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ABSTRACT

The increasing adoption of renewable energy and
the evolution of energy markets have led to the need
for innovative trading mechanisms, particularly in peer-
to-peer (P2P) energy markets. This paper proposes
a bi-level optimization algorithm for trading quantity
and surplus maximization (BLO-TQSM) in P2P energy
trading, incorporating a double-side carbon taxation
scheme (DCTS). The BLO-TQSM algorithm is designed
to optimize both the trading quantity and surplus by
finding the best matching of participants in the market,
while the DCTSmechanism integrates carbon tax consid-
erations into the pricing of fossil and renewable energy
sources. The shift factor, obtained by particle swarm
optimization (PSO), is introduced to find the proposed bi-
level maximization algorithm. The proposed method was
tested in two scenarios: one without DCTS and one with
DCTS. The results show that the algorithm significantly
improves trading quantity and surplus in the P2P market
compared to traditional power pool models. Moreover,
the inclusion of DCTS further enhances the market’s
environmental sustainability by promoting the use of
renewable energy and moving toward a carbon-neutral
market.

Keywords: Peer-to-peer, Supply demand curves, Elec-
tricity trading, Carbon tax, Renewable energy, Shift
factor

1. INTRODUCTION
Throughout the past period, the characteristics of

energy customers have seen several changes. Due to
technological advancements, consumer behavior, and
greenhouse gas (GHG) regulations such as the Kyoto
Protocol in 1995, along with other significant interna-
tional conferences focused on global energy policy and
combating global warming. The characteristics of energy
customers can be categorized into three eras [1-3]: 1)
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Early electricity markets, an era of regulated monopo-
lies: Only the government can sell electricity; 2) The
emergence of wholesale markets: The electricity market
was liberalized; the private sector can compete, and in
this era, the power pool model has been used; 3) The
emergence of renewable energy and decentralization, an
era characterized by the expansion of renewable energy
sources, such as wind energy and solar energy. In
addition, consumers become prosumers. So P2P markets
play an important role in this era. It is evident that
this shift represents a switch from utilizing conventional
energy to renewable energy. This type of transformation
will be observed in numerous countries. Such as, the
percentage of renewable energy in France’s primary
energy mix has increased significantly. The percentage
increased from 6.6% to 10.7% between 2007 and 2017.
The percentage of fossil energy dropped from about
95% to 50% between 1960 and 2015 [4]. The share of
renewable energy in the U.S. electricity generation mix
was projected to increase from 10% in 2010 to 16% by
2035 [5]. It is obvious that renewable energy, such as
solar energy and wind energy, has become increasingly
prevalent in recent years. Currently, solar energy
production and usage in homes are widely available.
However, sales of generated energy are rare worldwide.
There have been numerous studies conducted on the
mechanism that enables buyers and sellers to engage in
direct buying and selling, or the P2P mechanism.

The trading mechanism for electrical energy has un-
dergone a gradual evolution in the past. Initially, power
pools developed, which were composed of numerous
generators that combined electricity production under
the control of a regulator responsible for pricing. Until
the start of research into the application of the P2P
trading mechanism in the electrical system. P2P trading
mechanisms have many advantages, such as reduc-
ing energy costs and balancing local load generation
and demand [3]. Moreover, numerous countries have
conducted research and experiments on P2P systems
in microgrids. For example, [6] suggests that P2P
energy trading in grid-connected networks without post-
trade bus voltage protection is nearly established. The
mechanism was evaluated on a low-voltage distribution
network in Australia. Meanwhile, [7] proposes a mo-
tivated psychology paradigm for Malaysian P2P energy
trading, with a specific focus on residential users.

P2P energy trading was categorized into three dif-
ferent mechanisms: game theory-based, auction-based,
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Fig. 1: Aggregated supply and demand curves.

and optimization-based in [3]. Game theory can be
employed to simulate the conduct and choices of in-
dividuals in the market, both in cooperative and non-
cooperative scenarios [8-10]. In auction-based markets,
the mechanism can be divided into three models: 1)
A single-side auction, which is a unidirectional auction
in which bidding takes place on either the supply side
or the demand side only [11]; 2) A double auction is
a bidirectional auction where both supply and demand
are concurrently auctioned [12, 13]; and 3) Continuous
double auction (CDA). It is a double auction that is
continuous over several consecutive periods [14, 15].

