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ABSTRACT

Signal-to-noise ratio (SNR) is a critical metric for
assessing wireless link quality and optimizing various
aspects of wireless communication, such as modulation
level, coding scheme, handover decisions, and antenna
configuration. =~ While prior research has primarily
focused on SNR prediction based on channel state
information using feedback channels, this approach has
limitations in terms of applicability and efficiency. In
this paper, we propose a novel machine learning-based
approach for SNR prediction that leverages environ-
mental sensing data, eliminating the need for feedback
channels. Our methodology harnesses the untapped
potential of environmental factors, such as soil and air
characteristics, to enhance SNR prediction accuracy. By
intelligently fusing these environmental parameters with
machine learning algorithms, we develop an adaptable
SNR prediction model that can effectively capture the
dynamics of wireless environments. Experimental re-
sults demonstrate the potential to predict the SNR based
on environmental data which open up new possibili-
ties for efficient resource allocation, proactive network
optimization, and seamless connectivity in dynamic
wireless environments, without the constraints imposed
by feedback channel availability.
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1. INTRODUCTION

Signal-to-noise ratio (SNR) is widely used in commu-
nication systems as a channel quality indicator (CQI) [1].
SNR measurement is crucial for network configuration
as it enables optimal parameter settings for wireless
networks across multiple aspects. SNR values guide the
adjustment of transmission parameters, including adap-
tive modulation and coding schemes, to enhance both
throughput and reliability of the communication link.
Recent mobile communication deployed SNR to assist
handover decisions and beamforming [2]. Thus, being
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able to predict an SNR provides significant advantages
for wireless system configuration [3].

Recent cellular technologies allow SNR to be pre-
dicted based on channel state information (CSI). The
CSI feedback from user equipment on uplink channel is
an integral part of the 5G standard [1]. This feedback
mechanism facilitates effective sensing of multicast chan-
nel quality and supports the decision-making process
involved in modulation and coding scheme selection and
transmission mechanism determination [4]. However,
channel state information is not always available in other
wireless technologies. We want to find a way to predict
the SNR without using channel state information or
feedback channel by exploring other factors that could
be deployed to predict the SNR values.

In this study, we investigate the correlation between
SNR and environmental variables. Given the absence of
a feedback channel for SNR measurement, we examine
how environmental variables could serve as potential
SNR indicators. The dataset used in this analysis is from
[19], which comprises environmental measurements
collected by LoRa nodes deployed in an agricultural field.
These measurements include air temperature, air humid-
ity, air pressure, soil temperature, and soil moisture.
Using machine learning algorithms, we attempt to find
the relationship among these variables and predict the
SNR using environmental data.

Being able to accurately predict SNR provides sig-
nificant advantages in configuring wireless systems for
optimal performance, leading to more precise channel
quality estimation and enhanced reliability in selecting
appropriate modulation and coding schemes. SNR
prediction can play a crucial role in refining power
control, beamforming selection and handover processes,
paving the way for enhanced communication efficiency
for modern network systems.

2. BACKGROUND AND RELATED WORK

The signal-to-noise ratio (SNR) is a parameter used
to measure the efficiency and quality of communication.
Generally, the value of SNR is influenced by various fac-
tors such as communication distance, carrier frequency,
signal interferences, transceiver characteristics, device
configuration, and usage, etc[5, 6]. In cellular networks,
channel state information or radio measurements from
feedback channel are required for SNR prediction [1,2,7].
Several learning algorithms have been proposed for this
task, including deep learning [8], K-nearest neighbor,
support vector machine, random forest [9], artificial
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neural network [10], and Gaussian process regression
[2,7,9].

Beyond using channel state information, SNR pre-
diction has also been proposed to derive from feedback
signals of neighboring wireless nodes [2]. The efficiency
of SNR prediction has been enhanced by considering
dynamic signal characteristics due to route delay and
Doppler effects [11]. Shadowing and blockage of signal
transmission are also considered in channel modeling
and characterization [10].

