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ABSTRACT
This research addresses the challenge of mitigating

voltage unbalance in low-voltage distribution networks
using single-phase photovoltaic (PV) systems. Voltage
unbalance significantly impacts power quality, leading
to increased power losses and equipment inefficiencies.
The proposed method utilizes heuristic optimization to
identify the optimal placement, phase, size, and power
factor of PV systems, aiming to minimize both voltage
unbalance and neutral line power losses. The Point
Estimate (PE) method is employed for handling demand
variations, and its computational efficiency is compared
to the Monte Carlo Simulation (MCS) approach.

The effectiveness of the methodology is validated
through numerical case studies on 29-bus and 104-bus
real-world distribution networks. In the 29-bus network,
deploying two single-phase PV systems achieves a VUF
reduction of up to 74.4% and a decrease in neutral line
power losses of up to 81.7%, with PE requiring only
87 simulations. Similarly, in the 104-bus network, the
installation of two PV systems reduces the VUF by up
to 55.6% and neutral line power losses by up to 47.4%,
with PE requiring 175 simulations. In contrast, MCS
requires up to 400 iterations for comparable results,
underscoring PE’s computational efficiency in achieving
effective voltage unbalance mitigation.

Keywords: Voltage unbalance, Point of estimate, Monte
Carlo simulation, Optimization, Single-phase PV

1. INTRODUCTION
Voltage unbalance in distribution networks is a sig-

nificant concern due to its potential to cause equipment
malfunctions, reduced efficiency, and increased opera-
tional costs. It can lead to power quality issues such as
power loss, reverse power flow, and voltage fluctuations
[1]. This issue is further intensified by the growing
penetration of single-phase photovoltaic (PV) systems
and other single-phase loads, such as residential appli-
ances, which can disrupt networks originally designed
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for three-phase operation. However, single-phase PV
systems can also be strategically employed to mitigate
these unbalance conditions. By optimally locating and
phasing these systems, and adjusting their output using
advanced strategies, PV systems can effectively balance
the load across different phases.

Recent studies have explored various strategies to
mitigate voltage unbalance in distribution systems, par-
ticularly through integrating renewable energy sources.
Girigoudar et al. (2020) developed a three-phase AC op-
timal power flow (OPF) formulation to minimize voltage
unbalance using reactive power from solar PV inverters,
emphasizing the need to consider multiple objectives
and constraints [2]. Strategies like deploying Battery
Energy Storage Systems (BESS) to reduce curtailment
also impact voltage unbalance [3]. Optimal sizing of
PV and BESS influences distribution grid stability and
voltage unbalance [4]. Additionally, Vanin et al. (2022)
proposed an OPF-based demand management strategy to
address congestion in unbalanced residential networks
[5].

Mitigation strategies for voltage unbalance have tradi-
tionally included load balancing, power factor correction,
and advanced monitoring techniques. Load balancing,
often achieved manually through load redistribution
or phase swapping, remains an effective but disrup-
tive method, as it requires temporary disconnection
of loads [6]. While automatic systems reduce these
disruptions, they are not entirely free from service
interruptions. Power factor correction using capacitors,
synchronous condensers, and advanced devices like
Static Var Compensators (SVC) or Dynamic Voltage
Restorers (DVR) offers a dynamic and more seamless
solution for maintaining reactive power balance [7], [8].
However, their functionality is restricted to reactive
power compensation without the ability to generate
energy. Additionally, these systems lack energy storage
capabilities and the flexibility to adapt to long-term
changes in demand, which limits their effectiveness in
modern grids driven by renewable energy. In contrast,
the modular nature of PV systems allows for gradual
and scalable expansion to meet real-time network needs.
Scaling SVC/DVR systems to address increasing voltage
demands can be costly and complex, often requiring
substantial infrastructure upgrades.

In response to these challenges, this paper proposes
the integration of single-phase PV systems with dy-
namically adjustable power factors. These systems,
either standalone or coupled with BESS, offer a flexible
solution to mitigate voltage unbalance without service
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disruptions. By dynamically adjusting their output
in response to real-time conditions, such systems can
address the time-varying nature of electricity demand
and voltage unbalance. The implementation of Advanced
Metering Infrastructure (AMI) is essential for monitoring
and controlling these real-time variations [6].

Given the inherent uncertainty in voltage unbalance
conditions, it is crucial to consider probabilistic methods
in the mitigation strategy. Monte Carlo Simulation
(MCS) is widely used in power systems for uncertainty
analysis, including steady-state security assessment with
variable generation resources [9], modeling stochastic
behavior of electrical elements as probability distribu-
tions, optimizing preventive maintenance schedules in
isolated systems [10] and quantifying uncertainty in
stochastic economic dispatch with wind power variabil-
ity [11]. Despite its accuracy, MCS is computationally
expensive, limiting its practical application in real-time
scenarios.

The Point Estimate (PE) method presents a more
computationally efficient alternative to MCS. Though
less detailed, the PE method provides quick insights
into specific scenarios by using fixed representative
values for variables such as load and generation. It
has been effectively applied to probabilistic load flow
analysis , renewable generation systems [12], [13], power
tracking [14] and parameter estimation [15]. This paper
applies the PE method to voltage unbalance mitigation in
distribution networks, offering a simplified yet effective
approach to uncertainty management.

