 2 as class 1.

For testing process, the prediction error occasionally
occurs in all learning rates, but a larger learning rate can
produce a larger error. The learning rate equal to 0.001
yields 7.5% maximum prediction error in class-2 data.
Meanwhile, the learning rate equal to 0.1 yields only 5%
maximum prediction error in class-2 data. However, all
learning rates can produce weight matrices which have
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Fig. 9: Probability of being the blast vibration.

0% prediction error. Thus, to reduce training time and
yield smaller probable errors, the learning rate equal to
0.01 is appropriate.

Due to the Softmax function, every output of the DNN
has the value between 0 to 1 which can be considered as
probability measure. For the correlation coefficient, the
minus value from -1 to 0 means unlikelihood between
two signals. Besides, the positive value from 0 to 1
presents the likelihood which can also be considered as
the probability.

To compare the prediction performance of two ap-
proaches, Fig. 9 shows the probability of being the blast
vibration of the DNN and correlation technique. The
DNN (red line) has better performance than correlation
(blue line). If the threshold probability is set to 0.5, the
correlation will make the wrong prediction for 3 data sets
with the probabilities of 0.8113, 0.7442, and 0.5287. As
the results, it is clear that the DNN is more a suitable
technique than the correlation.

For calculation time, functions “tic” and “toc” are used.
Table 8 shows the calculation time for testing 160 data
sets in 5 times. R-squared uses the longest time around
0.17 s while DNN uses the shortest time around 0.0046 s.
Correlation spends time slightly longer than DNN about
0.0015 s.

As the results, it is clear that the DNN is more a
suitable technique than the correlation and R-squared in
both accuracy and calculation time.

5. CONCLUSIONS

In this article, the DNN with 3 hidden layers is applied
to classify the blast vibration for the coal mining in
order to reduce the human process which causes time
inefficiency and human error. The proposed DNN model
classifies the vibration data into 2 classes which are the
blast vibration (Class 1) and non-blast vibration (Class
2). The suitable learning rate for training process is
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Table 7: Percentage of the class prediction in different learning rate and epochs.

No. Percentage of the class prediction in the training and testing process
a = 0.1, 300 epochs a =0.01, 5000 epochs a =0.001, 18000 epochs
1—1 1—2 2—1 2—2 1—1 1-2 2—1 2—2 1—1 1—2 2—1 22
Training process
1-2 100 - - 100 100 - - 100 100 - - 100
3 100 - - 100 100 - - 100 100 - 5 95
4-10 100 - - 100 100 - - 100 100 - - 100
Testing process
1 100 - - 100 100 - 1.25 98.75 100 - - 100
2 100 - - 100 100 - - 100 100 - - 100
3 100 - 2.5 97.5 100 - - 100 100 - 3.75 96.25
4 100 - - 100 100 - 5 95 100 - 5 95
5 100 - 1.25 98.75 100 - 2.5 97.25 100 - 7.5 92.5
6 100 - 5 95 100 - - 100 100 - - 100
7 100 - - 100 100 - 1.25 98.75 100 - 2.5 97.25
8 100 - 2.5 97.5 100 - - 100 100 - 1.25 98.75
9 100 - 2.5 97.5 100 - 3.75 96.25 100 - 6.25 93.75
10 100 - - 100 100 - 1.25 98.75 100 - 3.75 96.25
Remark

1—1 means the input class 1 and the predicted as class 1
1—2 means the input class 1 and the predicted as class 2

Table 8: Calculation time for testing 160 data sets.

Calculation time [s]

1 2 3 4 5
0.0038]0.0051]0.0044|0.0053 | 0.0044
0.0056|0.0065 | 0.0056 | 0.0065 | 0.0064
0.2519]0.147810.125910.125910.2116

Algorithm

DNN
Correlation
R-squared

Ave.
0.0046
0.0061
0.1713

0.001, and the trained DNN model can classify the blast
vibration with the 100% accuracy under the condition
that the non-blast vibration has discrete and multiple
frequencies. In addition, DNN outperforms Pearson
correlation coefficient and coefficient of determination
(R-squared).

Furthermore, this work could be extended in the
future to modify the DNN structure by reducing the
weight size or the number of hidden layers which
can reduce the calculation time. This work can also
be applied to automatic blast vibration reports with a
high level of security which makes data reporting via
blockchain technology more reliable to inspectors from
an environmental organization.
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