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ABSTRACT

Reliable knowledge of the stator flux vector is essential
for stator flux vector control of a doubly-fed induction
motor (DFIM); therefore, reliable flux estimation is
required. Several flux observers have been proposed
while the Kalman filter is well known as an optimal
state estimator for linear systems. In this paper, a
Kalman-filter-based stator flux observer is developed
and combined with a double second-order generalized
integrator phase-locked loop (DSOGI-PLL) to estimate
the flux angular speed and position under non-ideal grid
conditions. This work is validated through computer
simulation in PLECS software. The CMSIS-DSP library
is adopted to perform matrix operations of the Kalman
filter. Simulations were performed under different
operating conditions, demonstrating that the proposed
approach successfully estimates the stator flux vector of
the DFIM.
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1. INTRODUCTION

Vector control is a high-performance control for
electric machines. Reference frame estimation is manda-
tory to achieve the task. In the case of an induction
machine, the rotor-flux vector is generally selected as
a reference vector to create the reference frame [1-
6]. However, in the case of a doubly-fed induction
machine, the stator-flux linkage is generally used as the
reference vector for creating the reference frame [1-5,
11, 12]. Alternatively, in the application as a doubly-
fed induction generator (DFIG), the grid-voltage or grid-
flux reference frame is generally applied for active-and
reactive-power control [12]. However, the stator-flux
reference frame is generally applied to the application as
a doubly-fed induction motor (DFIM) [13-17].

Several methods, called flux observers, have been pro-
posed to estimate the rotor-flux vector for vector control
of induction machines. The flux observers applied to the
induction machine can also be applied to the DFIM. They
can be classified as open-loop and closed-loop observers.
The principal difference between open-loop and closed-
loop observers is that the estimated states of closed-loop
observers are corrected by corrective feedback included.
For this process, the measured outputs are compared to
the outputs calculated from the estimated states. The
error results are fed back to minimize the estimation
errors.

The voltage model, current model, the full–order for-
ward observer and the cancellation method are classified
as open-loop observers [1-5]. The voltage model has a
simple structure and is affected by the stator parameters
only. However, due to the integration of the stator
back-EMF, it does suffer from a small dc offset [8, 10].
Although this problem can simply be solved by using
a low cut-off frequency (1-5 Hz) low-pass filter, some
problems about phase-shift and gain still exist [10]. The
current model is another simple method, but it is highly
dependent on the parameters. The full-order forward
observer can estimate more state variables apart from
the stator-flux linkage, depending on the DFIM dynamic
model. This method provides full DFIM dynamics, but,
due to open-loop structure, the estimation errors can
accumulate gradually. The cancellation method provides
instantaneous response, but it can amplify noise due to
its derivative structure.

Luenberger observer, MRAS observer, sliding-mode
observer and the Kalman-filter family are classified
as closed-loop observers. They have been applied to
estimate not only the rotor flux but also the rotor speed
and position for sensorless control, providing superior
estimation results compare with those of open-loop
observers [7-10]. The Luenberger observer is computa-
tionally inexpensive due to simple matrix manipulation
[18]. It also provides smooth estimated signals without
chattering, as presented in the case of the sliding-mode
observer. However, its parameter sensitivity can degrade
its accuracy. The MRAS observer requires only two
open-loop models, the reference and adaptive models,

and a PI controller to complete flux estimation. It is
best suited for small-size microcontrollers. However,
if the reference model is integrator-based, as in the
case of the classical voltage model, a modification
is required [19-21]. Parameter mismatch, especially
magnetizing inductance and stator inductance, affects
the performance of this observer [22-25]. PI-controller
tuning is one of the drawbacks of the MRAS observer.
Poorly tuning controller gains can slow convergence,
requiring adaptive tuning or an alternative method
based on the recursive-least-square technique to solve
this problem [25]. The sliding-mode observer provides
fast dynamic response. It is also robust to parameter
drift. However, as reported in some papers, there is
high frequency oscillation, called “chattering”, results in
torque pulsation, so the smoothing filter or extensive
chattering suppression technique are required [26-28].
There must be a trade-off between smoothness and
bandwidth. All these observers suffer frommeasurement
noise, so there must be some modification to mitigate the
noise. Conversely, the Kalman filter incorporates noise
in the model, the measurement noise is suppressed by
the Kalman gain in its algorithm.

The Kalman filter is an optimal state estimator [29]
for linear systems. The nonlinear version, called the
extended Kalman filter (EKF), is used for parameter
estimation and speed-sensorless control [2-5, 30-32].
However, in this paper, only the standard Kalman filter
is adequate because parameters drift is not considered,
and the DFIM model consisting of four state variables
is applied to estimate the stator-flux vector. A major
drawback of the Kalman filter is its high computational
burden, largely caused by the repeated matrix manipu-
lation, especially matrix inversion, required at each step
[2-5]. It was previously not suitable for the low-cost low
performance drive system. However, with advancements
in semiconductor technology, this drawback has been
mitigated.

This paper proposes the stator-flux-vector estimation
scheme based on a Kalman filter integrated with a
dual second-order generalized integrator phase-locked
loop (DSOGI-PLL). The Kalman filter estimates the d-
and q-axis stator-flux components in the stator-flux
reference frame. Due to non-ideal grid voltage, especially
unbalanced voltage, the estimated stator flux is distorted,
which consequently distorts the estimated stator-flux
speed and position. Therefore, the DSOGI-PLL is applied
to estimate the flux speed and position for the positive-
sequence stator-flux component. Consequently, the
results are smoothed, as shown in the simulation results.

The key contribution of this paper is to validate
the stator-flux estimation scheme using a Kalman filter
integrated with a DSOGI-PLL via PLECS simulation
software. The stator-flux estimation and vector control
modules are coded in C-Script block to emulate the code
which will be applied to the ARM-based microcontroller
system.

This paper begins with a discussion of a mathematical
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model of a DFIM and the concept of the Kalman filter
in Section 2. Section 3 focuses on the estimated
stator-flux vector based on a Kalman filter combined
with a DSOGI-PLL. The stator-flux estimation system is
validated through simulation under different operating
conditions using PLECS software, as discussed in Section
4. The simulation results are also presented and discussed
in this section. Finally, the conclusion is presented in
Section 5.