The consideration of environmental factors beyond
channel characteristics for SNR prediction is relatively
limited. For instance, the authors in [12] provide
insights into how signals behave in communication
between moving vehicles in densely forested suburban
environments. Several studies have emphasized the
effects of environmental factors on link quality, such as
signal degradation due to tree density [13].

Regarding the effects of climate and weather on
SNR, research has examined the impacts of temperature
and humidity [14], and the effects of congestion in
urban areas [15]. The influence of climate on SNR
has been discussed; for example, high temperature and
high relative humidity may result in decreased SNR [14],
while low temperatures tend to yield higher SNR [16].
Increased humidity has been shown to affect wireless
signal propagation [17]. It has been analyzed that higher
temperatures lead to increased noise levels, thereby
reducing SNR [18].

A comprehensive literature review indicates that
current SNR prediction methods predominantly depend
on channel state information (CSI) and feedback chan-
nels. However, not all wireless technologies, such as
LoRaWAN, incorporate feedback channels, which limit
the applicability of these techniques. Furthermore,
measuring SNR levels often requires specialized hard-
ware, which can be expensive and impractical in many
situations. To overcome these challenges, we propose
a novel SNR prediction methodology that leverages
machine learning to eliminate the need for feedback
channels. Our literature survey found no mention of
machine learning (ML)-based SNR prediction utilizing
climate data.

The ML-based SNR prediction method proposed in
this study aims to harness the potential of incorporating
environmental sensing data, particularly weather data,
to improve prediction accuracy. By intelligently inte-
grating this contextual information with advanced ML
algorithms, we strive to develop a robust and adaptable
SNR prediction model suitable for various wireless envi-
ronments. This innovative approach not only bypasses
the limitations of feedback channel dependency but also
leads to optimizing wireless communication systems.

Considering the power constraints of wireless net-
works like LoRaWAN, which may face multiple limita-
tions, ML applications within LoRaWAN should focus on
less complex learning techniques. In this research, we
concentrate on algorithms such as Random Forest, XG-

Table 1: Summary description of variables of interest and
their symbols.

Variable Description Symbol

SNR Signal-to-Noise Ratio in dB SNR

Frequency Transmitting frequency in f
MHz

Distance Distance measured from the d
LoRaWAN gateway to the 8
sensor nodes in meters

RSSI Received signal strength RSSI
indicator in dBm

Air Outdoor air temperature in °C | T,

temperature

Air Outdoor relative air humidity | RH,

humidity in %

Soil Soil temperature measured by | T

temperature | the node in °C

Soil Relative soil humidity RH,

humidity measured by the node in %

Pressure Barometric pressure in hPa P,

Boost, etc., which are known for their high performance
and precise predictions, even with data of low complexity
and limited processing capabilities.

3. FRAMEWORK

In this study, we utilize a public dataset from [19].
The dataset comprises SNR measurements along with
environmental variables including air temperature, air
humidity, air pressure, soil temperature, and soil mois-
ture, as well as technical parameters such as frequency
bands and Received Signal Strength Indicator (RSSI),
all collected from an agricultural field. The data were
collected from eight Tinovi PM-IO-5SM LoRaWAN sens-
ing nodes, paired with a MikroTik gateway. These
devices were strategically placed in an agricultural field
situated 30 meters above sea level. Each sensor node was
mounted at a height of approximately 1.5 meters from
the ground. The Tinovi PM-IO-5-SM sensor nodes are
LoRa devices, version 1.0.3 Class A, equipped with the
Semtech SX1276 LoRa transceiver, a BME280 indoor air
temperature sensor, and a soil humidity sensor. Data
collection spanned from November 16, 2020, to February
5, 2021. Additionally, a Davis Vantage Pro 2 weather
station was installed to gather weather data for the area.

Basic correlation among these variables have been
mentioned in [19] but the relationship among these
variables were not analyzed. Therefore, we want to study
the effects of the environmental variables by determining
factors that have a high relationship with Signal-to-noise
ratio (SNR) for prediction.

For our quantitative analysis, we selected the fol-
lowing variables: the signal-to-noise ratio (SNR) mea-
sured by the LoRaWAN gateway in decibels (dB), the
transmitting frequency in megahertz (MHz), the distance
from the LoRaWAN gateway to each sensor node in
meters (m), and the received signal strength indicator
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Table 2: Statistical measurements for each variable.

