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ABSTRACT

Currently, electric power transmission systems are
operating at maximum loading capacities, frequently
operating near their stability thresholds with minimal
security margins. In such scenarios, monitoring of
important lines for a particular loading level has become
a crucial factor in ensuring the efficient operation of
contemporary power systems. Thus, precisely assess-
ing reliability for different line outage conditions is
an important task for a power engineer. This paper
concentrates on presenting the most recent machine
learning (ML) techniques, like gradient boosting (GB),
K- Nearest Neighbour (KNN), and linear regression (LR),
utilized to determine the reliability index for different
outage conditions. Out of the 3 ML techniques, GB
demonstrated the best performance with an R_2 score of
0.9309, a mean absolute error (MAE) of 0.2503, a mean
squared error (MSE) of 0.1497, and a root mean squared
error (RMSE) of 0.3869.

Keywords: Power system reliability, Line outage,
Machine learning, Gradient boosting

1. INTRODUCTION

In power system domains, the variety and quantity
of failures are increasing rapidly due to emerging tech-
nologies, renewable source integration complexity, and
component downsizing. For this reason, in order to
satisfy client requirements, design engineers are giving
more attention to the analysis of functional performance
as well as the reliability, availability, maintainability, and
safety of power system components. Once the system
reliability analysis has been done, the designers can
determine which component of the system is the least
reliable in order to increase the uniformity of the system
as a whole.

In this respect the conventional model techniques are
highly computational and might not be able to satisfy
the needs of real-time applications. They are based
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on the fundamental mathematical reliability analysis
of a power system. So, in order to enable online
decision-making, researchers have moved to machine
learning (ML) approaches. With sufficient training,
a data-based model may generate correct predictions
from measurements it hasn’t been exposed to previously,
which is the generalization ability of the ML technique.

Balli Reddy et al. [1] employed a probabilistic
technique, based on probability theory, to evaluate
reliability indices by taking into account the likelihood
of an event occurring for a power network. Hu, Bo,
et al. [2] proposed the k-means algorithm to expedite
the reliability assessment process for an uncertain price-
based demand response model. Teixeira et al. [3] used
the hybrid reliability indices by means of sequential
Monte Carlo simulation, which serve as the foundation
for the power system’s performance assessment. Li et al.
[4] proposed a sequential Monte Carlo simulation-based
approach intended for assessing the reliability of energy
supply.

Adinolfi et al. [5] suggested a planning tool for
overhead distribution line reliability assessment and
congestion predictions. A wind power generation
system’s stochastic production simulation and reliability
analysis were conducted using the stochastic simulation
algorithm by Liu et al. [6]. A multi-situation risk-
oriented clustering method that takes renewable energy
into account was anticipated by Yang et al. [7]. Prajapati
et al. [8] examines quantifiable effects of energy storage
system ability on power system network reliability and
congestion relief. Li et al. [9] examines the dependability
of large-scale grid-connected battery energy storage
systems and how it affects power networks’ overall
reliability while taking battery deterioration and thermal
runaway propagation into account. David C. Yu et al.
[10] showed an approach of Bayesian networks to the
problem of reliability calculation. G. C. Oliveira et al.
[11] explained a model used for multi-area generation
system reliability evaluation. R. N. Allan et al. [12]
summarized a few of the constraints that presently occur
in the generation data. Hou K et al. [13] showed an
approach of an effectual reliability assessment scheme
aimed at several energy systems built on shadow price.
D. Urgun, C. Singh et al. [14] present an algorithm
that provides an efficient method for gathering training
samples and training convolutional neural networks
to calculate power system reliability indices based on
deviations in system parameters. Yarramsetty, C., et
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al. [15] demonstrated an approach using deep learning
& Monte Carlo simulation to improve the reliability
evaluation of composite power systems. This method
addresses the computational challenges of recurring
optimal power flow solutions and reliability assessments
in large integrated power grids, as highlighted by Gayatri
S. Palit et al. [16].

Transmission lines are a vital component of the power
grid, linking generation facilities to distribution systems
and end users. A failure in a key transmission line
can result in serious consequences, including power flow
disruptions, overloading of neighboring lines, voltage
instability, cascading failures, and even widespread
blackouts. The ML model introduced in this study
provides improved predictions for critical transmission
line outages. Specifically, it delivers more accurate
assessments of various reliability indices such as average
customer curtailment index (ACCI), average energy not
supplied (AENS), interruption energy assessment rate
(IEAR), average service availability index (ASAI), average
service unavailability index (ASUI), customer average
interruption duration index (CAIDI), system expected
energy not supplied (EENS), system average interruption
duration index (SAIDI), and system average interruption
frequency index (SAIFI) for both single and multiple
transmission line failures.