2. MATHEMATICAL MODEL OF STATOR FLUX
VECTOR ESTIMATION FOR A DOUBLY-FED
INDUCTION MOTOR
The1𝑠𝑡 order differential equations of the rotor current

and stator flux vectors for a DFIM under stator flux vector
control are shown in equations (1) and (2) respectively,

𝜎𝜏𝑟
𝑑𝑖⃑′𝑒

𝑟
𝑑𝑡 + 𝑖⃑′𝑒

𝑟

= ⃖⃑𝑣′𝑒
𝑟

𝑅𝑟
′ − 𝑗𝜔𝑠𝑙𝜎𝜏𝑟 𝑖⃑

′𝑒
𝑟 − (1 − 𝜎)𝜏𝑟

𝐿𝑚 (
𝑑 ⃖⃑𝜆𝑒

𝑠
𝑑𝑡 + 𝑗𝜔𝑠𝑙 ⃖⃑𝜆𝑒

𝑠)
,

(1)

𝜏𝑠
𝑑 ⃖⃑𝜆𝑒

𝑠
𝑑𝑡 + ⃖⃑𝜆𝑒

𝑠 = 𝜏𝑠 ⃖⃑𝑣𝑒
𝑠 + 𝐿𝑚 𝑖⃑′𝑒

𝑟 − 𝑗𝜔𝑒𝜏𝑠 ⃖⃑𝜆𝑒
𝑠, (2)

while 𝜎 = 1 − 𝐿2
𝑚

𝐿𝑠𝐿′
𝑟
, and 𝜔𝑠𝑙 = 𝜔𝑒 − 𝜔𝑟.

The electromagnetic torque and mechanical dynamic
equations are presented in equations (3) and (4) respec-
tively,

𝑇𝑒 = 𝑃
2

3
2

𝐿𝑚
𝐿𝑠 (𝜆𝑒

𝑠𝑞𝑖′𝑒
𝑟𝑑 − 𝜆𝑒

𝑠𝑑 𝑖′𝑒
𝑟𝑞) , (3)

𝜏𝑚
𝑑𝜔𝑟𝑚

𝑑𝑡 + 𝜔𝑟𝑚 = 𝑇𝑒 − 𝑇𝐿. (4)

The stator flux linkage can be expressed in the form of
the product of the three-phase magnetizing inductance
and the stator magnetizing current as shown in equation
(5),

⃖⃑𝜆𝑒
𝑠 = 𝐿𝑚 𝑖⃑𝑒

𝑚𝑠. (5)

Since stator flux vector control is performed in the
stator flux reference frame, only the d-axis component of
the stator flux linkage, which is equal to the amplitude
of the stator flux vector, exists, so the equation of
the electromagnetic torque can be derived as shown in
equation (6),

𝑇𝑒 = −𝑃
2

3
2

𝐿2
𝑚

𝐿𝑠
|𝑖⃑𝑒

𝑚𝑠| 𝑖′𝑒
𝑟𝑞 . (6)

The control diagram of the DFIM using the Kalman
filter for stator flux estimation is shown in Fig.1.

As can be seen in Fig. 1, the PI controllers are
used to control the rotor circuit of the DFIM. The feed-
forward compensation method is applied to cancel the
cross-coupling voltage appearing in equation (1). The

compensating voltages in each axis are depicted in
equations (7) and (8) respectively,

𝑣𝑐𝑜𝑚𝑝_𝑑 = −𝜔𝑠𝑙𝜎𝜏𝑟𝑖
′𝑒
𝑟𝑞 + (1 − 𝜎)𝜏𝑟

𝑑 | 𝑖⃑𝑒
𝑚𝑠|

𝑑𝑡 , (7)

𝑣𝑐𝑜𝑚𝑝_𝑞 = 𝜔𝑠𝑙𝜎𝜏𝑟𝑖
′𝑒
𝑟𝑑 + 𝜔𝑠𝑙(1 − 𝜎)𝜏𝑟 | 𝑖⃑𝑒

𝑚𝑠| . (8)

Therefore, the command voltages which are then
transformed back to three-phase commands to generate
PWM signals are as follows,

𝑣𝑒″
𝑟𝑑 = 𝑣𝑒′

𝑟𝑑 + 𝑣𝑐𝑜𝑚𝑝_𝑑 , (9)

𝑣𝑒″
𝑟𝑞 = 𝑣𝑒′

𝑟𝑞 + 𝑣𝑐𝑜𝑚𝑝_𝑞 . (10)

These command voltages are used as the input vari-
ables for the stator flux vector estimation.

2.1 Mathematical Model of the DFIM

Stator flux vector estimation using the Kalman filter
requires a mathematical model in the state-space form.
However, the 5𝑡ℎ order model of the DFIM is nonlinear
due to the multiplication of the state variables in the
equation, so the general form can be described as shown
in equation (11),

𝑥̇ = 𝑓(𝑥, 𝑢, 𝑤, 𝑡). (11)

The 1𝑠𝑡 order differential equations of each state in the
stator flux reference frame are shown in equations (12)-
(16). The input variables of the electrical equations are
the stator voltage and rotor voltage in their own reference
frames. The equation of the electrical rotor speed
described in equation (16) is derived from equations (3)
and (4). It should be noted that there are multiplications
of all first four state variables, appearing in the first two
terms on the right-hand side of equation (16), resulting
in a nonlinear state equation.

𝑑𝑖′𝑒
𝑟𝑑

𝑑𝑡 = − (
1

𝜎𝜏𝑟
+ 1 − 𝜎

𝜎𝜏𝑠 ) 𝑖′𝑒
𝑟𝑑 + (𝜔𝑒 − 𝜔𝑟)𝑖

′𝑒
𝑟𝑞

+ (1 − 𝜎)
𝜎𝜏𝑠𝐿𝑚

𝜆𝑒
𝑠𝑑 − 𝜔𝑟

(1 − 𝜎)
𝜎𝐿𝑚

𝜆𝑒
𝑠𝑞

− (1 − 𝜎)
𝜎𝐿𝑚

cos 𝜃𝑒𝑣𝑠
𝑠𝑑 − (1 − 𝜎)

𝜎𝐿𝑚
sin 𝜃𝑒𝑣𝑠

𝑠𝑞

+ 1
𝜎𝐿′

𝑟
cos(𝜃𝑒 − 𝜃𝑟)𝑣

′𝑟
𝑟𝑑

+ 1
𝜎𝐿′

𝑟
sin(𝜃𝑒 − 𝜃𝑟)𝑣

′𝑟
𝑟𝑞 , (12)
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Fig. 1: Control Diagram of the DFIM using the Kalman Filter with DSOGI-PLL for Stator Flux Vector Estimation.

𝑑𝑖′𝑒
𝑟𝑞

𝑑𝑡 = −(𝜔𝑒 − 𝜔𝑟)𝑖
′𝑒
𝑟𝑑 − (

1
𝜎𝜏𝑟

+ 1 − 𝜎
𝜎𝜏𝑠 ) 𝑖′𝑒

𝑟𝑞

+ 𝜔𝑟
(1 − 𝜎)

𝜎𝐿𝑚
𝜆𝑒

𝑠𝑑 + (1 − 𝜎)
𝜎𝜏𝑠𝐿𝑚

𝜆𝑒
𝑠𝑞

+ (1 − 𝜎)
𝜎𝐿𝑚

sin 𝜃𝑒𝑣𝑠
𝑠𝑑 − (1 − 𝜎)

𝜎𝐿𝑚
cos 𝜃𝑒𝑣𝑠

𝑠𝑞

− 1
𝜎𝐿′

𝑟
sin(𝜃𝑒 − 𝜃𝑟)𝑣

′𝑟
𝑟𝑑

+ 1
𝜎𝐿′

𝑟
cos(𝜃𝑒 − 𝜃𝑟)𝑣

′𝑟
𝑟𝑞 , (13)