Measure Minimum 1st Standard Mean 3rd Maximum
Quantile Deviation Quantile

SNR -9.00 7.75 1.10 8.65 9.50 11.75
Frequency 867.10 867.35 0.45 867.80 868.30 868.50
RSSI -108.00 78.00 9.80 -69.98 -62.00 -45.00
Distance 16.0 40.0 120.18 159.79 240.0 340.0
Air Temperature -4.30 2.0 3.29 4.54 7.10 15.40
Air Humidity 1.00 76.0 14.84 75.56 83.00 87.00
Soil Temperature 0.46 3.31 2.42 5.18 6.74 22.65
Soil Humidity 1.11 68.42 17.40 76.19 90.64 97.18
Pressure 985.00 1006.40 10.30 1014.02 1022.40 1035.20
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Fig. 1: Correlation analysis among SNR and other environmental variables.

(RSSI) measured by the gateway in decibels-milliwatts
(dBm). Environmental parameters included outdoor air
temperature in degrees Celsius (°C), outdoor relative
air humidity in percentage (%), air barometric pressure
in hectopascal (hPa), soil temperature measured by the
node in degrees Celsius (°C), and soil humidity, which is
the moisture content of the soil measured by the node,
also in percentage (%). A summary description of these
variables, along with the symbols adopted in this work,
is presented in Table 1. These variables are collectively
referred to as the variables of interest.

The summary of statistical measures for each variable

is detailed in Table 2. Preliminary correlation analysis,
illustrated in Figure 1, revealed no significant linear
relationship between the signal-to-noise ratio (SNR) and
the other variables. The highest correlation coefficient
was observed between SNR and frequency, at -0.21,
indicating a weak inverse relationship. Conversely,
the correlation between SNR and the received signal
strength indicator (RSSI) was 0.13, suggesting a very
slight positive relationship. Correlations between SNR
and environmental variables, such as soil temperature
and soil humidity, were 0.02 and -0.03, respectively,
which are too weak to be considered indicative of
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significant linear relationship.

As a result, machine learning techniques were applied
to discover potential nonlinear or multidimensional
relationships within the dataset. A range of machine
learning algorithms was employed to investigate the
interconnections among the variables and to predict
the Signal-to-Noise Ratio (SNR) using the dependent
variables, which include the aforementioned environ-
mental parameters.

4. MACHINE LEARNING ALGORITHMS

Machine learning algorithm comprises a wide range
of techniques designed to extract insights and make pre-
dictions from data. Among these, Linear Regression (LR)
and Decision Trees (DT) are two fundamental machine
learning techniques that serve as baselines for more
advanced algorithms. LR is a statistical approach that
models the relationship between a dependent variable
and one or more independent variables by fitting a linear
equation to observed data. While LR is straightforward
and interpretable, its performance is limited as it can only
capture linear relationships and is sensitive to outliers
and multicollinearity. Similarly, DT partitions data into
subsets based on feature values, forming a tree-like
structure where each node represents a decision rule.
Although DT are known for their interpretability, as
their structure mirrors a logical decision-making process,
making them easy to understand and explain, they are
susceptible to overfitting and can be unstable with minor
data variations.

To overcome the limitations of these basic techniques,
advanced ensemble methods such as Random Forest (RF),
Gradient Boosting (GB), XGBoost (XGB), and CatBoost
(CB) have been developed. These algorithms achieve
higher predictive accuracy by combining multiple mod-
els. RF is an ensemble of decision trees, where each
tree is trained on a random subset of the data and uses
a random subset of features for splitting. The final
prediction is obtained by aggregating the outputs of all
trees, while GB is sequential ensemble technique where
each tree is built to correct the errors of the previous
trees by optimizing a loss function, XGB is an optimized
implementation of gradient boosting that enhances speed
and accuracy through parallel processing, tree pruning,
and regularization techniques, while CB is specifically
designed for datasets with categorical features, eliminat-
ing the need for extensive preprocessing. Despite their
impressive performance, these ensemble methods can be
prone to overfitting if not properly tuned and may require
significant computational resources [20,21,22].