Optimization-based models can be solved using
various optimization techniques, such as LP, MILP, NLP,
ADMM, etc [16-18]. However, the different mechanisms
discussed above are mostly optimization problems. Even
game theory problems involve the use of optimization,
which mostly has an objective function of minimizing
cost and maximizing economic surplus. Furthermore,
an auction-based mechanism will provide an equilibrium
point (EQP), which makes an equilibrium point that
maximizes the economic surplus in the market as shown
in Fig. 1. Market clearing price (MCP) is the price applied
for all market participants at themarket clearing quantity
(MCQ). This method of thinking just analyzes EQP’s left
side, regardless of the right side of EQP. This means that
participants on the EQP’s right side will not trade in this
market. Power sellers on the right side of EQP will not
sell, and that energy will be wasted. Power buyers on
the right side of EQP will not buy and will be compelled
to buy on the grid. In these 2 cases, it will cause a
negative surplus in the market. The surplus in the market
decreased.

Besides the energy trading environment, carbon neu-
trality and net zero emissions have beenwidely discussed
in the past decade due to the rapid increase in global
temperature. Hence, the Paris Agreement was estab-
lished in 2015 with the aim of enabling member nations
to enhance their capacity to address the challenges posed
by climate change, and there is even more pushing at the
United Nations Climate Change Conference 2021 (COP

26) [19]. Global warming, or rising global temperatures,
is caused by humans producing more GHG resulting
in numerous consequences, such as the elevation of
water levels, leading to recurrent inundation in certain
regions. Crop yields are being impacted by droughts [20].
Carbon dioxide (CO2) is the most important greenhouse
gas because of its naturally high concentration in the
atmosphere and its ability to trap heat [21]. In addition,
the energy industry is the primary emitter of GHG
emissions [22]. Therefore, reducing CO2 from the energy
sector will significantly reduce the problem of global
warming.

Carbon footprint (CFP) is a measure of the amount
of greenhouse gases [23]. A carbon credit is a general
term that refers to a tradable certificate or license that
represents the right to emit one ton of carbon dioxide
or the mass of another greenhouse gas equivalent to one
ton of carbon dioxide [24]. A carbon tax is an additional
fee that is calculated according to the quantity of CFP
emissions produced by a fuel, product, or service. This
tax can be offset off with carbon credits [25]. Hence,
a carbon trading market has been established to enable
producers of CFP to buy carbon credits to offset their
emissions. Nowadays, the government and numerous
corporations have a requirement to decrease carbon
emissions to mitigate the greenhouse effect. Individuals
are increasingly opting to utilize renewable energy
sources for electricity consumption while implementing
measures to discourage the use of electricity generated
from fossil fuels.

Several recent research studies have focused on in-
tegrating the carbon trading market into P2P energy
trading that can be divided into two groups: 1) Power
pricing includes carbon, [26-28] suggests integrating
carbon emissions into the objective function to simplify
the mechanism. 2) Multi-objective optimization is a
methodology used to address problems that involve
many variables, such as Many-Objective Marine Preda-
tors Algorithm [29], including electricity and carbon
emissions [17, 30-32]. This method possesses an intricate
mechanism and requires a substantial time to generate
outcomes. However, most of the previous studies will
be discussed with a focus on minimizing the cost of the
system without considering the finances of participants.
Sellers of fossil fuels will be penalized for their carbon
emissions, and buyers of fossil fuels will also be penal-
ized. This process is namely double-taxationmechanisms
[18].

The current shift toward renewable energy and decen-
tralized energy markets has presented intricate issues in
energy trading. P2P energy marketplaces have arisen as
a mechanism to facilitate decentralized energy transac-
tions, empowering customers to act as prosumers who
create, use, and sell energy independently. However,
conventional P2P processes face limitations in simultane-
ously enhancing trading quantity while optimizing social
welfare and accounting for environmental factors like
carbon emissions.
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This paper presents a novel approach to these chal-
lenges by introducing a bi-level optimization algorithm
for trading quantity and surplus maximization (BLO-
TQSM), integrated with a double-sided carbon taxation
scheme (DCTS) designed specifically for P2P energy
markets. This proposed BLO-TQSM algorithm aims to
maximize trading quantity and optimal surplus. The
DCTS, an innovative component of this model, intro-
duces a dual-sided carbon tax applied to fossil-based
energy transactions, incentivizing the use of renewables
and supporting carbon neutrality.