𝑑𝜆𝑒
𝑠𝑑

𝑑𝑡 = 𝐿𝑚
𝜏𝑠

𝑖′𝑒
𝑟𝑑 − 1

𝜏𝑠
𝜆𝑒

𝑠𝑑 + 𝜔𝑒𝜆𝑒
𝑠𝑞

+ cos 𝜃𝑒𝑣𝑠
𝑠𝑑 + sin 𝜃𝑒𝑣𝑠

𝑠𝑞 , (14)

𝑑𝜆𝑒
𝑠𝑞

𝑑𝑡 = 𝐿𝑚
𝜏𝑠

𝑖′𝑒
𝑟𝑞 − 𝜔𝑒𝜆𝑒

𝑠𝑑 − 1
𝜏𝑠

𝜆𝑒
𝑠𝑞

− sin 𝜃𝑒𝑣𝑠
𝑠𝑑 + cos 𝜃𝑒𝑣𝑠

𝑠𝑞 , (15)

𝑑𝜔𝑟
𝑑𝑡 = 3

2𝐽 (
𝑃
2 )

2 𝐿𝑚
𝐿𝑠

𝜆𝑒
𝑠𝑞𝑖′𝑒

𝑟𝑑

− 3
2𝐽 (

𝑃
2 )

2 𝐿𝑚
𝐿𝑠

𝜆𝑒
𝑠𝑑 𝑖′𝑒

𝑟𝑞

− 𝐵
𝐽 𝜔𝑟 − 𝑃

2𝐽 𝑇𝐿. (16)

Since the rotor speed and position signals are mea-
sured using an incremental encoder, and parameter vari-
ation due to either magnetic saturation or temperature

is neglected, the DFIM model is reduced to the 4𝑡ℎ order
model containing only electrical states such as 𝑖′𝑒

𝑟𝑑 , 𝑖′𝑒
𝑟𝑞 ,

𝜆𝑒
𝑠𝑑 , and 𝜆𝑒

𝑠𝑞 respectively. The DFIM model can be
represented by a linear-time-varying model as shown in
equation (17),

𝑥̇ = 𝐴(𝑡)𝑥(𝑡) + 𝐵(𝑡)𝑢(𝑡). (17)

Following this assumption, the linear observer is
sufficient to estimate the stator flux linkage vector
components, 𝜆𝑒

𝑠𝑑 , and 𝜆𝑒
𝑠𝑞 . Therefore, the standard

Kalman filter is suitable for this task, and the details are
discussed in the next sub-section.

2.2 Discrete-Time Kalman Filter
The Kalman filter is a recursive state estimator which

can be used for estimating the internal states of the
system. It can provide the optimal state estimate
although the system and measurements are noisy. This
algorithm consists of two steps: prediction and update.
The prediction step is to predict the states using the
model. This step is called “Time Update”. The predicted
states are then corrected by comparing them to the
measurement data using the Kalman gain. This step is
called “Measurement Update”. The dynamic system can
be described as follows,

𝑥𝑘 = 𝐴𝑘−1𝑥𝑘−1 + 𝐵𝑘−1𝑢𝑘−1 + 𝑤𝑘−1
𝑦𝑘 = 𝐶𝑘𝑥𝑘 + 𝑣𝑘

𝐸 [𝑤𝑘𝑤𝑇
𝑗 ] = 𝑄𝑘𝛿𝑘−𝑗

𝐸 [𝑣𝑘𝑣𝑇
𝑗 ] = 𝑅𝑘𝛿𝑘−𝑗

𝐸 [𝑣𝑘𝑤𝑇
𝑗 ] = 0, (18)
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while 𝑤𝑘−1 is the process noise matrix and 𝑣𝑘 is the
measurement noise matrix. The process noise and
measurement noise are assumed to be uncorrelated as
described in 𝐸 [𝑣𝑘𝑤𝑇

𝑗 ] = 0.
An alternative form of the Kalman filter, called the

Extended Kalman Filter (EKF), is generally applied to
estimate the states as well as parameters in the cases of
nonlinear phenomena, for example, parameter drift due
to changes in the temperature and magnetic saturation is
considered. Additionally, speed-sensorless motor control
is an application that requires a nonlinear Kalman filter.
The EKF requires the online calculation of the Jacobians
of the nonlinear system matrix for the calculation of the
covariance matrix and Kalman gain. However, in the
case of the linear-time-varying system as discussed in
this paper, the Jacobians are identical to the system and
output matrices. Therefore, the Kalman filter is sufficient
for this application. The algorithm can be explained as
follows.

1. Initialization:
The algorithm starts from initialization for the state

and noise covariance as depicted in equation (19),
𝑥̂+

0 = 𝐸(𝑥0)

𝑃 +
0 = 𝐸 [(𝑥0 − 𝑥̂+

0 )(𝑥0 − 𝑥̂+
0 )𝑇

] . (19)

The 𝑥̂+
0 and 𝑃 +

0 are the means of the initialized state
and noise covariance.

2. Time update:
Once the state and covariance are initialized, the

present state and covariance are first predicted in this
step. The prediction is based on the model of the system,
the state-transition matrix and input matrix. The results
of this step are 𝑥̂−

𝑘 and𝑃 −
𝑘 which are called a priori state

estimate and a priori covariance. The process of this step
is depicted in equation (20),

𝑥̂−
𝑘 = 𝐴𝑘−1𝑥̂+

𝑘−1 + 𝐵𝑘−1𝑢𝑘−1

𝑃 −
𝑘 = 𝐴𝑘−1𝑃 +

𝑘−1𝐴𝑇
𝑘−1 + 𝑄𝑘−1. (20)

3. Measurement update:
In this step, the predicted states are corrected by the

measurement output. The priori covariance is used to
calculate the Kalman gain for the correction of the state
estimates. Calculation of the Kalman gain, covariance
and corrected state estimates is shown in equation (21),

𝐾𝑘 = 𝑃 −
𝑘 𝐶𝑇

𝑘 (𝐶𝑘𝑃 −
𝑘 𝐶𝑇

𝑘 + 𝑅𝑘)
−1

𝑥̂+
𝑘 = 𝑥̂−

𝑘 + 𝐾𝑘(𝑦𝑘 − 𝐶𝑘𝑥̂−
𝑘 )

𝑃 +
𝑘 = (𝐼 − 𝐾𝑘𝐶𝑘)𝑃 −

𝑘 (𝐼 − 𝐾𝑘𝐶𝑘)𝑇 + 𝐾𝑘𝑅𝑘𝐾𝑇
𝑘 . (21)

The state estimates and covariance 𝑥̂+
𝑘 and 𝑃 +

𝑘 are
called a posteriori state and a posteriori covariance
respectively. These values are then used for the time-
update step in the next sampling. All the processes can
be summarized in the flowchart shown in Fig. 2.

Fig. 2: A Flowchart of the Kalman-Filter Estimator.