This paper presents a comprehensive strategy for
mitigating voltage unbalance using single-phase PV
systems, with a focus on addressing uncertainties in
distribution networks. By integrating the computational
efficiency of the Point Estimate (PE) methodwith interval
estimates and optimization techniques, this approach
offers a robust alternative to the Monte Carlo Simulation
(MCS). A comparative analysis of PE and MCS through
numerical studies will evaluate the effectiveness and
reliability of PE as a time-efficient solution for voltage
unbalance mitigation.

This paper is structured as follows: Section 2 addresses
the problem formulation, while Section 3 outlines the
optimization techniques utilized. Section 4 details the
unbalanced power flow calculation, followed by Section
5, which introduces the PE method, Section 6 explains
the MCS. Section 7 presents the case studies and finally,
Section 8 concludes the paper.

2. PROBLEM FORMULATION

The objective of this study is to determine the optimal
location and operation of photovoltaic (PV) systems in
terms of their connection bus and phase, and output
power to minimize voltage unbalance in the distribution
system as shown in Fig. 1.

Minimize 𝑉 𝑈𝐹 (𝑥) (1)

Fig. 1: Voltage Unbalance Mitigation System.

where 𝑉 𝑈𝐹 is the voltage unbalance factor and 𝑥 are
variables including bus of connection PV, the power
factor and apparent power output from PV.

The voltage unbalance factor, expressed as a percent-
age, can be calculated as follows.

𝑉 𝑈𝐹 =
𝑚𝑎𝑥 (|𝑉𝑎𝑛 − 𝑉𝑎𝑣𝑔| , |𝑉𝑏𝑛 − 𝑉𝑎𝑣𝑔| , |𝑉𝑐𝑛 − 𝑉𝑎𝑣𝑔|)

𝑉𝑎𝑣𝑔
(2)

where 𝑉𝑎𝑛, 𝑉𝑏𝑛, and 𝑉𝑐𝑛 are phase A, B, C voltage
magnitude and 𝑉𝑎𝑣𝑔 is the average of phase voltage
magnitude.

𝑉𝑎𝑣𝑔 = |𝑉𝑎𝑛| + |𝑉𝑏𝑛| + |𝑉𝑐𝑛|
3 (3)

This 𝑉 𝑈𝐹 calculation method relies on voltage
magnitudes, minimizing computational complexity and
enabling faster, real-time assessments. Although it is less
precise than the ratio of the negative-sequence voltage
(V2) to the positive-sequence voltage (V1), V2/V1method
(IEC 60034-26), it offers adequate accuracy for detecting
moderate unbalances. This makes it particularly suitable
for low-voltage networks and quick diagnostics. In
practice, it is often preferred over the IEC 60034-26
method due to practical limitations, as the method
requires both voltage magnitudes and phase angles data
thatmay not always be available from typical distribution
network meters [16]. It is considered most appropriate to
calculate the VUF for three-phase four-wire low-voltage
(LV) distribution networks [17].

In addition to mitigating voltage unbalance, the
appropriate installation of single-phase PV systems can
also contribute to reducing power losses caused by
unbalanced conditions, particularly losses in the neutral
line. To further enhance energy efficiency, the objective
function can be formulated as follows:

Minimize 𝑓(𝑥) = 𝑉 𝑈𝐹 + 𝑃𝑁 (4)

𝑃𝑁 =
𝑁𝑏𝑟

∑
𝑙=1

𝐼2
𝑁,𝑙𝑅𝑁,𝑙 (5)

where 𝑃𝑁 is the total power losses in neutral lines, 𝐼𝑁,𝑙
is current flow in neutral line 𝑙, 𝑅𝑁,𝑙 is the resistance of
neutral line 𝑙.

The constraints for this study include maintaining
power balance for each phase, which is determined by
performing unbalanced power flow calculations, and
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adhering to the voltage unbalance factor (VUF) limits
specified by international standards.

Various standards provide guidelines for voltage un-
balance factor (VUF) limits to ensure the reliability and
efficiency of electrical systems [17]. Globally adopted
standards, such as IEC and IEEE 241-1990, recommend
a VUF of less than 2%.

This study aims to achieve voltage unbalance mitiga-
tion strategies that maintain a maximumVUF limit of 2%,
emphasizing global consistency in voltage quality and
electrical safety. Collectively, these standards underscore
the importance of maintaining voltage unbalance within
acceptable limits to promote the stability and perfor-
mance of power distribution networks.

3. OPTIMIZATION TECHNIQUE

The solution to the problem in this paper is
approached using heuristic optimization techniques.
Heuristic optimization, which often mimics natural
evolutionary behavior, provides solutions to complex
problems through methods such as genetic algorithms
and particle swarm optimization [18]. These techniques
have been applied across various engineering fields,
including inverter control and load shedding strategy
[19].