The rest of this paper is organized as follows: Section
2, address the problem formulation; Section 3, compu-
tational procedure for BLO-TQSM and DCTS; Section
4, provides the case studies and discusses the results.
Finally, conclusions are summarized in section 5.

2. PROBLEM FORMULATION
This paper presents two main mechanisms: 1) BLO-

TQSM algorithm is used to find the best matching
of participants that maximizes the value of surplus;
2) DCTS, this mechanism will mitigate consumption
and production of fossil energy in demand and supply
sides. In addition, carbon tax in the form of a carbon
double-taxation will transform this market into a carbon
neutrality market.

2.1 BLO-TQSM algorithm
In the P2P electricity market, the participants submit

their own preferred prices and quantities into the P2P
energy trading mechanism. The pay-as-bid settlement is
used in this paper. To maximize surplus of all partici-
pants, the proposed method in an ascending aggregated
demand curve (blue line), as shown in Fig. 2. After that,
the aggregated supply curve (red line) is shifted by the
shift factor (𝛼) to maximize the trading quantity and find
the best value of surplus.

The objective function of BLO-TQSM can be split into
bi-levels optimization: the major-level objective, which
is trading quantity maximization, and the minor-level
objective, which is surplus maximization. The maximum
transaction volume is calculated at the major-level and
formulated as follows:

Maximize

𝑇 𝑄 =
𝑁max

∑
𝑖=1

𝑓𝑖(𝜆𝑖) (1)

s.t.
𝑓(𝜆𝑖) = {

𝑛 for 𝜆𝐷𝑖 ≥ 𝜆𝑆𝑖
0 for 𝜆𝐷𝑖 < 𝜆𝑆𝑖

(2)

𝑃 min = max {𝑃 min
𝐷𝑖 , 𝑃 min

𝑆𝑖 + 𝛼} (3)

𝑃 max = min {𝑃 max
𝐷𝑖 , 𝑃 max

𝑆𝑖 + 𝛼} (4)

𝑁max = 𝑃 max − 𝑃 min

𝑛 (5)

Fig. 2: Typical aggregated supply and ascending aggre-
gated demand curves.

where, 𝑇 𝑄 is trading quantity; 𝜆𝐷𝑖 and 𝜆𝑆𝑖 are price of
demand and supply position 𝑖 in the graph, respectively;
𝑃𝐷𝑖and𝑃𝑆𝑖 are power quantity of demand and supply
position 𝑖 in the graph, respectively; 𝑛 is step size ; 𝛼
is shift factor and 𝑃 min, 𝑃 max, 𝑃 min

𝐷𝑖 , 𝑃 min
𝑆𝑖 , 𝑃 max

𝐷𝑖 , 𝑃 max
𝑆𝑖 can

be explained in Fig. 2.
Major-level calculations will reveal many identical

maximum values. To find the shift factor that generates
the best surplus while 𝑇 𝑄 has a maximum value, 𝑇 𝑄
must be imposed as a constraint at the minor-level. The
objective function of minor-level is shown in Eq. (6). The
objective function contains three terms, i.e., surplus of
inverse demand curve, surplus of shifting supply curve,
and death penalty term [33].

Maximize

𝑆𝑃 =
𝑃 max

∫
𝑃 min

𝑎𝑠𝑐(𝜆𝐷𝑖 ⋅ 𝑃𝐷𝑖)𝑑𝑃𝐷𝑖

−
𝑃 max

∫
𝑃 min

[(𝜆𝑆𝑖 ⋅ 𝑃𝑆𝑖) + 𝛼] 𝑑𝑃𝑆𝑖 − 𝐷𝑃 𝐹 (6)

s.t.
𝐷𝑃 𝐹 = {

+∞, 𝑇 𝑄 ≠ 𝑇 𝑄max
0, 𝑇 𝑄 = 𝑇 𝑄max

(7)

𝑃 min = max {𝑃 min
𝐷𝑖 , 𝑃 min

𝑆𝑖 + 𝛼} (8)

𝑃 max = min {𝑃 max
𝐷𝑖 , 𝑃 max

𝑆𝑖 + 𝛼} (9)
where, 𝑆𝑃 is surplus; 𝐷𝑃 𝐹 is the death penalty function
that ensure that 𝑇 𝑄 in minor-level optimization is equal
to 𝑇 𝑄max in Eq. (1). “𝑎𝑠𝑐” denotes the ascending version
of aggregated demand curve.