Following the literature review in Section 1, Sec-
tion 2 outlines the fundamental theoretical concepts
and various reliability indices. Section 3 details the
core framework of the proposed model along with an
overview of the ML techniques utilized in this study.
Section 4 introduces the different hierarchical ML models
and explains the processing of utility data. To identify
the most robust model among the three algorithms and
performance evaluation. Finally, it summarizes the key
findings and concludes the paper.

2. POWER SYSTEM RELIABILITY

Power system reliability is a synonym for demon-
stration of quality and consistency. Power systems are
vulnerable to flaws such as human error and lightning,
as well as system abnormalities such as control mistakes,
protection system failures, and communication system
failures. Even though most modern systems have a
number of protection mechanisms in place to help them
prevent unforeseen circumstances and power outages,
emergencies and malfunctions still happen to power
systems. Ensuring power reliability is crucial for both
design and operation. Therefore, reliability analysis
is a crucial aspect in every stage of power system
planning, design, & operation. The possible catastrophes
and effects of transmission line failures are identified,
examined, and assessed in a transmission line risk
reliability evaluation. It can support the transmission
system operator in bettering emergency response plans,
allocating resources optimally, and setting priorities
for maintenance tasks. The following conventional
reliability indices are presently used for power system

analysis: Let us assume that rt = restoration time; Ni = the
total number of users interrupted; NT = total number of
customers served; T is the time period under study state;
Ci is the cost associated with interruption i; Ei energy is
not supplied during interruption i.

2.1 Customer Average Interruption Duration Index

CAIDI is a useful tool for both utility companies and
regulatory authorities to assess the reliability and quality
of electricity distribution services, driving continuous
improvement efforts to better serve consumers and
ensure critical infrastructure resilience.

Y Duration of Interruptions
Number of Customers Affected

CAIDI =

X N;
CAIDI = L
N

hrs./Customer Interruptions (1)

2.2 System Average Interruption Duration Index

The SAIDI is a critical metric that helps utility compa-
nies and regulatory authorities gauge the reliability and
quality of electricity distribution services. By monitoring
SAIDI values and taking proactive measures to improve
system performance, utilities can enhance customer
satisfaction and contribute to the overall resilience of the
power grid.

Y Duration of Interruptions

SAIDI =

Total Number of Customers Served

X N;
A = 2/ X Ni

XNy

hrs./Customer.yr. (2)

2.3 System Average Interruption Frequency Index

It is an important indicator for utility companies
and regulatory organizations assessing the reliability
and performance of electricity distribution systems. By
monitoring SAIFI values and implementing efforts to
reduce interruption frequency, utilities can increase
customer happiness while also contributing to the overall
resilience of the power grid. It is calculated as

Y Number of Interruptions

SAIFI =

Total Number of Customers Served

XN

SATFI = &L
X Ny

f./Customer.yr. (3)

2.4 Average Service Availability Index

The ASAI remains a crucial metric that helps orga-
nizations assess the availability and reliability of their
services. By monitoring ASAI values and implementing
measures to enhance service availability, organizations
can strengthen customer relationships and maintain a
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competitive edge in the marketplace.

Y Available Time
ASAl = — -
Total time in period
X N;

asar= 1 |2 X Ni] by 4)

Y NpxT
ASAI = [8760 — SAIDI]

8760

2.5 Average Service Unavailability Index

A crucial indicator for evaluating the dependability
and resilience of services offered by businesses in a range
of sectors is the ASUL It is a quantitative measure of the
average length and frequency of service disruptions or
unavailability over a certain period of time, as opposed
to the ASAI which quantifies the percentage of time a
service is available.

Y Service Unavailable

ASUI = — p
Total time in period

ASUI =1 — ASAI

r, X N;
ASUI:L
Y NpXT

2.6 System Expected Energy Not Supplied

It is a fundamental metric that helps utility companies
and regulatory authorities assess the reliability and
performance of energy delivery systems. By quantifying
the estimated energy not supplied, organizations can
make informed decisions to enhance service reliability,
minimize disruptions, and meet the energy needs of
customers effectively.

EENS = ) EENS;, MW hour/year (6)

2.7 Average Energy Not Supplied

AENS is a significant performance indicator in the
context of electrical power systems, particularly in
evaluating the reliability and robustness of power supply
networks. AENS quantifies the amount of electrical
energy that is not delivered to consumers due to outages
and interruptions in the power supply over a specific
period.