This paper utilizes Genetic Algorithm (GA) optimiza-
tion [20], a method developed before many other opti-
mization techniques, which has proven to be highly effec-
tive over the years. Despite being relatively slower, GAs
offer several advantages, making them a preferred choice
for complex problems. They are robust and adaptable
to various optimization challenges, such as non-linear
and multi-modal issues. GAs efficiently explore large
solution spaces by evaluatingmultiple potential solutions
simultaneously, increasing the likelihood of finding the
global optimum and avoiding local optima. Their flexi-
bility in handling different types of objective functions
and constraints allows them to be applied across diverse
fields, from engineering design to machine learning.
Moreover, GAs can adapt to changing environments,
making them suitable for real-time applications. Their
ease of implementation and scalability further enhance
their appeal, enabling them to tackle complex problems
by simply adjusting parameters like population size and
mutation rates. Overall, GAs consistently deliver high-
quality solutions, making them a reliable and effective
optimization method in the engineering domain.

The Genetic Algorithm (GA) process can be summa-
rized in three key steps:

Step 1. Initialization and Evaluation: Generate an
initial population of potential solutions and evaluate their
fitness using a predefined fitness function.

Step 2. Selection, Crossover, and Mutation: Select
parent solutions based on their fitness, perform crossover
to combine genetic information and create offspring then
apply mutation to introduce small random changes and
maintain genetic diversity.

Step 3. Replacement and Termination: Generate a

new population by replacing some or all of the current
populationwith offspring, and continue this process until
the termination criterion is met, which, in this paper,
is the achievement of a specified maximum number of
generations.

4. UNBALANCED POWERFLOWCALCULATIONS
This paper employs the algorithm described in [21] to

calculate power flow in a four-wire distribution network.
The nodal current at each bus is determined using
demand and shunt element data, as expressed by the
following equations.

𝑰 𝑖
(𝜈) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(𝑆𝑖𝑎/𝑉𝑖𝑎)
(𝜈−1)

(𝑆𝑖𝑏/𝑉𝑖𝑏)
(𝜈−1)

(𝑆𝑖𝑐 /𝑉𝑖𝑐)
(𝜈−1)

−𝑍𝑛𝑔 (𝐼𝑖𝑎 + 𝐼𝑖𝑏 + 𝐼𝑖𝑐)
(𝜈)

−𝑍𝑔𝑛 (𝐼𝑖𝑎 + 𝐼𝑖𝑏 + 𝐼𝑖𝑐)
(𝜈)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

− 𝒀 𝑖𝑽 𝑖
(𝜈−1) (6)

where
I𝑖𝑎, I𝑖𝑏, I𝑖𝑐 are phase A, B, C current at bus i.
I𝑖𝑛 and I𝑖𝑔 are neutral and ground current at bus i

respectively.
V𝑖𝑎, V𝑖𝑏, V𝑖𝑐 are phase A, B, C voltages at bus i

repectively.
𝜈 represents the 𝜈 th iteration number.
Z𝑛𝑔 and Z𝑔𝑛 are factors that determine the division of

current between the neutral line and the ground.
𝑽 𝑖 is 5x1 matrix representing the voltages at bus i,

including phase A, phase B, phase C, neutral and ground
voltages.

𝑰 𝑖 is 5x1 matrix representing the currents at bus i,
including phase A, phase B, phase C, neutral, and ground
currents.

𝒀 𝑖 is the shunt admittance diagonal matrix for bus i,
containing the admittances of phase A, phase B, phase C
and neutral. It is important to note that ground shunt
admittance, Y𝑖𝑔 is zero.

The method based on the forward and backward
sweep considering ground return of the distribution
network. The backward sweep step calculates the line
flow current by summation of downstream nodal current.
The forward sweep step calculates the bus voltage where
the receiving end bus voltage is equal to the sending bus
voltage minus the voltage drop across line.

𝑽 𝑗
(𝜈) = 𝑽 𝑖

(𝜈) − 𝒁𝑱 𝑙
(𝜈) (7)

where 𝑽 𝑗 is 5x1 matrix representing the voltages at the
receiving end bus j, including phase A, phase B, phase
C, neutral, and ground voltages and 𝑱 𝑙 is 5x1 matrix
representing the current flow in line l, including phase
A, B, C, neutral and ground currents.

The power flow calculation process stops once the
solution has converged. The condition for convergence
is defined as follows:

𝑽 𝑖
(𝜈)−𝐕𝑖

(𝜈−1) < 𝑡𝑜𝑙 (8)
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where tol is the tolerance level representing the accept-
able difference between the voltage at bus i in the current
iteration 𝜈 and the previous iteration 𝜈 − 1

5. STOCHASTIC MODELING TECHNIQUES
5.1 Point of Estimate

The point estimate (PE) technique is a fundamental
statistical method used to approximate population pa-
rameters from sample data by providing a single value,
known as the point estimate [22]. This technique
is widely used across various disciplines, including
economics, engineering, and social sciences, due to its
straightforward approach to making inferences about a
population based on sample observations. In this study,
the PE method is employed to model the stochastic
behavior of demand fluctuations and renewable energy
sources. It provides a computationally efficient means
of representing uncertainty in these variables, allowing
for the analysis of their impact on system performance,
particularly on voltage unbalance and power losses in
neutral lines.