2.2 DCTS
This paper proposes the DCTS mechanism for buyers

who purchase electricity from fossil energy sources to
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Fig. 3: BLO-TQSM algorithm computational procedure.

be charged half the amount of carbon tax by both the
buyer and seller. This mechanism forces consumers
that consume electricity from fossil energy sources to
pay a higher price, while fossil energy source sellers
receive lower prices than before. This mechanism can
be explained as shown in Fig.4. In order to facilitate
comprehension, it can be divided into two perspectives,
and there are the following equations:

Buyer’s perspective;

𝜆𝐵
𝑆𝑖,𝐹 = 𝜆𝑆𝑖,𝐹 + 𝑐𝑡

2 (10)

𝜆𝐵
𝑆𝑖,𝑅𝐸 = 𝜆𝑆𝑖,𝑅𝐸 (11)

where, 𝜆𝐵
𝑆𝑖,𝐹 and 𝜆𝐵

𝑆𝑖,𝑅𝐸 are seller’s price at position
𝑖 of fossil energy and renewable energy in buyer’s
perspective, respectively; 𝜆𝑆𝑖,𝐹 and 𝜆𝑆𝑖,𝑅𝐸 are prices of
fossil energy and renewable energy offered by sellers,
respectively; 𝑐𝑡is carbon tax.

From the buyer’s point of view, the price of fossil
energywill be perceived as elevated above the usual level.

The carbon tax is the additional cost that the purchaser is
responsible for paying.

Seller’s perspective;

𝜆𝑆
𝑆𝑖,𝐹 = 𝜆𝑆𝑖,𝐹 − 𝑐𝑡

2 (12)

𝜆𝑆
𝑆𝑖,𝑅𝐸 = 𝜆𝑆𝑖,𝑅𝐸 (13)

where, 𝜆𝑆
𝑆𝑖,𝐹 and 𝜆𝑆

𝑆𝑖,𝑅𝐸 are seller’s price at position
𝑖 of fossil energy and renewable energy in seller’s
perspective. Carbon taxes are deducted before sellers of
fossil energy receive payment, after the matching of P2P.

3. COMPUTATIONAL PROCEDURE
The proposed method’s computational procedure is

illustrated in Fig. 3. The optimal value of major-level
objective and minor-level objective was found by particle
swarm optimization (PSO).

The PSO operation is an iterative computational
process in which, during each cycle, the velocity of
each particle is modified based on 𝑝𝑏𝑒𝑠𝑡𝑡

𝑖 and 𝑔𝑏𝑒𝑠𝑡𝑡
𝑖. A

formulation of the set of populations is presented in this
paper as follows:

𝛼 = [𝛼1, 𝛼2, ..., 𝛼𝑁𝑃 ] (14)

𝛼𝑖 =[ 𝑃 min
𝐷𝑖 − 𝑃 max

𝑆𝑖 , 𝑃 max
𝐷𝑖 − 𝑃 min

𝑆𝑖 ],
for 𝑖 = 1, 2, ..., 𝑁𝑃 (15)

The range of 𝛼1 is represented in Eq. (15). The control
of variables in Eq. (14) are used for Eq. (8-9). Then, the
new velocity of the particles is calculated by Eq. (16), the
new position of the particles is computed by Eq. (17).
𝑁𝑃 is the number of populations.