3. STATOR FLUX VECTOR ESTIMATION USING
KALMAN FILTER
The stator flux vector estimation consists of the

process of estimating 𝜆𝑒
𝑠𝑑 , and 𝜆𝑒

𝑠𝑞 and estimating the flux
position and angular speed. The estimation of the dq
components is achieved by a discrete-time Kalman filter
while the flux position and angular speed estimation is
achieved by the DSOGI-PLL.

3.1 Kalman Filter Based Stator Flux Estimation
Since simulation and implementation are performed

in the discrete-time domain, it is necessary to discretize
the system before processing the estimation. The simple
method usually applied to the system is the 1𝑠𝑡 order
Taylor’s approximation. The approximate discrete value
is shown in equation (22),

𝑥̇ ≈ 𝑥𝑘 − 𝑥𝑘−1
𝑇𝑠

. (22)

An increase in both sampling frequency and order of
approximation helps improve approximation accuracy.
However, there must be a trade-off between the com-
putational burden and approximation accuracy. In this
research, the sampling frequency is 10 kHz which is high
enough for the 1𝑠𝑡 approximation as reported in [6]. The
discrete-state space equations for state estimation using
the discrete-time Kalman filter are depicted in equations
(23) and (24),

𝑥𝑘 = 𝐴𝑘−1𝑥𝑘−1 + 𝐵𝑘−1𝑢𝑘−1 + 𝑤𝑘−1 (23)

𝑦𝑘 = 𝐶𝑘𝑥𝑘 + 𝑣𝑘 (24)
The details of the state and input vectors as well as

the state and input transition matrices are depicted in
equations (25) – (28),

𝑥𝑘−1 = [𝑖′𝑒
𝑟𝑑,𝑘−1 𝑖′𝑒

𝑟𝑞,𝑘−1 𝜆𝑒
𝑠𝑑,𝑘−1 𝜆𝑒

𝑠𝑞,𝑘−1]
𝑇

(25)
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𝑢𝑘−1 = [𝑣𝑠
𝑠𝑑,𝑘−1 𝑣𝑠

𝑠𝑞,𝑘−1 𝑣′𝑟
𝑟𝑑,𝑘−1 𝑣′𝑟

𝑟𝑞,𝑘−1]
𝑇

(26)

𝐴𝑘−1 =
⎡
⎢
⎢
⎢
⎣

1 − 𝑎1 𝑎2 𝑎3 −𝑎4
−𝑎2 1 − 𝑎1 𝑎4 𝑎3
𝑎5 0 1 − 𝑎6 𝑎7
0 𝑎5 −𝑎7 1 − 𝑎6

⎤
⎥
⎥
⎥
⎦

(27)

𝐵𝑘−1 =
⎡
⎢
⎢
⎢
⎣

−𝑏1 −𝑏2 𝑏3 𝑏4
𝑏2 −𝑏1 −𝑏4 𝑏3
𝑏5 𝑏6 0 0

−𝑏6 𝑏5 0 0

⎤
⎥
⎥
⎥
⎦

(28)

while

𝑎1 = 𝑇𝑠 (
1

𝜎𝜏𝑟
+ 1 − 𝜎

𝜎𝜏𝑠 ) , 𝑎2 = 𝑇𝑠(𝜔𝑒 − 𝜔𝑟),

𝑎3 = 𝑇𝑠
(1 − 𝜎)
𝜎𝜏𝑠𝐿𝑚

, 𝑎4 = 𝑇𝑠𝜔𝑟
(1 − 𝜎)

𝜎𝐿𝑚
,

𝑎5 = 𝑇𝑠
𝐿𝑚
𝜏𝑠

, 𝑎6 = 𝑇𝑠
1
𝜏𝑠

,

𝑎7 = 𝑇𝑠𝜔𝑒,

𝑏1 = 𝑇𝑠
(1 − 𝜎)

𝜎𝐿𝑚
cos 𝜃𝑒, 𝑏2 = 𝑇𝑠

(1 − 𝜎)
𝜎𝐿𝑚

sin 𝜃𝑒,

𝑏3 = 𝑇𝑠
1

𝜎𝐿′
𝑟

cos(𝜃𝑒 − 𝜃𝑟),

𝑏4 = 𝑇𝑠
1

𝜎𝐿′
𝑟

sin(𝜃𝑒 − 𝜃𝑟),

𝑏5 = 𝑇𝑠 cos 𝜃𝑒, 𝑏6 = 𝑇𝑠 sin 𝜃𝑒.
Likewise, the output vector and output matrix are

shown in equations (29) and (30) respectively,

𝑦𝑘 = [𝑖′𝑟
𝑟𝑑,𝑘 𝑖′𝑟

𝑟𝑞,𝑘 𝑖𝑠
𝑠𝑑,𝑘 𝑖𝑠

𝑠𝑞,𝑘]
𝑇

(29)

𝐶𝑘 =
⎡
⎢
⎢
⎢
⎣

𝑐1 −𝑐2 0 0
𝑐2 𝑐1 0 0

−𝑐3 𝑐4 𝑐5 −𝑐6
−𝑐4 −𝑐3 𝑐6 𝑐5

⎤
⎥
⎥
⎥
⎦

(30)

while
𝑐1 = cos(𝜃𝑒 − 𝜃𝑟), 𝑐2 = sin(𝜃𝑒 − 𝜃𝑟),

𝑐3 = 𝐿𝑚
𝐿𝑠

cos 𝜃𝑒, 𝑐4 = 𝐿𝑚
𝐿𝑠

sin 𝜃𝑒,

𝑐5 = 1
𝐿𝑠

cos 𝜃𝑒, 𝑐6 = 1
𝐿𝑠

sin 𝜃𝑒.

In this research, the rotor input voltages are from the
PI controller command as depicted in equations (9) and
(10). Since only the 𝑖′𝑒

𝑟𝑑 , 𝑖′𝑒
𝑟𝑞 , 𝜆𝑒

𝑠𝑑 , and 𝜆𝑒
𝑠𝑞 are estimated,

only the 4 × 4 matrix consisting of electrical states
is adequate. The Jacobians of both state and output
transition matrices are identical to the state and output
transition matrices themselves. Moreover, the effect of

Fig. 3: Block Diagram of the DQ-PLL.

parameter variation is not considered. Therefore, it is not
necessary to use the extended Kalman filter for this task.

The 𝑄 and 𝑅 matrices are tuned to achieve the
satisfactory results in both transient and steady states.
The values of 𝑄 and 𝑅 are as follows,

𝑄 = 𝑑𝑖𝑎𝑔 ([ 1.37𝑒−1 1.37𝑒−1 1.04𝑒−2 1.04𝑒−2 ]) ,

𝑅 = 𝑑𝑖𝑎𝑔 ([ 1.37𝑒−2 1.37𝑒−2 1.37𝑒−2 1.37𝑒−2 ]) .
The diagonal elements of 𝑄 are set to 1 % of the base

value of the state while the diagonal elements of 𝑅 are
set to 0.1 % of the base value of the input variables. The
initial value of 𝑃 is 𝑃 = 𝑑𝑖𝑎𝑔 ([ 1 1 1 1 ]).