This paper employs the 2M+1 scheme of Hong’s point
estimate [23], which leverages statistical moments such
as mean, variance, skewness, and kurtosis to effectively
represent the stochastic behavior of variables. The
method condenses the statistical information of each
input random variable into two concentration points
for each electricity demand variable. As a result, the
objective function of the optimization problem requires
only two evaluations for each of the M input random
variables, along with one additional evaluation at the
mean value of each variable.

The point or location of variables can be determined
as follows.

𝑝𝑚,𝑘 = 𝜇𝑝𝑚 + 𝜉𝑚,𝑘𝜎𝑝𝑚 (9)
where 𝑝𝑚,𝑘 is the location of m variables at k concentra-
tion point ; m = 1, 2, …, M and k = 1, 2.

𝜇𝑝𝑚 and 𝜎𝑝𝑚 are the mean and standard deviation of
the input random variables.

𝜉𝑚,𝑘 is the standard deviation multiplier.

𝜉𝑚,𝑘 =
𝜆𝑚,3

2 + (−1)3−𝑘
√𝜆𝑚,4 − 3

4𝜆2
𝑚,3 (10)

where 𝜆𝑚,3 and 𝜆𝑚,4 are skewness and kurtosis of the m
input random variables respectively.

Considering demand as variables, the point of es-
timate is applied to determine the single phase PV
placement and corresponding size to mitigate the unbal-
ance voltage in distribution network using the following
algorithm:

Step 1: Input Distribution Network Data: Begin by
inputting the data related to the distribution network.

Step 2: Input Demand Characteristics: Input the
mean, standard deviation, skewness and kurtosis

Step 3: Determine the optimal solution (placement
and size of the single phase PV) for the mean value of
variable demand

Step 4: Determine the locations of variables for k
equals one and two, then find the optimal solutions for
those locations

This process results in 2M+1 optimal solutions, one
from step 3 and 2M from step 4.

5.2 Monte Carlo Simulation

Monte Carlo Simulation (MCS) is a robust statistical
method used to model and analyze complex systems
through random sampling and statistical modelling [24].
The fundamental principle of this technique involves
generating numerous random samples from a probability
distribution that captures the uncertainty in the model’s
input variables. These samples are then utilized to
compute the model’s outcomes, yielding a distribution of
possible results instead of a single deterministic outcome.
This approach aids decision-makers in evaluating risk
and making more informed choices by providing a
comprehensive understanding of potential variability
and uncertainty in the system.

To validate the performance of the PE method, this
paper employs MCS to analyze the stochastic behavior
of demand in a distribution network (DN). The various
states of the DN are examined until the convergence
criterion is satisfied. The MCS process terminates when
the mean and standard deviation of the random samples
fall below the specified tolerance level.

To applyMCS to this problem, the following algorithm
is used:

Step 1: Input Distribution Network Data: Begin by
inputting the data related to the distribution network.

Step 2: Input Demand Characteristics: Input the
mean, standard deviation, and probability distribution
function (pdf) of the demand at each bus and phase.

Step 3: Generate RandomDemand Values: Use the pdf
to generate random demand values.

Step 4: Determine Optimal PV Parameters: Identify
the optimal location and phase for installation, as well as
the apparent power and operational power factor of the
PV inverter output.

Step 5: Check for Convergence: Verify if the conver-
gence criterion is met. If themean and standard deviation
of the samples are below the tolerance level, the process
stops.

6. CASE STUDIES

Two case studies are conducted using real-life low-
voltage (LV) distribution networks to demonstrate the
effectiveness of the proposed technique. The first case
study utilizes a 29-bus network, which its original
network data can be found in [21], while the second
focuses on a 104-bus network located in the downtown
area of Ubon Ratchathani, Thailand. These case studies
aim to illustrate the applicability of the proposed method
under varying network conditions.

In the analysis, single-phase PV systems owned by the
utility are considered, functioning specifically to mitigate
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Fig. 2: The 29-bus LV Distribution Network.

Fig. 3: Load Demand of Case Study 1.

voltage unbalance. According to the specifications of
commercially available single-phase PV inverters, the
maximum capacity for a single-phase PV installation is
set at 10 kVA. However, for locations where the demand
rating is less than 10 kVA, the maximum allowable PV
size is limited to the demand rating of the respective
phase in the distribution network. This ensures that
the PV installations are appropriately sized for effective
voltage unbalance mitigation while remaining within the
operational limits of the network.

6.1 Case Study 1

The 29-bus LV radial distribution network, depicted in
Fig. 2, is modified to operate at a base voltage of 400/230
V, with a reference voltage of 1.05 pu at the root node.
A constant power load model is employed for simplicity
as shown in Fig. 3. The total loads are 7.88 kW for
phase A, 5.28 kW for phase B, and 6.16 kW for phase C,
with a power factor of 0.95 lagging across all loads. The
network is divided into twomain sub-feeders: sub-feeder
1, covering buses 2 to 10, and sub-feeder 2, covering buses
11 to 29.