These machine learning algorithms were implemented
in Python using the sklearn, xgboost, and catboost library
as described in Table 3. These libraries were selected
based on their robust implementation of the algorithms,
wide adoption in the ML community, and extensive docu-
mentation.

For the ensemble methods, the number of base models
(or estimators) was set to 100, the maximum depth of the

Table 3: Machine Learning Library.

Technique | Library

RF sklearn.ensemble.RandomForestRegres-
sor

GB sklearn.ensemble.GradientBoostingRe-
gressor

XGB xgboost. XGBRegressor

CB catboost.CatBoostRegressor

DT sklearn.tree.DecisionTreeRegressor

LR sklearn.linear model.LinearRegression

Percentage of Variance Explained

RF
64.50
£ m XGB
64.50
65.74
f.Ta.RHa,Ts,RHs,Pa 67.80

68.95

f,RSSI 70.80
69.13

fRSSI, Ta,RHa, Ts,RHs,Pa 72.00

69.22

fd 70.21
69.33

£,d,Ta,RHa,Ts,RHs,Pa 70.63
70.41

f,d,RSSI 73.46
70.41
f,d,RSSI,T3,RH3,Ts,RHs P2 73.56
} . T T T T
40 50 60 70 80 90 100

PoV (%)

Fig. 2: PoV of SNR Prediction Compared BetweenRF and
XGB Algorithm.

decision trees was set to 5, and the random state was
chosen as 42.

5. RESULTS AND DISCUSSION

For predictive analysis, we compare the performance
of different variables that are employed by the machine
learning techniques to predict the signal-to-noise ratio
(SNR) in terms of percentage of variance (PoV) and root
mean square error (RMSE).

Percentage of Variance (PoV) is the percentage of
total variance explained in the dependent variable in the
training set by the independent variable(s) in the model
that is constructed using a machine learning technique.
The percentage of variance can be expressed as:

n _5 2
PoV = (1 - —gjf' Ey" f’;) x 100 (1)
=tV = Vi

Where:

- ¥; : Actual value of the dependent variable for the
i-th observation.

- J; : Predicted value of the dependent variable for the
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Table 4: Percentage of Variance from SNR Prediction”0307

Parameters RF GB XGB CB DT LR
f 64.51 64.51 64.51 64.50 64.51 4.17
f,Ts, RH 65.73 66.63 67.40 66.18 65.66 4.26
f,Ts, RH,, Py 64.54 64.57 64.52 64.55 64.51 4.19
f,Ts, RH,, Tg, RH, P, 65.75 66.72 67.80 66.26 65.67 4.29
f,d 69.23 70.03 70.21 69.88 69.21 6.87
f,d, Ts, RH, 69.28 70.17 70.51 69.92 69.23 6.90
f,d Ty, RH,, P, 69.32 70.20 70.58 69.97 69.28 6.88
f,d T,,RH,,Ts, RH, P, 69.33 70.22 70.64 69.97 69.29 6.91
f, RSSI 68.95 70.03 70.80 69.33 68.71 5.53
f,RSSI, Ty, RH 69.13 70.60 71.82 69.85 68.82 5.57
f,RSSI,T,,RH,, P, 68.96 69.84 70.85 69.33 68.71 5.54
f,RSSI,T,,RH,, T, RH;, P, 69.13 70.57 72.01 69.85 68.82 5.57
f,d 70.41 72.22 73.47 71.57 70.02 7.33
f,d, RSSI, T, RH; 70.41 72.27 73.60 71.62 70.02 7.34
f,d RSSI,T,,RH,, P, 70.41 72.26 73.57 71.61 70.02 7.34
f,d RSSI,T,,RH,, Ty, RHy, P, 70.41 72.23 73.56 71.59 70.02 7.35

Table 5: Root Mean Squared Error from SNR Prediction.