3.2 A DSOGI-PLL for Position and Angular Speed
Estimation

Once the Kalman filter process is finished, the stator
flux 𝜆𝑒

𝑠𝑑 and 𝜆𝑒
𝑠𝑞 are transformed into the stationary

reference frame fixed to the stator providing 𝜆𝑠
𝑠𝑑 and 𝜆𝑠

𝑠𝑞
respectively to estimate the angular speed and position
of the stator flux vector. In the case of an ideal grid
voltage, the dq phase-locked loop (dq-PLL), which is
generally used for grid synchronization of the grid-
connected three-phase converters, is applied to the stator
flux linkage vector as shown in Fig. 3.

The estimated angular speed and position of the
stator flux vector, using the dq-PLL, become distorted if
the grid disturbances, for example harmonic distortion
and unbalanced grid voltage, do occur. The effect
of harmonic voltage can be mitigated by reducing the
bandwidth of the dq-PLL [33]. However, the effect of
unbalanced voltage cannot be solved by this method.
The unbalanced voltage can directly affect the estimated
stator flux because the stator of the DFIM is directly
connected to the grid. Based on the instantaneous
symmetrical component (ISC) method, the DSOGI with
the positive-sequence calculation (PSC) can isolate the
positive sequence component from the negative sequence
component, as depicted in Fig. 4.

The DSOGI with PSC behaves as a low-pass filter for
the positive-sequence component, and behaves as a notch
filter for the negative-sequence component [33, 34].
Therefore, only the positive-sequence flux components,
𝜆𝑠+

𝑠𝑑 and 𝜆𝑠+
𝑠𝑞 are then fed to the dq-PLL providing the

smooth estimated angular speed and position. The stator
flux vector estimation based on the Kalman filter with
DSOGI-PLL is illustrated in Fig. 5. The estimated angular
speed,𝜔𝑒 is fed back to theDSOGI-QG blocks to adapt the
resonant frequency as discussed in [33].
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Table 1: Parameters of a WRIM.

Fig. 4: Block Diagram of the DSOGI and PSC.

4. SIMULATION AND SIMULATION RESULTS
The computer simulations were performed to validate

the application of the Kalman filter for stator flux vector
estimation. The details of the simulation system are
described in sub-section 4.1.

4.1 Simulation System
The non-saturable model of a 5 kW wound-rotor

induction machine having the variables and parameters
as shown in Table 1 is used in the simulation. The
PLECS software is applied to simulate the stator flux
estimation system having the diagram depicted in Fig. 6.
In the simulation, the operation criteria of the DFIM are
discussed in [35, 36].

The machine-side converter (MSC) is controlled with
a sampling rate of 10 kHz, while the switching frequency
is set to 5 kHz. As a result, the PWM signals are updated
twice for each switching period. The simulation was
performed using C-Script as applied in the actual system.

The series PI controller, having the structure shown in
Fig. 7, is applied to both current and speed control loops.
The transfer function 𝐺𝑐(𝑠) of this PI controller is shown
in equation (31),

𝐺𝑐(𝑠) = 𝐾𝑎 + 𝐾𝑎𝐾𝑏
𝑠 , (31)

while 𝐾𝑎 is the series gain and 𝐾𝑏 is the inflection
frequency [37].

As discussed in [37], the controller gain 𝐾𝑎 is used
to adjust the bandwidth of the closed-loop system. On
the other hand, adjusting 𝐾𝑏 does reflect the inflection

Table 2: Controller Gains and Bandwidth of the Current
and Speed Control Loops. [36]

frequency without increasing the gain at high frequency.
The relationship between 𝐾𝑎, 𝐾𝑏 and 𝐾𝑃 , 𝐾𝐼 of the
parallel structure is shown in equations (32) and (33)
respectively [36],

𝐾𝑃 = 𝐾𝑎, (32)
𝐾𝐼 = 𝐾𝑎𝐾𝑏. (33)

The controller gains of the current control loops are
identical for both d and q axes. The controller gains and
bandwidths for the speed and current control loops are
described in Table 2.

The frequency responses for the current control loop
and the speed control loop are shown in Figs. 8 and 9
respectively.

The CMSIS-DSP library used for ARM-based micro-
controllers is adopted to perform the matrix manipula-
tion required for the Kalman filter algorithm. It can help
optimize the code and can be directly transferred to the
hardware implementation step with little modification.
The simulations were performed under a 1 pu load
condition. The operating speed is set to 1.2 pu. The rotor
is responsible for magnetizing the DFIM, meaning that
the stator reactive power is controlled to be zero. The
simulation results were plotted using MATLAB software.

4.2 Simulation Results
The simulations results are classified into four groups

such as 1. Step change in speed command, 2. Step change
in load torque, 3. Operation in generator mode and 4.
Operation under unbalanced stator voltage. The main
results focus on the comparison of stator flux waveforms
in the stationary reference frame fixed to the stator,
between the reference waveforms from the model probe
and the estimated waveforms from the Kalman filter. The
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Fig. 5: Stator Flux Vector Estimation Block Diagram using Kalman Filter with DSOGI-PLL.

Fig. 6: Simulation Diagram of the Proposed Stator-Flux Estimation Scheme for the DFIM.
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Fig. 7: Series PI Controller Structures.

Fig. 8: The Bode Plot for the Closed-Loop Transfer Function
of the Current Control Loop. [36]

Fig. 9: The Bode Plot for the Closed-Loop Transfer Function
of the Speed Control Loop. [36]

root-mean-square (RMS) error is applied to calculate the
deviation of the estimated flux from the reference flux.
The RMS error equation is shown in equation (34),

𝜆𝑠
𝑠𝑅𝑀𝑆𝐸 =

√√√
⎷

1
𝑁

𝑁

∑
𝑘=1

(𝜆𝑠
𝑠[𝑘] − ̂𝜆𝑠

𝑠[𝑘])
2 (34)

while 𝑁 = 𝑇1/𝑇𝑠𝑎𝑚𝑝, 𝑇1 = 0.02 𝑠 and 𝑇𝑠𝑎𝑚𝑝 = 0.0001 𝑠.

4.2.1 Step Change in Speed Command
The simulation results begin with the stator fluxwave-

form during the enabling of the stator flux estimation
as shown in Fig.10. During this step, only the stator is
connected to the grid while the rotor is open-circuited.
The rotor speed remains zero as shown in the bottom
waveforms. As shown in this figure, the reference and
the estimated waveforms coincide.

The results shown in Figs. 11 and 12 are the
waveforms during the step change in the speed command

Fig. 10: Simulation Results Showing the Waveforms of the
(Top) Stator Flux and (Bottom) Rotor Speed during Enabling
of Stator Flux Estimation.

Fig. 11: Simulation Results Showing the Waveforms of the
(Top) Stator Flux and (Bottom) Rotor Speed during a Step
Change in Speed Command.