This case study is divided into two sub-cases: one
without customer-installed single-phase PV systems and
another with customer-installed PV systems, assumed to

Fig. 4: Base-case Phase Voltage of Case Study 1.

be allowed to inject power into the network. Typically,
customer-installed PV systems operate at a unity power
factor, generating revenue through real power injection.
However, in networks experiencing low-voltage condi-
tions or increased reactive power demands, operators
may require customers to adjust their power factor below
unity to improve voltage stability and support reactive
power requirements. This adjustment is particularly rel-
evant in systems with significant PV integration, where
inverters can be configured to provide reactive power
support. For example, the Australian Energy Market
Operator (AEMO) mandates that inverters connected to
the grid must have the capability to operate at power
factors ranging from 0.8 leading to 0.8 lagging, enabling
them to supply or absorb reactive power as needed to
maintain network stability [25]. For the purposes of
this study, customer-installed PV systems are assumed
to operate at a unity power factor.

This case study examines the optimal placement and
bus connections for utility-owned single-phase photo-
voltaic (PV) installations to mitigate voltage unbalance in
distribution networks. The analysis assumes that utility-
owned PV systems are not constrained in their reactive
power injection capabilities, thereby enabling maximum
flexibility in addressing voltage stability issues. Addi-
tionally, the impact of operating under a 0.8 power factor
limitation is investigated to assess its influence on the
effectiveness of voltage unbalance mitigation.

The voltage profile and voltage unbalance factor (VUF)
percentage for the base case of 29-bus LV network are
shown in Figures 4 and 5, respectively.

The voltage profile in Figure 4 shows that many buses
do not fall within the standard acceptable voltage range
of ±5% (0.95 to 1.05 pu). However, all remain within a
broader ±10% range. Significant deviations are observed
in phase C on sub-feeder 1, where the voltage at the
end of the line drops below 0.95 pu. On sub-feeder 2,
notable deviations occur primarily in phase A, with the
end-of-line voltage dropping to nearly 0.9 pu. In contrast,
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Fig. 5: Base-Case VUF of Case study 1.

Fig. 6: Base-Case Power Losses in Neutral Lines of Case
Study 1.

phases B and C on sub-feeder 2 maintain voltages closer
to 1 pu. The substantial voltage disparity across phases,
particularly the low voltage in phase A, underscores the
presence of voltage unbalance within the network.

TheVUF profile of the 29-bus LV distribution network,
as presented in Figure 5, reveals significant variations
in unbalance levels among phases A, B, and C. Phase
A consistently maintains relatively low unbalance lev-
els, remaining below 1% throughout sub-feeder 1. In
contrast, phases B and C exhibit higher VUF values on
sub-feeder 1, with levels exceeding 4% toward the end of
the feeder. The VUF values for all phases tend to increase
progressively toward the ends of each sub-feeder.

The maximum VUF line in Figure 5, representing the
highest voltage unbalance observed across all phases
at each bus, exhibits an increasing trend, reaching a
peak of 5.28% at Bus 29 on Sub-feeder 2. Notably,
Bus 10 experiences the most significant unbalanced
load, contributing to power losses in the neutral line as
illustrated in Figure 6. This results in total power losses

in the neutral line amounting to 0.2595 pu.
To mitigate the VUF in the network, an analysis was

conducted to determine the optimal single-phase PV
installations, including their sizing, phase connections
and operating power factor of the inverter. The results
of this approach are summarized in Table 1.

The deployment of a single-phase PV system with a
minimum capacity of 0.182 kVA at Phase A of bus 29
reduces the VUF to 4.56%. However, increasing the size
of the PV system at this location does not result in further
reductions in VUF, as bus 29 is situated on sub-feeder 2
and has no influence on the VUF of sub-feeder 1, which
remains at 4.56%.

With deployment of two single-phase PV systems, the
optimal locations are identified as Phase C of bus 9 on
sub-feeder 1 and phase A of bus 28 on sub-feeder 2. This
configuration reduces the VUF to 2.28%. However, this
value still exceeds the limit recommended by the IEC
standard.

The optimal reduction in voltage unbalance is
achieved through the installation of three single-phase
PV systems at buses 9, 10, and 22, which successfully
lower the VUF from 5.28% to 0.967%, meeting the
standard limit of less than 2%. Notably, the power factors
at these locations fall outside the typical operational
range of standard inverters, with a power factor of 0.13
at bus 9 and 0.17 at bus 22. However, when inverter
operation is constrained to a minimum power factor of
0.8, the VUF can still be effectively reduced to 0.975%.
This is achieved by installing PV systems at phase A of
bus 7, phase C of bus 10, and phase A of bus 26, with
capacities of 1.726 kVA at 0.94 power factor, 1.795 kVA
at 0.98 power factor, and 1.924 kVA at 0.81 power factor,
respectively.

Although both solutions achieve comparable reduc-
tions in the VUF, the higher power factor solution pro-
vides additional benefits, primarily by requiring smaller
PV capacities. The corresponding voltage profile, power
losses in neutral lines, and VUF are illustrated in Figures
7 to 9, respectively.

It is observed that the minimum bus voltage of the
network with the higher power factor solution is 0.97 pu,
as shown in Figure 7, which is less favorable compared
to the lower power factor solution that achieves a better
minimum bus voltage of 0.966 pu. Additionally, the total
power losses in the neutral lines are reduced to 0.051 pu.