𝑣𝑡+1
𝑖 = 𝑤𝑣𝑡

𝑖 + 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡𝑡
𝑖 − 𝛼𝑡

𝑖) + 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡𝑡
𝑖 − 𝛼𝑡

𝑖) (16)

𝛼𝑡+1
𝑖 = 𝛼𝑡

𝑖 + 𝑣𝑡+1
𝑖 , for 𝑖 = 1, 2, ..., 𝑁𝑃 (17)

where, 𝑝𝑏𝑒𝑠𝑡 is the best shift factor of each particle; 𝑔𝑏𝑒𝑠𝑡
is the best shift factor of all particles; 𝑡 and 𝑡 + 1 are the
iteration; 𝑣𝑖 is the velocity for particle 𝑖; 𝑐1 and 𝑐2 are a
constant numbers; 𝑟1 and 𝑟2 are a random parameters;
𝑤 is inertial weight. PSO is used for both major-
level and minor-level optimization. In the major-level
optimization, the objective is computed by the 𝑇 𝑄 in
Eq. (1). Meanwhile, in the minor-level optimization, the
objective function is computed by the 𝑆𝑃 with penalty
function to keep maximum 𝑇 𝑄 from the major-level
optimization 𝑇 𝑄max in Eq. (6).

The decision to employ the classical PSO algorithm
was made after careful consideration of several factors,
including simplicity of PSO algorithm that make it easier
to validate and analyze the results, particularly in the
context of our bi-level optimization for P2P energy
trading. PSO also offer improvements in convergence
speed or solution quality. However, we acknowledge
the potential benefits of newer algorithms and plan to
explore their application in future research to further
enhance the robustness and efficiency of our proposed
methodology.
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Fig. 4: The proposed P2P market mechanism.

Table 1: The amount and price of energy offered from
buyers and sellers.

4. RESULT AND DISCUSSION

In this section, the trading quantity and surplus of
the proposed mechanism for P2P energy trading are
simulated and numerically analyzed for the BLO-TQSM
and DCTS algorithms. The case studies are carried out
using the variables of participant number, price, and
quantity of electrical energy from [34], with a price range
of [2 Baht/kWh, 5 Baht/kWh]. The index for fossil energy
sellers and renewable energy is “0” and “1”, respectively,
as shown in Table 1. Two cases were investigated and
compared, as follows.

- Case A: The BLO-TQSM algorithm without the
DCTS algorithm to compare trading quantity and surplus
with the power pool model after deducting the loss of
opportunity transaction and P2P multi-stage matching
mechanism (MMM) form [34].

- Case B: The BLO-TQSM algorithm is used in
conjunction with the DCTS algorithm to compare the
financial data with case A.

The computations for all case studies were conducted
using MATLAB on a computer with a Windows 11
operating system, a 2.3 GHz Intel Core i5 processor, and
16 GB of memory.

Fig. 5: Result of case A: (a) the correlation between
surplus and volume with shift factor adjustments and
(b) aggregated supply and ascending aggregated demand
curves after BLO-TQSM algorithm.

4.1 Case A: BLO-TQSM without DCTS

In the first case study, we assume that all participants
have an immediate desire to purchase and sell. Table
1 lists the input value in the algorithm. The results
for energy trading in this case are represented in Fig.
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Table 2: Result of case A.

Table 3: Comparison between power pool, P2P MMM and
BLO-TQSM.

5, and Table 2 illustrates a shifting graph and matched
participants that have average computational times equal
to 4.36 seconds. Fig. 5(a) show the correlation between
surplus and trading quantity, while shift factor adjust-
ments can be divided into three phases of volume: 1) The
beginning phase, where an increased shift factor causes
increased surplus and trading quantity; 2) The steady
phase (red line), where an increase in the shift factor leads
to an increase in the surplus, while the trade quantity
remains constant; 3) The regression phase, where adding
a shift factor at this phase no longer results in an increase
in quantity. Despite the continuing increase in surplus,
the quantity trading declined. Therefore, the shift factor,
equal to 24.1, represents the last value in the steady phase
before the regression phase. It results in a maximum
surplus of 108.56 Baht, a maximum trading quantity of
301.7 kWh. Fig. 5(b) shows the aggregated supply has
shifted by 24.1 points and ascending aggregated demand
curves. Table 2 shows the matching of seller and buyer
for maximum surplus; sellers received a total revenue,
and buyers made a total payment of 1127.31 Baht. It is
clear that sellers who set their prices high will not find
buyers who are willing to pay that amount. Conversely,
buyers who pay a low price will also not find a match.