Fig. 12: Simulation Results Showing the Waveforms of the
(Top) Stator Flux and (Bottom) Rotor Speed under Steady-
State Motor Operation.

and the steady-state condition respectively. During the
step change at 5 s, the estimated stator flux waveforms
have the same response as the reference flux waveforms.
There are slight differences in the amplitude of the stator
flux waveforms as shown in both figures.

A magnified view of the stator flux waveforms is
shown in Fig. 13, There is also a small phase delay
occurring in the estimated waveform. Both differences
in amplitude and phase angle can be solved by increasing
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Fig. 13: Simulation Results Showing a Magnified View of
the Stator Flux Waveforms under Motor Mode at 1.2 pu
Speed and 1 pu Load Torque.

Fig. 14: Simulation Results Showing theWaveforms of RMS
error of the Estimated Stator Flux: (Top) during a Step
Change in Rotor Speed and (Bottom) under Steady-State
Condition.

the sampling and switching frequencies. Likewise,
increase in the model order can also improve the results.
However, there must be a trade-off between accuracy and
computational cost.

The 𝜆𝑠
𝑠𝑅𝑀𝑆𝐸 of the stator flux in each axis is

depicted in Fig. 14. The results shown in Fig. 14 consist
of the 𝜆𝑠

𝑠𝑅𝑀𝑆𝐸 waveforms during transient and steady-
state conditions. As depicted in Fig. 14, the steady-state
RMS error is approximately 0.065 V‧s corresponding to
roughly 0.063 pu with respect to 1.0396 V‧s flux base.
This error can be reduced by increasing the sampling
frequency or by increasing the order of the approximated
model.

4.2.2 Step Change in Load Torque

The effect of a step change in load torque was
observed by initially simulating the systemunder no-load
conditions. A step change in load torque occurs at the
time 7 s. as illustrated in Fig. 15. The results under
steady-state conditions are shown in Fig. 16.

The step change in load torque from zero to 1 pu occurs
at the time 7 s. As shown in this figure, the DFIM is still
under control as can be seen in the waveforms of speed
and electromagnetic torque. Considering the 𝜆𝑠

𝑠𝑅𝑀𝑆𝐸

Fig. 15: Simulation Results Showing the Waveforms of
the (Top) Stator Flux, (Middle) Rotor Speed, and (Bottom)
Torque during a Step Change in Load.

Fig. 16: Simulation Results Showing the Waveforms of
the (Top) Stator Flux, (Middle) Rotor Speed, and (Bottom)
Torque under Steady-State Motor Operation.

Fig. 17: Simulation Results Showing the Waveforms of
RMS error of the Estimated Stator Flux: (Top) during a
Step Change in Load and (Bottom) under Steady-State
Condition.

waveforms during transient at the top of Fig. 17, under
no-load, the RMS error is approximately 0.027 V‧s (0.026
pu) and its value changes to roughly 0.065 V‧s (0.063 pu)
at 1 pu load.

4.2.3 Operation in Generator Mode
The operation in generator mode is also considered.

In this simulation, the DFIM initially operates in motor
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Fig. 18: Simulation Results Showing the Waveforms of
the (Top) Stator Flux, (Middle) Rotor Speed, and (Bottom)
Torque during a Step Change from Motor Mode to Genera-
tor Mode.

Fig. 19: Simulation Results Showing the Waveforms of
the (Top) Stator Flux, (Middle) Rotor Speed, and (Bottom)
Torque under Steady-State Generator Operation.

mode with 1 pu load torque. At the time 10 s, the load
torque is changed to -1 pu, forcing the DFIM to operate
in generator mode. The simulation results during a step
change in the operating mode are shown in Fig. 18. The
estimated stator flux waveforms have the same response
as the reference stator flux waveforms.

The steady-state results are shown in Fig.19. It can
be observed that the amplitude of the estimated stator
flux is slightly higher than that of the reference stator
flux, as illustrated in the magnified view shown in Fig.
20. The 𝜆𝑠

𝑠𝑅𝑀𝑆𝐸 waveforms are depicted in Fig. 21.
During generator operation, the RMS error is about 0.059
V‧s (0.057 pu) which is slightly lower than that in motor
mode.

4.2.4 Operation under Unbalanced Stator Voltage
Since the stator of the DFIM is directly connected to

the grid, the appearance of unbalanced stator voltage
causes pulsating torque and generates negative-sequence
stator flux. Consequently, the estimated stator flux
speed and position are distorted. Therefore, the DSOGI-
PLL is adopted to extract the positive-sequence flux
component for flux position and speed estimation. In the
simulation, the voltage level of each phase is set to 248.26

Fig. 20: Simulation Results Showing a Magnified View of
the Stator Flux Waveforms under Generator Mode at 1.2 pu
speed and 1 pu. Load Torque.

Fig. 21: Simulation Results Showing theWaveforms of RMS
error of the Estimated Stator Flux: (Top) during a Step
Change from Motor Mode to Generator Mode and (Bottom)
under Steady-State Condition.

V, 213.62 V and 225.17 V. This setup results in 232.9 V
for the positive-sequence component and 14.4 V for the
negative-sequence component. Therefore, according to
IEC 60034-26 [38], the voltage unbalance factor is 4.45 %.

The simulation results shown in Figs. 22 are the
waveforms during a step change in the speed command.
During the step change in speed command, the flux speed
distortion is mainly caused by the transient response.
Once steady-state is reached, the estimated stator flux
speed becomes smoother as shown in Fig. 23. It should
be noted that the amplitude of the d- and q-components
are not identical. This mismatch can result in distortion
of the estimated stator flux speed and position. However,
the distortion is mitigated by the DSOGI-PLL.

A similar phenomenon occurs in the case of a step
change in the operating mode from motor mode to
generator mode as illustrated in Figs. 24 and 25.
However, the flux speed distortion is more prominent
while operating in the generator mode.

The unbalanced voltage directly affects the output
variables of the DFIM, such as an electromagnetic torque
and rotor speed. Both speed and torque, as illustrated
in Figs. 26 and 27, are oscillating at twice the stator
fundamental frequency.
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Fig. 22: Simulation Results Showing the Waveforms of the
(Top) Stator Flux (Middle) Flux Speed and (Bottom) Flux
Position during a Step Change in the Speed Command
under Unbalanced Stator Voltage Condition.

Fig. 23: Simulation Results Showing the Waveforms of the
(Top) Stator Flux (Middle) Flux Speed and (Bottom) Flux
Position in Motor Mode under Steady-State Unbalanced
Stator Voltage Condition.

Fig. 24: Simulation Results Showing the Waveforms of the
(Top) Stator Flux (Middle) Flux Speed and (Bottom) Flux
Position during a Step Change in the OperatingMode under
Unbalanced Stator Voltage Condition.

It should also be observed what happens to the
estimated flux position when the unbalanced voltage
occurs. The simulation results depicted in Fig. 28 are
the comparison of the stator flux position between the
reference and the estimated stator flux based on the

Fig. 25: Simulation Results Showing the Waveforms of the
(Top) Stator Flux (Middle) Flux Speed and (Bottom) Flux
Position in Generator Mode under Steady-State Unbalanced
Stator Voltage Condition.