Further increasing the number of deployed PV sys-
tems results in only marginal reductions in the VUF.
However, with a higher distribution of PV systems across
the network, smaller system capacities are required.

The output characteristics of a photovoltaic (PV)
system in northeastern Thailand are applied to 1 kW
single-phase PV systems at phase A of bus 10 and bus
29. As shown in Figure 10, the normalized probability
distribution indicates a mean output of 0.48 kW, with
a skewness of -0.04, a kurtosis of 1.75, and a standard
deviation of 0.3 kW.

With customer-installed PV systems, the voltage
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Table 1: The Optimal PV Systems for Case Study 1.

No. of PV Bus Phase Size (kVA) PF VUF (%)

1 29 A 0.182 0.88 4.56

2 9, 28 C, A 1.69,
1.912

1,
0.87 2.28

3 9, 10,
22

A, C,
A

1.643,
1.90,
3.624

0.13,
0.94,
0.17

0.967

4
27,
12, 7,
8

A, B,
A, C

2.063,
2.906,
2.331,
2.4

0.91,
0.14,
0.42,
0.73

0.506

5
7, 8,
11,

13, 26

A, C,
A, B,
A

1.723,
2.589,
0.935,
1.374,
2.076

0.88,
1.00,
0.88,
0.95,
1.00

0.387

6

5, 10,
10,
13,

20, 28

A, A,
C, B,
A, A

0.68,
0.771,
1.998,
1.413,
1.282,
1.43

0.91,
0.93,
0.91,
0.98,
0.97,
0.92

0.303

Fig. 7: Phase Voltage of Case Study 1 with 3 PV Systems.

profile of the network is altered, as shown in Figure
11, with the VUF reaching 5% at phase C of bus 10, as
illustrated in Figure 12. The total neutral line losses are
0.196 pu.

The optimal configuration for a utility-owned PV
system is revised to a 0.4 kVA system with a power factor
of 0.9, installed at phase C of bus 10. This configuration
reduces the VUF to 3.67% and results in neutral line losses
of 0.147 pu. However, this solution is still considered
suboptimal as it exceeds the standard recommended
limit.

To achieve the minimum combined sum of the VUF
and neutral line losses, the PV size must be increased to

Fig. 8: Power Losses in Neutral of Case Study 1 with 3 PV
Systems.

1.53 kVA with a power factor of 0.85. This adjustment
yields a VUF of 3.67% and reduces the total neutral line
losses to 0.093 pu, as summarized in Table 2.

For a configuration involving two utility-owned PV
systems, the optimal placement is determined to be
at phase C of bus 10 and phase A of bus 27. The
corresponding capacities are 1.694 kVA with a power
factor of 0.96 and 1.28 kVA with a power factor of 0.88,
respectively. This configuration effectively reduces the
Voltage Unbalance Factor (VUF) to 1.28%, representing
a 74.4% reduction, achieving the target standard of
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Table 2: The Optimal Single-phase PV Systems for Case Study 1 with Customer-installed PV Systems.

No. of PV Bus Phase Size (kVA) PF VUF (%) PN (pu)
1 10 C 1.53 0.85 3.67 0.093

2 10, 27 C, A 1.694,
1.28

0.96,
0.88 1.28 0.036

3 5, 8, 26 A, C,
A

0.75,
1.918,
1.475

0.96,
0.94,
0.81

0.98 0.024

Fig. 9: VUF of Case Study 1 with 3 PV Systems.

Fig. 10: Normalized Distribution of PV System Output.

VUF below 2%, in line with recommended guidelines.
Additionally, this setup reduces neutral line power losses
to 0.036 pu, reflecting an 81.7% reduction.

For PV systems with output characteristics depicted
in Fig. 10, where the average output is 48.2% of the rated
capacity, the required minimum capacities to achieve
these results are 3.4 kVA and 2.6 kVA for the two PV
systems, respectively.

To assess the effect of demand variation on voltage
unbalance mitigation strategies using a single-phase

Fig. 11: Phase Voltage of Case Study 1 with Customer-
installed PV Systems.

Fig. 12: VUF of Case Study 1 with Customer-installed PV
Systems.

PV system, the load demand power is modelled by
adopting distribution characteristics from the Provincial
Electricity Authority (PEA) of Thailand [26] as given in
Table 3. Themean values of the load demand are set equal
to the base case data.

It is essential to note that when evaluating a PV
system without battery storage, the demand distribution
characteristics are analyzed solely using daytime data.
However, if sufficient battery capacity is available to
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Table 3: The Optimal Single-phase PV Systems for Case
Study 1 with Customer-installed PV Systems.

Demand location SD Skewness Kurtosis
Bus 1 – 17 phase A 0.064 -0.07 1.83
Bus 1 – 17 phase B 0.08 -0.10 1.655
Bus 1 – 17 phase C 0.07 0.71 2.94
Bus 18 – 29 phase A 0.04 1.02 3.76
Bus 18 – 29 phase B 0.09 0.36 2.28
Bus 18 – 29 phase C 0.05 -0.05 1.98

Fig. 13: The Optimal Solutions for Case Study 1 with
Customer-installed PV Systems using PE.

ensure continuous energy supply, a 24-hour demand
profile should be considered to accurately reflect the
system’s performance. This consideration, however, is
not included in the case studies, as the focus of this
study is on analyzing the direct impact of single-phase
PV systems in mitigating voltage unbalance.