Result in Table 3 is a comparison of the two systems:
1) the Power pool market mechanism and 2) the P2P
market mechanism (P2P-MMM, BLO-TQSM). The power
pool market mechanism has notable benefits in terms
of surplus, but it has disadvantages in terms of trading

Fig. 6: Result of case B: (a) the correlation between
surplus and volume with shift factor adjustments and
(b) aggregated supply and ascending aggregated demand
curves after BLO-TQSM algorithm.



BI-LEVEL OPTIMIZATION ALGORITHM FOR TRADING QUANTITY AND SURPLUS MAXIMIZATION IN P2P ELECTRICITY MARKET 7

Table 4: Result of case B.

Fig. 7: Result of case A: (a) convergence plot of PSO and (b)
shift factor obtained from 100 trial plots.

quantity. On the other hand, the P2P market mecha-
nism has significant advantages in terms of the trading
quantity. Both P2P-MMM and BLO-TQSM have a trading

Fig. 8: Result of case B: (a) convergence plot of PSO and (b)
shift factor obtained from 100 trial plots.

quantity of 307.1 kWh. However, the surplus of BLO-
TQSM is 108.56 Baht, which is higher than the surplus of
P2P-MMM, which is 74.85 Baht.



8 ECTI TRANSACTIONS ON ELECTRICAL ENGINEERING, ELECTRONICS, AND COMMUNICATIONS VOL.23, NO.1 FEBRUARY 2025

Fig. 9: Power sold and financial comparison between case
A and case B.

Table 5: he result at 100 trials of the proposed.

4.2 Case B: BLO-TQSM with DCTS
In this case study, the DCTS algorithm is integrated

into the BLO-TQSM algorithm, utilizing the data pro-
vided in Table 1. The carbon tax rate is set at 0.8
Baht/kWh, which reflects the additional cost of carbon
emissions within the trading mechanism. Table 4 depicts
the energy trading outcomes for this scenario. Fig. 6
provides a detailed illustration of the shifting supply and
demand curves and the matching of participants that
have average computational times equal to 3.96 seconds.

The inclusion of the carbon tax affects the pricing
dynamics of sellers, especially those relying on fossil
fuels. This rearrangement of prices influences the
correlation between surplus and trading quantity, as
well as the adjustments of the shift factor and the
aggregated supply and demand curves, which are further
demonstrated in Fig.6. For Case B, the optimal shift factor
is identified as 71.4, resulting in a maximum achievable
surplus of 153.09 Baht and a trading quantity of 254.40
kWh.

The result in Table 4 indicates that the fossil energy
producers are unable to sell the electricity, highlighting
the impact of the carbon taxation mechanism. The study
also provides insights into the financial implications for
sellers, including the revenue generated from transac-
tions and the payments made concerning the buyers’
energy consumption. Collectively, sellers received a
total revenue of 921.64 Baht, while buyers made a total
payment of 1004.6 Baht. The resulting difference of
82.96 Baht is allocated to offset carbon emissions, thereby
contributing to achieving carbon neutrality within the
market framework.

Fig. 10: Comparative analysis of renewable energy sellers
in each case.

Figures 7 and 8 present convergence plots of surplus,
along with 100 trials, showing the shift factor variations
for both Case A (without DCTS) and Case B (with DCTS),
respectively. These visualizations demonstrate how the
integration of DCTS influences the optimization process
and leads to better alignment of trading quantities and
market surplus, fostering a more sustainable P2P energy
trading environment.

Figure 9 illustrates the total power sold and a financial
comparison between case A and case B. In case A, the
renewable energy seller and fossil fuel seller sold 156.7
kWh and 145 kWh and received revenue of 578.31 Baht
and 549 Baht, respectively. In case B, the renewable
energy seller and fossil fuel seller sold 103.7 kWh and
150.7 kWh and received revenue of 606.53 Baht and
315.11 Baht, respectively. It can be observed that
when including the DCTS algorithm, total power sold
of fossil energy and renewable energy is reduced by
28.48% and 3.83%, respectively. The total revenue of
fossil energy is reduced by 42.60%. Conversely, the
total revenue of renewable energy is increase by 4.88%.
Renewable energy sellers will experience slight changes
as fossil sellers’ prices change, resulting in different
matching. Fossil energy sellers are adversely affected
by the DCTS method, which enables purchasers to see
elevated pricing, thus hindering certain sellers from
transacting and forcing them to remit half of their taxes
prior to receiving revenue. This mechanism indirectly
supports carbon neutrality.