(a)

(b)

Fig. 26: Simulation Results Showing the Rotor Speed and
Electromagnetic Torque Waveforms of the DFIM Operating
in Motor Mode under (a) Balanced and (b) Unbalanced
Voltage Conditions.

DSOGI-PLL. In the comparison, the position of the ref-
erence flux is calculated using the “atan2” function. The
comparison shown in Fig. 28a is the result under ideal
conditions. The estimated position is as smooth as that
of the reference. However, under unbalanced voltage
conditions, the calculated position of the reference flux is
highly distorted, while the estimated position using the
DSOGI-PLL is smoother, as depicted in Fig. 28b.

As previously discussed in [36], during the opera-
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(a)

(b)

Fig. 27: Simulation Results Showing the Rotor Speed and
Electromagnetic Torque Waveforms of the DFIM Operating
in Generator Mode under (a) Balanced and (b) Unbalanced
Voltage Conditions.

tion without the DSOGI-PLL or other modified PLLs,
the negative-sequence component appears in the stator
current waveforms. Moreover, the rotor current is
highly distorted, leading to high torque pulsation, which
consequently damages the rotating part of the DFIM.

5. CONCLUSION

This paper presents the application of the Kalman
filter for stator flux estimation for the DFIM. With the
combination of the DFIM model and the measurement
variables, the Kalman filter can estimate the stator flux
vector that cannot be measured directly. The stator
flux estimation scheme presented in this paper includes
the DSOGI-PLL for extracting the positive-sequence
components for smooth estimated stator flux speed and
position.

The simulation system was created using PLECS
software with the CMSIS-DSP library integrated in the
C-Script. The CMSIS-DSP library can help perform
the matrix manipulation required for Kalman filter
calculation. The simulations were performed under
different operating conditions, such as 1. step change
in the speed command, 2. step change in load torque,
3. operation in generator mode and 4. operation
under unbalanced stator voltage. For the first three
conditions, the estimated stator flux waveforms have the

(a)

(b)

Fig. 28: Simulation Results Showing Comparison of Stator
Flux Position from the Reference Model (Calculated Posi-
tion) and DSOGI-PLL Estimate under (a) Balanced and (b)
Unbalanced Voltage Conditions.

same response as that of the reference flux waveforms.
However, if there is an unbalanced stator voltage, the
negative-sequence component occurs in the stator flux
waveforms. Consequently, the estimated stator flux
speed and position will also be distorted. Therefore, the
DSOGI-PLL is applied to estimate the stator flux speed
and position. The simulation results show that both
stator flux speed and position waveform distortions are
mitigated, maintaining the performance of the stator flux
vector control for the DFIM.

Finally, it can be concluded that the proposed stator
flux estimation scheme successfully estimates the stator
flux vector for the DFIM under different operating
conditions. The code applied in the simulation system
can simply be transferred to the experimental system
with little modification.

REFERENCES

[1] W. Leonhard. Control of Electrical Drives, 3rd ed.
Berlin, Germany: Springer, 2001.

[2] P. Vas. Vector Control of AC Machines, UK: Oxford
University Press, 1990.

[3] P. Vas. Electrical Machines and Drives: A Space-
Vector Theory Approach, UK: Oxford University
Press, 1993.



14 ECTI TRANSACTIONS ON ELECTRICAL ENGINEERING, ELECTRONICS, AND COMMUNICATIONS VOL.23, NO.2 JUNE 2025

[4] P. Vas. Sensorless Vector and Direct Torque Control,
UK: Oxford University Press, 1998.

[5] B.K. Bose.Modern Power Electronics and AC Drives,
Prentice Hall 2001.

[6] Nguyen Phung Quang and Jörg-Andreas Dittrich,
“Vector Control of Three-Phase AC Machines, Berlin,
Heidelberg: Springer, 2015.

[7] D. J. Atkinson, P. P. Acarnley and J. W. Finch,
“Observers for induction motor state and param-
eter estimation,” IEEE Transactions on Industry
Applications, vol. 27, no. 6, pp. 1119-1127, Nov.-
Dec. 1991,

[8] Patrick L. Jansen and Robert D. Lorenz, “A Physical
Insightful Approach to the Design and Accuracy
Assessment of Flux Observers for Field Oriented
Induction Machine Drives,” IEEE Transactions on
Industry Applications, vol. 30, No. 1, pp. 101-110,
Jan.-Feb 1994.

[9] Cristian Lascu, Ion Boldea, and Frede Blaabjerg,
“A Modified Direct Torque Control for Induction
Motor Sensorless Drive,” IEEE Transactions on
Industry Applications, vol. 36, no. 1, pp. 122-130,
Jan.-Feb 2000.

[10] J. Holtz, “Sensorless control of induction motor
drives,” in Proceedings of the IEEE, vol. 90, no. 8,
pp. 1359-1394, Aug. 2002,

[11] R. Pena, J. C. Clare, and G. M. Asher, “Doubly-Fed
Induction Generator Using Back-to-Back PWM
Converters and Its Application to Variable Speed
Wind-Energy Generation”, IEE Proceeding of Elec-
tric Power Applications, vol. 143, no. 5, pp. 380-387,
1996.

[12] G. Tapia, G. Santamaria, M. Telleria, and A. Sus-
perregui, “Methodology for Smooth Connection of
Doubly Fed InductionGenerators to the Grid,” IEEE
Transactions on Energy Conversion, vol. 24, no. 4,
pp. 959-971, Dec 2009.

[13] X. Yuan, J. Chai, and Y. Li, “A Converter-Based
Starting Method and Speed Control of Doubly-Fed
Induction Machine with Centrifugal Loads,” IEEE
Transaction on Industry Applications, vol. 47, no. 3,
pp. 1409–1418, May/Jun. 2011.

[14] Y. Pannatier, B. Kawkabani, C. Nicolet, A. Schwery
and J. . -J. Simond, “Optimization of the Start-Up
Time of a Variable Speed Pump-Turbine Unit in
PumpingMode,” in 2012 XXth International Confer-
ence on Electrical Machines, Marseille, France, 2012,
pp. 2126-2132.

[15] T. Maendly, A. Hodder and B. Kawkabani, “Start-
Up of a Varspeed Group in Pump Mode, Practical
Implementations and Tests,” in 2016 XXII Interna-
tional Conference on Electrical Machines (ICEM),
Lausanne, Switzerland, 2016, pp. 1201-1207.

[16] [16] A. Joseph, R. Selvaraj, T. R. Chelliah, and
S.V. Appa Sarma, “Starting and Braking of Large
Variable Speed Hydrogenerating Unit Subjected to
Converter and Sensor Faults,” IEEE Transactions on

Industry Applications, vol. 54, no. 4, pp. 3372–3382,
Jul.-Aug. 2018.

[17] T. Zhao, D. Xiang and, and Y. Sheng, “An Approach
to Start a Shaft Generator System Employing
DFIM under Power Take Me Home Mode,” in 2018
IEEE International Power Electronics and Applica-
tion Conference and Exposition (PEAC), Shenzhen,
China, 2018, pp. 1-5.