To address fluctuations in electricity demand within
the distribution network, this case study examines 41
variations in demand across phases A, B, and C for
buses 1 through 29, focusing exclusively on non-zero
demand values. Additionally, two resource variations are
considered for customer-installed PV systems. Utilizing
the Point Estimate (PE) method with the 2M+1 scheme
requires 87 simulations. The results identify the most
frequently optimal locations for the PV systems as phase
C of bus 10 and phase A of bus 22, as illustrated in Fig.
13. At these locations, the PV system sizes range from 1
to 3 kVA, operating with power factors between 0.1 and
0.97.

Monte Carlo Simulation (MCS) is employed to validate
the performance of the Point Estimate (PE) method.
The optimal location for the single-phase PV system,
as shown in Fig. 14, is determined using MCS. The
convergence of MCS is assessed by monitoring the
mismatch of the standard deviation (SD), which demon-
strates a gradual decline, as depicted in Fig. 15. The
results indicate that the optimal solution trends remain

Fig. 14: The Optimal Solutions for Case Study 1 with
Customer-installed PV Systems using MCS.

Fig. 15: Convergence of MCS.

consistent across 400 and 1000 iterations, with bus 10
and bus 22 being the most frequently identified optimal
locations. The system primarily operates on phase C
for sub-feeder 1 and phase A for sub-feeder 2, with an
operational capacity range of 0.1 to 4 kVA and a power
factor between 0 and 1. The phase operation is designed
to be dynamic, facilitated by switching mechanisms to
adjust post-installation.

For 200 iterations, the most frequently identified
solutions are at bus 10 and bus 26, which do not
correspond to the most frequent solutions observed at
higher iteration counts. This discrepancy aligns with the
convergence curve of MCS, as shown in Fig. 15, where
a significant decline in SD is observed at 400 iterations,
further supporting the findings.

The results indicate that the optimal placement and
phase of operation identified by the PEmethod alignwith
those obtained through MCS. However, the operational
range determined by MCS is broader. This is due to
MCS’s more comprehensive analysis, which accounts for
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Fig. 16: PEA 104-bus LV Distribution Network.

a wide range of possible demand scenarios through ran-
dom sampling, effectively capturing the variability and
uncertainty in the distribution network more thoroughly
than the PE method.

6.2 Case Study 2

The real-world 104-bus LV distribution network oper-
ated by the PEA ofThailand, functioning at a voltage level
of 400/230V, is depicted in Fig. 16. The network’s total
load comprises 56.6 kW on phase A, 52.82 kW on phase B,
and 50.97 kW on phase C, each operating with a lagging
power factor of 0.85, as detailed in Fig. 17. Customer-
installed single-phase PV systems with a capacity of 10
kW are located at phase B of bus 34 and phase C of bus 75.
The probability distribution of the PV output is provided
in Fig. 10, with the base-case PV output assumed to be
its average value of 4.82 kW.

The phase voltages, power losses in neutral lines,
and voltage unbalance for the base case are presented
in Figures 18 to 20. The analysis indicates that the
majority of voltage unbalance occurs in phase C, with
the maximum unbalance of 3.29% observed at bus 66. The
total power losses in the neutral line are calculated to be
0.786 pu.

Without considering demand variation, the optimal
placement, phase, operational size, and power factor of
the single-phase PV system are summarized in Table
4. Deploying a single PV system at bus 63, connected
to phase C, with an operational capacity of 9.02 kVA
and a power factor of 0.91, reduces the VUF to 2.86%
and neutral line power losses to 0.58 pu. Greater
compensation is achieved by deploying two PV sys-
tems, which further reduce the VUF to 1.46%—a 55.6%
reduction—and neutral line power losses to 0.41 pu—
a 47.4% reduction. However, increasing compensation
beyond this configuration yields onlymarginal additional
benefits.

Furthermore, the deployment of two single-phase PV
systems not only effectively mitigates voltage unbalance
but also improves voltage magnitudes, as illustrated in

Fig. 17: Load Demand of Case Study 2.

Fig. 18: Base-Case Phase Voltage of Case Study 2.

Fig. 19: Base-Case Power Losses in Neutral of Case Study
2.

Figures 21 and 22. This configuration also leads to a
reduction in power losses within the neutral lines, as
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Table 4: The Optimal PV Systems for Case Study 2.