Parameters RF GBV XGB CB DT LR

f 0.66 0.66 0.66 0.66 0.66 1.09
f. Ts, RH; 0.65 0.64 0.64 0.65 0.65 1.09
f:Ta, RHg, By 0.66 0.66 0.66 0.66 0.66 1.09
f+Ta, RHq, T, RHs, Py 0.65 0.64 0.63 0.65 0.65 1.09
fid 0.62 0.61 0.61 0.61 0.62 1.07
f,d, Ts, RH 0.62 0.61 0.6 0.61 0.62 1.07
f.d, Ty, RHg, Py 0.62 0.61 0.6 0.61 0.62 1.07
f.d, To, RHy, Ts, RH;, Py 0.62 0.61 0.6 0.61 0.62 1.07
f, RSSI 0.62 0.61 0.6 0.62 0.62 1.08
f. RSSL Tg, RH; 0.62 0.60 0.59 0.61 0.62 1.08
f,RSSI, T,, RH,, P, 0.62 0.61 0.6 0.62 0.62 1.08
f+RSSI, Ty, RH,, Ts, RH;, By 0.62 0.60 0.59 0.61 0.62 1.08
f.d 0.61 0.59 0.57 0.59 0.61 1.07
fd RSSI,T;, RH 0.61 0.59 0.57 0.59 0.61 1.07
f,d, RSSI,T, ,RH,, P, 0.61 0.59 0.57 0.59 0.61 1.07
f.d,RSSI, Ty, RHy, Ty, RH,, By 0.61 0.59 0.57 0.59 0.61 1.07

i-th observation. Where:

- ¥ : Mean of the actual values of the dependent
variable.
- n: Number of observation.s

Root Mean Square Error (RMSE) is a commonly
used measure of the differences between predicted values
and observed values in a model. RMSE is given by:

- ¥; : Actual value of the dependent variable for the
i-th observation.

- §; : Predicted value of the dependent variable for the
i-th observation.

- n: Number of observations.

These formulas provide a way to evaluate the perfor-
mance of each machine learning model. Higher PoV and
lower RMSE indicate better performance.

Various machine learning algorithms were utilized
to explore the relationships among the variables and
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Table 6: Computational Time from SNR Prediction.

Parameters RF GB XGB CB DT LR
f 2.19 1.51 0.47 2.54 0.02 0.01
f» Ts, RH; 9.66 9.39 0.6 1.57 0.13 0.02
fsTa, RHy, Py 8.97 7.67 1.89 2.01 0.11 0.03
fsTa RHg, Ts, RHs, By 16.31 15.11 0.73 1.87 0.23 0.03
fd 3.52 3.03 0.64 1.36 0.03 0.01
f,d,Ts, RH; 10.98 9.59 2.28 1.61 0.16 0.02
fsd,Tq ,RHy, Py 10.05 9.2 0.7 2.12 0.19 0.04
f.d, Ty, RHy, Ts, RH, Py 18.24 16.18 2.53 251 0.33 0.06
1, RSSI 4.24 3.23 0.53 1.36 0.04 0.02
f> RSSI, Tg, RH; 11.55 10.91 0.57 1.55 0.15 0.02
fsRSSI, Ty , RH,, Py 10.96 9.86 1.94 1.67 0.14 0.02
fs RSSI, Ty, RHy, Ts, RH, Py 18 16.7 1.21 3.43 0.25 0.04
f,d 4.03 4.09 0.58 2.86 0.08 0.03
f.d, RSSI , Ts, RHj 11.99 11.15 0.68 3.37 0.21 0.02
f,d,RSSI, T, ,RHg, By 11.48 10.86 0.7 3.27 0.23 0.06
f»d, RSSI, Ty, RHy, Ts, RH;, Py 19.97 17.79 2.19 2.24 0.27 0.04
14 14 A
12 12 -
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Fig. 3: SNR Prediction without Environmental Parameters.