Number of Average Unsupplied Ener
AENS = g PP gy

Total Number of Served Customers
> EENS;

AENS = &1
X Ny

MW hour/Customer.year (7)

2.8 Average Customer Curtailment Index

The ACCI is a critical metric for evaluating the
reliability and quality of power supply from the per-
spective of individual customers. By monitoring and
managing ACCI, utility companies can enhance service
reliability, improve customer satisfaction, and comply

with regulatory standards.

Total Number of Unsupplied Energy

ACCI =
Total Number of Interrupted Customers
Y ENS,
ACCI = kVA / Customer (8)
XN

2.9 Interruption Energy Assessment Rate

The Interruption Energy Assessment Rate (IEAR) is
a critical metric used in the energy sector to quantify
the economic impact of power interruptions on both
utility companies and their customers. It provides a
standardized way to evaluate the financial consequences
of energy not supplied due to outages, facilitating
better decision-making in power system planning and
reliability improvement efforts.

2 (Cix Ep)
2E

IEAR = Rs. / kW / hour (9)

3. ML APPLIED TO RELIABILITY ANALYSIS

The goal of the present study is to build up an ML
model to determine the most essential lines in the power
network through the reliability index by line outage
condition for a particular system.

Fig. 1 exhibits the block diagram of the intended
working architecture. In the first stage, the input
features data set was separated into training & testing
data sets. Before the first stage, the input data set
was pre-processed for duplication or missing values. In
the second stage, the training data was given to ML
algorithms to train the models. In the third stage, based
on the training data, the validation of ML algorithms
was tested using the testing data. In the final stage,
performance evaluation of different ML algorithms is
evaluated using the R_2 score, MAE, MSE, and RMSE.

3.1 Gradient Boosting

Breiman [17] first described the gradient boosting
(GB) technique, highlighting its function as an opti-
mization method on a suitable loss function. Friedman
later expanded on this concept, developing an advanced
variant of GB [18]. In this technique, several simple
methods known as the “weak learner” are combined,
and an improved accuracy prediction model known as
the “strong learner” is obtained. The GB technique is a
numerical optimization methodology that discovers an
additive model for loss function minimization. This algo-
rithm iteratively adds one more decision tree to optimally
reduce the loss function. Basically, first one decision tree
is added, and then in each step more decision trees are
added to minimize the loss function. Since GB iteratively
corrects the errors of previous models, it shares the main
advantage of other boosting algorithms: the ability to
learn complex patterns from input data. However, this
technique can lead to overfitting and model noise if the
input data is noisy [19], [20]. It is particularly effective
for applications involving small datasets [21].



4 ECTI TRANSACTIONS ON ELECTRICAL ENGINEERING, ELECTRONICS, AND COMMUNICATIONS VOL.23, NO.3 OCTOBER 2025

»| Training Data |— Q
LR Performance
Generated I Evalution
Input Features P GB ¢
1. R2 Score
»| Testing Data |— KNN 2. MAE
N—" 3. MSE
ML Models 4. RMSE

Fig. 1: Flowchart of Predict Essential Transmission Line Outage by ML Algorithm.
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Fig. 2: Reliability Test of IEEE 24 Bus.
3.2 K- Nearest Neighbour into a predetermined quantity of clusters (k clusters) in a

straightforward manner. The K-means algorithm stays
particularly useful when labeled data is not presented
[22]. Additionally, the general method of transforming

According to [23], K-means is among the easiest
unsupervised learning algorithms for tackling clustering
problems. This algorithm classifies a particular data set
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Table 1: Sample of Training Data Set.
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rough heuristics into highly accurate prediction rules Table 2: Result analysis of ML algorithms.
involves the use of a "weak” learning algorithm. This
algorithm is capable of constantly identifying classifiers Parameter/| R 2
("rules of thumb”) that perform marginally more reliably Algorithm | SCORE MAE | MSE | RMSE
than ranc%om, with a.precision. of approxima.ltely 55%. GB 0.9309 | 025031 0.1497| 0.3869
By applying a boosting algorithm to sufficient data,
it is possible to construct a single classifier with a LR 0.8036 | 0.44 | 0.4259| 0.6526
significantly higher accuracy, potentially reaching 99%
[24]. KNN 0.7829 | 0.4867| 0.4708 | 0.6861

3.3 Linear Regression

LR is one of the easiest and most commonly used
approaches in supervised learning. It is principally
applied to regression problems relating to continuous
data. The core objective of this algorithm is to establish
a linear association amongst the input features and the
output target based on existing data. It does so by
fitting a straight line that best represents the relationship
between these variables. If the data exhibits a linear trend
between the input features and the output target value,
LR becomes a suitable choice for modelling. The strength
of this method lies in its interpretability and ease of
application. It adopts that changes in the input variables
lead to proportional changes in the output. As aresult, LR
is most effective for problems where a linear correlation
exists between the dependent and independent variables
[25].