No. of PV Bus Phase Size (kVA) PF VUF (%) PN (pu)
1 63 C 9.02 0.9 2.86 0.58

2 30, 63 A, C 10,
9.1

0.96,
0.91 1.46 0.41

3 31, 67,
87

A, C,
A

10, 8.22,
5

1,
0.91,
0.9

1.34 0.32

Fig. 20: Base-Case VUF of Case Study 2.

detailed in Figure 23.
To present the variation of electricity demand in the

104-bus LV distribution network, the active and reactive
power of the load buses are modelled with means equal
to the base case data, and standard deviations set as
follows: 7% for buses 1 to 36, 4% for buses 37 to 55 and
9% for buses 56 to 104. To capture the high fluctuation
in electricity demand, the distribution characteristics are
modelled with different skewness values: -0.7 for buses 1
to 36, 0 for buses 37 to 55 and 1 for buses 56 to 104, with
a kurtosis of 5 at every bus, reflecting distributions that
range from symmetrical to skewed with sharp peaks.

When accounting for demand variation, both PE and
MCS consistently identify the optimal compensation,
with the most frequent location being phase C of bus
63, as shown in Fig. 24. At bus 63, the operational
range determined by PE is 9 to 9.38 kVA at phase C,
with an identical operational power factor of 0.9. In
contrast, MCS identifies an operational range of 7.98 to
9.67 kVA at phase C, with a power factor ranging from
0.87 to 0.95. Although both methods yield the same most
frequently identified solution, MCS provides a broader
range of alternative locations, operational PV sizes, and
phases.

The results demonstrate that PE is effective in repre-
senting load variations within the optimization frame-
work formitigating voltage unbalance using single-phase
PV systems. In this case study, with 85 points of
electricity demand and 2 points of renewable resources,

Fig. 21: Phase Voltage of Case Study 2 with 2 PV Systems.

Fig. 22: VUF of Case Study 2 with 2 PV System.

PE requires only 175 simulations—a significant reduction
compared to the number of simulations required byMCS.
However, as the number of load variables increases, the
computational effort required for PE may approach that
of MCS, potentially reducing its efficiency advantage.

The numerical studies demonstrate the effectiveness
of the proposed method in determining the optimal
location, operating phase, and capacity of multiple PV
systems based on their impact on VUF and neutral power
losses, while accounting for dynamic demand and renew-
able resource behavior. The results show that deploying
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Fig. 23: Power Losses in Neutral of Case Study 2 with 2 PV
Systems.

Fig. 24: The Optimal Solutions for Case Study 2 using PE
and MCS.

multiple PV systems leads to greater reductions in VUF,
and a highly distributed PV system deployment requires
smaller individual capacities, providing a more flexible
and efficient solution for mitigating voltage unbalance
and optimizing resource utilization.

In case study 1, the optimal operating capacities of the
PV systems are below their maximum allowable limits
and should correspond to the average output. To achieve
the desired reduction in VUF and neutral line power
losses, the installed capacity of the PV system should
match the maximum output, as determined by the proba-
bility distribution of PV output in the installation area. In
contrast, in Case Study 2, the optimal operating capacity
is near the maximum limit of 10 kVA. Consequently, the
highest probability of power output from the PV system
is lower than the optimal operating capacity. As a result,
installing the PV system at the optimal capacity may
not lead to the expected reductions in VUF and neutral
line power losses. To achieve these reductions, a higher
number of PV systems would need to be deployed.

The size of the PV systems directly impacts VUF
and neutral line power losses, key components of the
objective function. Larger PV systems generally offer

better compensation for unbalanced conditions, reducing
both VUF and power losses. However, as the results
show, this effect diminishes beyond a certain capacity
due to network saturation. This highlights the need for
optimizing PV sizes to avoid oversizing, which increases
costs without proportional benefits. While this study
does not include a cost analysis, it is clear that PV
installation and operational costs are linked to system
size. Practical implementation requires balancing the
benefits of reduced VUF and power losses with the
additional costs of larger PV systems. This trade-off is
crucial for cost-effective deployment, particularly in fi-
nancially constrained low-voltage distribution networks.
Future research could incorporate cost-benefit analysis to
enhance decision-making in PV system deployment.

7. CONCLUSION

This study demonstrates the effectiveness of single-
phase photovoltaic (PV) systems in addressing voltage
unbalance in distribution networks. A significant advan-
tage of the proposed single-phase PV systems is their
capability to operate with varying power factors and
connection phases, offering enhanced flexibility in net-
work management. Moreover, the compact size of these
systems enables their installation near connection buses,
simplifying their integration into existing infrastructure.
The methodology employs heuristic optimization to
identify optimal locations and operational parameters for
the PV systems, ensuring that the minimum necessary
capacity is utilized to achieve substantial reductions in
voltage unbalance and power losses in neutral lines.

The PE method is utilized to account for demand
variation, providing a simplified and computationally
efficient approach. The performance of PE is bench-
marked against MCS, which explores a broader spectrum
of potential solutions by comprehensively analyzing
demand fluctuations and renewable resource variations.
While the PE method effectively addresses demand
variation in this context, its computational advantage
may diminish in larger systems with an increasing
number of load variables, potentially approaching the
computational effort required by MCS. Consequently, PE
is more appropriate for networks with fewer variation
points.

Future research will focus on advancing the proposed
approach by integrating strategies to mitigate distribu-
tion network unbalance through the adoption of other
low-carbon technologies, such as electric vehicle inte-
gration. This endeavour will involve the development of
sophisticated optimization techniques aimed at achieving
more comprehensive enhancements in the stability and
operational efficiency of distribution networks.
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