predict SNR based on the dependent variables including
frequency (f), received signal strength indicator (RSSI),
distance (d), soil temperature (T), soil relative humidity
(RH,), air temperature (T,), air humidity (RH,) and
barometric pressure (P,). Considering each of these pa-
rameters as a unique input parameter for SNR prediction,
the analysis revealed that the carrier frequency f was
the only unique parameter that enabled SNR prediction
with a reasonable level of accuracy. The parameter
f alone provides a baseline PoV of around 64.5% for
most algorithms, except for linear regression (LR), which
perform poorly at 4.17%. SNR prediction based on
RSSI alone yields the PoV of 11.80%. For other unique

Actual SNR values (dBm)

Fig. 4: SNR Prediction with Environmental Parameters.

environmental parameters when considered individually,
the machine learning models failed to accurately predict
SNR, as the PoV values were all inferior to 2%, indicating
significantly low prediction accuracy. These preliminary
results demonstrate that the relationship between SNR
and other environmental variables might not be evident,
as the correlation analysis failed to identify a connection
between them.

Interestingly, incorporating multiple variables in the
analysis improved prediction accuracy. Table 4 and Table
5 present the prediction results based on percentage of
variance (PoV) and root mean square error (RMSE) be-
tween the actual and predicted values. When comparing
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the use of frequency alone as an input parameter against
the combination of frequency with soil temperature and
soil humidity, we observed significant improvements in
SNR prediction across all ML algorithms. The XGBoost
(XGB) algorithm achieved the highest prediction preci-
sion, with PoV increasing from 64.51% to 67.40%. This
improvement of approximately 4.48% demonstrates the
positive impact of including soil characteristics in the
prediction model.

Further addition of environmental parameters contin-
ued to improve prediction accuracy. When all environ-
mental parameters including air and soil cha-racteristics
were included alongside frequency, the XGB algorithm
reached its highest accuracy with PoV of 67.80% with
the RMSE reduced to 0.63. This suggests that these
additional environmental variables provide valuable in-
formation for SNR prediction, as the increase in PoV and
the reduction in RMSE validate the consistency of the
evaluation metrics used in the study.

Lastly, including the received signal strength indicator
(RSSI) and the distance between two communicating
devices as features further enhances the prediction
accuracy. The PoV increases from 67.80% to 70.64%
when distance is added, and to 72.01% when RSSI is
added. Combining both parameters as features, the PoV
increased to 73.56%.

Table 6 shows the computational time for each learn-
ing algorithm. Based on this table, the decision tree
technique demonstrated advantages in computational
speed. However, the XGBoost algorithm, despite being
slightly slower than the decision tree-based methods, still
provided satisfactory computational times compared to
other machine learning techniques.

Figure 2 illustrates the percentage of variance (PoV)
derived from the random forest (RF) and XGBoost (XGB)
algorithms for SNR prediction. Although the accuracy
of each technique exhibited slight variations, the overall
trend indicated that incorporating certain environmental
data enhanced the accuracy of SNR prediction. The
simulation results suggest that soil characteristics, such
as soil temperature and soil humidity, have a positive
impact on improving SNR prediction accuracy. In con-
trast, air characteristics did not significantly contribute to
the prediction accuracy, as their presence did not notably
influence the model’s performance.

Compared between various machine learning algo-
rithm, the XGBoost algorithm consistently yielded the
highest prediction accuracy while linear regression per-
forms poorly. These results suggest that the proposed
machine learning platform can help uncover complex,
non-linear relationships between SNR and other vari-
ables. The XGBoost algorithm appears to be the most
effective choice among the tested algorithms for this
specific task.

The scatter plots in Figure 3 and Figure 4 compare
the actual and predicted SNR values. As observed
in these figures, the accuracy of SNR prediction was
significantly lower when the actual SNR values were

low. However, when the actual SNR values were high,
the predicted results exhibited better accuracy and were
more satisfactory. This observation suggests that the
machine learning models perform better in predicting
SNR values within a higher range, while their accuracy
diminishes for lower SNR values.

Overall, the incorporation of environmental data,
particularly soil temperature and humidity, alongside
the carrier frequency, improved the accuracy of SNR
prediction using machine learning techniques. The XG-
Boost algorithm consistently outperformed other models
in terms of prediction accuracy, while the decision
tree-based methods offered advantages in computational
efficiency. These findings highlight the potential of lever-
aging environmental data to enhance the performance
of wireless communication systems and open venues for
further research in this domain.