4. SIMULATIONS AND RESULT ANALYSIS

In this context, the IEEE 24 bus system is considered
a test system. The ETAP software was used to assist
with the network modeling. As illustrated in Fig. 2, the
transmission system consists of 24 load/generation buses
with 38 lines and transformers. The transmission line has
two voltage levels: 230 kV and 138 kV. Figure 2 displays
the 230 kV system with 230 kV / 138 kV connecting
stations in buses 11, 12, & 24, while the lower part of

Fig. 2 displays the 138 kV system with 138 kV / 230 kV
connecting stations in buses 3, 9, & 10. There are 38
lines in the system, and two buses connect them via a
single sectionalizing switch. By switching OFF, an offline
outage scenario can be performed in the network. In
these different outage conditions, the different reliability
indices are observed, and the dataset is formed. The
dataset contains the line connections information (line
outages), system losses (active & reactive power), as well
as the corresponding different reliability index. Three
distinct algorithms were employed. LR, GB, & the KNN
Algorithm are three of them.

A small amount of sample dataset, which is prepared
for training the ML model, is illustrated in Table 1. Table
1 presents the power loss & reliability indices for various
line outage scenarios. The IEEE 24-bus system comprises
thirty-eight lines. For instance I, where no line outage is
considered, the power loss & reliability index is evaluated
via ETAP software. In Cases II to IV, three distinct line
outage circumstances are examined, & the corresponding
real, reactive loss & reliability index are noted.

4.1 Evaluation of ML models

For the MSE GB algorithm, given the minimum value
0f0.1497, the performance of LR in terms of MSE reported
0.4259. The KNN algorithm reported 0.4708 for MSE. On
the other hand, the RMSE value reported the least value
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Fig. 3: Performance evaluation of three ML models.

of 0.3869 for GB, 0.6526 for LR, and 0.6861 for KNN. The
following Fig. 3 shows the performance evaluation of the
three algorithms for different parameters.

Table 2 reported the performance evaluation of 3
different types of ML algorithms. The GB algorithm
performance was reported to be the best out of 3 different
algorithms in terms of R_2 score, with 0.9309. 0.8036
reported the R_2 score for the LR algorithm. The
performance of KNN with respect to the R_2 score was
reported as 0.7829. The value of MAE reported 0.2503,
0.44, and 0.4867 for GB, LR, and KNN, respectively, out
of all the values, GB is given the lowest value of 0.2503.
Figure 3 represents the comparison of performance of 3
ML algorithms.

Unlike LR, which assumes linearity and struggles with
outliers, GB uses robust loss functions and regularization
to handle noise and prevent overfitting. Furthermore,
Compared to KNN, which is computationally expensive
and sensitive to irrelevant features, GB offers scalability,
native categorical feature support, and implicit feature
selection. It can manage the high-dimensional datasets
and imbalanced data, making it ideal for complex analyt-
ical tasks where accuracy is prioritized over interpretabil-
ity. The ideal value of the R_2 score is 1, whereas MAE,
MSE, and RMSE are 0. GB outperforms LR and KNN due
to its ensemble method, integrating weak decision trees
to capture complex, non-linear relationships without
manual feature engineering.

5. CONCLUSION

Either technical failure or natural disaster-related line
failures are erratic and require more maintenance. Thus,
this research suggests a method for assessing the reliabil-
ity of transmission lines that takes into account the most
important line outage, which leads to severe impact on
the entire network. This approach develops an ML-based
reliability model that takes into account the different
line outage conditions that will affect the system. The
approach successfully evaluates the reliability of a power
system under the effects of outage conditions due to
disaster or any technical reason, as demonstrated by the

findings. The evaluation metrics indicate that the R_2
score is close to the ideal value, suggesting that the model
explains most of the variance in the target variable. The
MAE value reflects high prediction accuracy, while the
MSE signifies strong model performance. Additionally,
the RMSE value indicates a good model fit. These results
show that the GB model performs better compared to the
other two models. This model may be utilized for future
planning purposes or transmission line risk mitigation
for power systems.
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