The results with 100 trials of the proposed BLO-TQSM
is shown in Table 5.

4.3 Sensitivity analysis

This section delves into the sensitivity analysis of
renewable energy pricing by utilizing data from Case B
in Table 4 as the base case. The analysis investigates the
impact of increasing renewable energy prices by 10% and
20% on key performancemetrics, such as trading quantity
and surplus. These increments aim to provide insights
into the market’s response to changes in renewable
energy pricing, highlighting the implications for sellers
within the P2P energy trading framework.
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Table 6: The result of increasing renewable energy prices by 10%.

Table 7: The result of increasing renewable energy prices by 20%.

Fig. 11: Comparative analysis of fossil energy sellers in
each case.

The sensitivity analysis of renewable energy pricing,
as presented in Tables 6 and 7 and Figures 10 and 11,
demonstrates the impact of price increases on trading

quantities within the P2P energy market. When re-
newable energy prices are increased by 10%, the trading
quantity decreases slightly from 254.4 kWh in the Case
B baseline to 240.5 kWh, representing a modest 5.5%
reduction. Revenue for total energy sellers decreases
from 921.64 Baht to 880.88 Baht. Payment for total
energy buyers decreases from 1004.6 Baht to 963.84 Baht.
The decrease in trading quantity led to a decrease in
revenue and payment. However, with a 20% increase in
renewable energy prices, the trading quantity declines
more significantly to 211.1 kWh, a reduction of 17% from
the baseline. Revenue for total energy sellers decreases
from 921.64 Baht to 786.8 Baht. Payment for total energy
buyers decreases from 1004.6 Baht to 869.76 Baht. The
rise in renewable energy prices has led to a decline
in trading quantity, which is attributable to a decrease
in renewable energy sales as shown in Fig. 10. The
difference in payment and revenue between the base case
and the case where the renewable energy price increases
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by 10% and 20% is equal to 82.96 Baht in all cases. This
is because an increase in renewable energy prices does
not affect the trading quantity of fossil energy sellers,
which was 103.7 kWh, as shown in Fig. 11. In this
study illuminates that two fossil energy sellers, S8 and
S10, cannot be aligned with purchasers. Due to the
DCTS algorithm, their prices exceeded the purchasers’
bid prices and hence were not matched.

5. CONCLUSION
The proposed BLO-TQSM integrated with DCTS

offers a comprehensive and innovative approach to
enhancing P2P energy trading in microgrids. By
optimizing trading quantity and surplus while inte-
grating environmental considerations through carbon
taxation, the mechanism addresses both economic and
ecological goals. Case A, which applies BLO-TQSM
without DCTS, demonstrated significant advancements
in trading efficiency, achieving a higher trading quantity
and surplus compared to traditional P2P-MMM and
power pool mechanisms. On the other hand, Case B,
which incorporates the DCTS, revealed the potential of
this dual-taxation approach to discourage fossil energy
reliance while promoting renewable energy adoption.
The mechanism not only improved market dynamics
by reallocating costs to reflect environmental impacts
but also contributed to a carbon-neutral energy trading
framework. The research highlights the versatility and
effectiveness of combining economic incentives with
carbon taxation in P2P markets, illustrating a path
toward sustainable energy solutions. The DCTS effec-
tively shifted the economic advantage toward renewable
energy sellers, reduced the overall trading of fossil-
based energy, and reallocated carbon tax revenues to
offset emissions. These findings reinforce the potential
for energy markets to balance financial objectives with
ecological imperatives.

Future work will expand upon this framework by
incorporating a comparative analysis between the MMM
and BLO-TQSM algorithms using Monte Carlo sim-
ulations (MCS) with a normal distribution to model
diverse market scenarios. This extension will account
for variability in participant behavior, energy prices,
and quantities, providing a more realistic simulation
of decentralized energy markets. Additionally, the
development of a probabilistic bi-level optimization al-
gorithm (PBLO-TQSM) will enable the robust evaluation
of trading performance under uncertain and dynamic
conditions. This next step will ensure the algorithm’s
adaptability and scalability in optimizing trading volume,
surplus, and environmental outcomes across varying
market environments, further advancing the transition
to sustainable energy systems.
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