Although no strong correlation was identified for indi-
vidual environmental variables, their combined influence
in conjunction with technical parameters demonstrated
improvements in predictive performance. This suggests
that while individual environmental parameters might
not strongly correlate with SNR, their collective impact
contributes to a more robust predictive model.

The study acknowledges the challenges in using
environmental data for SNR prediction. External in-
terferences, varying terrain, and seasonal changes can
introduce noise into the dataset, potentially reducing the
reliability of the model. Future work should consider
integrating additional external factors, such as wind
speed or precipitation as well as other environmental
factors, to refine the predictive capabilities further.

6. CONCLUSION AND PERSPECTIVE

In this paper, we analyzed the impact of environmen-
tal parameters to enhance SNR prediction. While no
strong correlation was found among the individual vari-
ables, their combined influence significantly improved
the accuracy of SNR prediction when using machine
learning. This improvement is valuable for optimizing
network configurations, as discussed earlier in the paper.

The results clearly indicate that frequency has a
substantial impact on SNR prediction. When combined
with soil temperature and soil humidity, the prediction
accuracy improves, resulting in a measurable increase
of up to 4.48% in the percentage of variance (PoV).
This underscores the importance of integrating contex-
tual environmental data, such as soil temperature and
humidity, alongside traditional variables like frequency.
By incorporating these factors, the machine learning
model effectively captures the complex dynamics of the
wireless environment, enhancing predictive accuracy
and validating the hypothesis that environmental data
substantially contributes to SNR prediction.

The improvement is primarily attributed to the role
of soil characteristics such as moisture content, compo-
sition, conductivity in influencing the propagation and
reflection of electromagnetic waves through the ground.
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These factors affect signal attenuation and multi-path
effects, which can distort the desired signal. In con-
trast, air characteristics in this experiment represented
more uniform and incur less accuracy improvement
compared to soil or other dense materials. While air
can introduce noise through precipitation, turbulence, or
similar factors, it may not attenuate or distort signals as
significantly as the ground.

As a result, this paper has shown promise for novel
SNR prediction using machine learning. By eliminating
the reliance on feedback channels and leveraging the un-
tapped potential of environmental sensors, our method-
ology establishes a foundation for more efficient, accu-
rate, and adaptable SNR prediction techniques. Having
advanced knowledge of the expected SNR in LoRaWAN
network can enable nodes to optimize their link bud-
gets, transmission parameters and energy consumption
though techniques like adaptive data rate or interference
mitigation. It also aids in network planning by predicting
coverage or guiding gateway. This proposed approach
has the potential to enhance network performance and
reliability.

One of the notable insights from this research is
adaptability of the proposed method. Although the focus
of this study was on SNR prediction, the methodology
is not limited to this metric alone. For instance, it
could be extended to predict other important wireless
communication metrics, such as the received signal-
strength-indicator (RSSI). The principles of leveraging
environmental data, combined with machine learning,
remain applicable for various metrics as long as they are
susceptible by external environmental factors.

Overall, this study contributes to the advancement
of SNR prediction by leveraging environmental data in
machine learning models, paving the way for further
research and practical implementations.

One key limitation of the study is the dataset’s
geographical specificity. The environmental data used
in this study were collected from an agricultural field,
meaning the model may not generalize well to urban
or industrial environments. Additionally, the study
primarily relies on classical machine learning models.
While the results indicate that XGBoost performs best,
deep learning techniques such as convolutional neural
networks (CNNs) or recurrent neural networks (RNNs)
could be explored to capture more complex relationships
within the dataset.

Future work can enhance the adaptability and re-
sponsiveness of the network by introducing real-time
data analysis to provide immediate adjustments based on
current network conditions for real-time SNR prediction.
Adaptive learning algorithms can also be introduced to
adjust the parameters based on the current network state
to ensure consistent prediction accuracy. Expanding data
collection to multiple locations will help assess model
adaptability across different terrains and climates, ensur-
ing a broader applicability of the proposed approach.
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