[18] G. C. Verghese and S. R. Sanders, “Observers
for flux estimation in induction machines,” IEEE
Transactions on Industrial Electronics, vol. 35, no.
1, pp. 85-94, Feb. 1988.

[19] R. Cardenas, R. Pena, J. Proboste, G. Asher and J.
Clare, “MRAS observer for sensorless control of
standalone doubly fed induction generators,” IEEE
Transactions on Energy Conversion, vol. 20, no. 4,
pp. 710-718, Dec. 2005.

[20] R. Cardenas, R. Pena, G. Asher, J. Clare and J.
Cartes, “MRAS observer for doubly fed induction
Machines,” IEEE Transactions on Energy Conver-
sion, vol. 19, no. 2, pp. 467-468, June 2004.

[21] R. Pena, R. Cardenas, J. Proboste, G. Asher and
J. Clare, “Sensorless Control of Doubly-Fed In-
duction Generators Using a Rotor-Current-Based
MRAS Observer,” IEEE Transactions on Industrial
Electronics, vol. 55, no. 1, pp. 330-339, Jan. 2008.

[22] M. S. Carmeli, F. Castelli-Dezza, M. Iacchetti and
R. Perini, “Effects of Mismatched Parameters in
MRAS Sensorless Doubly Fed Induction Machine
Drives,” IEEE Transactions on Power Electronics, vol.
25, no. 11, pp. 2842-2851, Nov. 2010.

[23] F. C. Dezza, G. Foglia, M. F. Iacchetti and R. Perini,
“An MRAS Observer for Sensorless DFIM Drives
with Direct Estimation of the Torque and Flux
Rotor Current Components,” IEEE Transactions on
Power Electronics, vol. 27, no. 5, pp. 2576-2584, May
2012.

[24] M. F. Iacchetti, “Adaptive Tuning of the Sta-
tor Inductance in a Rotor-Current-Based MRAS
Observer for Sensorless Doubly Fed Induction-
Machine Drives,” IEEE Transactions on Industrial
Electronics, vol. 58, no. 10, pp. 4683-4692, Oct. 2011.

[25] R. Bhattarai, N. Gurung, S. Ghosh and S.
Kamalasadan, “Parametrically Robust Dynamic
Speed Estimation Based Control for Doubly Fed
Induction Generator,” IEEE Transactions on Indus-
try Applications, vol. 54, no. 6, pp. 6529-6542, Nov.-
Dec. 2018.

[26] P. Mondal, M. K. Malakar, P. Tripathy, S. Krish-
naswamy and U. K. Saha, “Robust Observer Design
for Sensorless Voltage and Frequency Control of
a Doubly Fed Induction Generator in Standalone
Mode,” IEEE Transactions on Energy Conversion,
vol. 37, no. 2, pp. 844-854, June 2022.

[27] Y. Mousavi, G. Bevan, I. B. Kucukdemiral and A.
Fekih, “Observer-Based High-Order Sliding Mode
Control of DFIG-Based Wind Energy Conversion
Systems Subjected to Sensor Faults,” IEEE Trans-



STATOR FLUX ESTIMATION BASED ON A KALMAN FILTER FOR STATOR FLUX VECTOR CONTROL OF A DOUBLY-FED INDUCTION MOTOR 15

actions on Industry Applications, vol. 60, no. 1, pp.
1750-1759, Jan.-Feb. 2024.

[28] M. W. K. Mbukani and N. Gule, “PLL-Based Sliding
Mode Observer Estimators for Sensorless Control
of Rotor-Tied DFIG Systems,” IEEE Transactions on
Industry Applications, vol. 55, no. 6, pp. 5960-5970,
Nov.-Dec. 2019.

[29] Dan Simon. Optimal State Estimation Kalman, H∞
and Nonlinear Approaches, Wiley. 2006.

[30] Li-Cheng Zai, C. L. DeMarco and T. A. Lipo, “An
extended Kalman filter approach to rotor time
constant measurement in PWM induction motor
drives,” IEEE Transactions on Industry Applications,
vol. 28, no. 1, pp. 96-104, Jan.-Feb. 1992,

[31] G. C. Verghese and S. R. Sanders, “Observers
for flux estimation in induction machines,” IEEE
Transactions on Industrial Electronics, vol. 35, no.
1, pp. 85-94, Feb. 1988,

[32] L. Loron and G. Laliberte, “Application of the
extended Kalman filter to parameters estimation
of induction motors,” in 1993 Fifth European
Conference on Power Electronics and Applications,
Brighton, UK, 1993, pp. 85-90 vol.5.

[33] P. Rodríguez, R. Teodorescu, I. Candela, A. V. Tim-
bus, M. Liserre and F. Blaabjerg, “New positive-
sequence voltage detector for grid synchronization
of power converters under faulty grid conditions,”
in 2006 37th IEEE Power Electronics Specialists
Conference, Jeju, Korea (South), 2006, pp. 1-7,

[34] Z. Ali, N. Christofides, L. Hadjidemetriou, E.
Kyriakides, Y. Yang and F. Blaabjerg, “Three-phase
Phase-Locked Loop Synchronization Algorithms
for Grid-Connected Renewable Energy Systems:
A Review,” Renewable and Sustainable Energy
Reviews, vol. 90, pp. 434-452, July 2018.

[35] W. Suwan-ngam, “Analysis of a Doubly-Fed Induc-
tion Motor for Soft Start Operation based on Stator
Flux Vector Control,” ECTI Transactions on Electri-
cal Engineering, Electronics, and Communications,
vol. 22, no. 3, Oct. 2024.

[36] K. Chaimanekorn and W. Suwan-ngam, “System
Implementation for the Soft Start Operation of a
Doubly-Fed Induction Motor,” ECTI Transactions
on Electrical Engineering, Electronics, and Commu-
nications, vol. 22, no. 3, Oct. 2024.

[37] D. Wilson, “Teaching Your PI Controller to Be-
have,” TI Technical Article, July 2015.

[38] IEC, Rotating Electrical Machines — Part 26: Ef-
fects of Unbalanced Voltages on the Performance
of Three-Phase Cage Induction Motors, IEC Stan-
dard 60034-26, 1st ed., Geneva, Switzerland, 2006,
Corrigendum 1, Sept. 2014.

Jirawat Kodchaporn received the B.Eng.
in Electrical Engineering from the King
Mongkut’s Institute of Technology Ladkra-
bang (KMITL), Bangkok, Thailand in 2023.
He is currently pursuing an M.Eng degree at
KMITL. His research interests include motor
control, linear and nonlinear observers, and
the application of embedded systems for dig-
ital signal processing. e-mail : HYPERLINK
”mailto:66016019@kmitl.ac.th”
66016019@kmitl.ac.th

Warachart Suwan-ngam received the B.Eng.
and M.Eng. in Electrical Engineering from
the King Mongkut’s Institute of Technology
Ladkrabang (KMITL), Bangkok, Thailand in
1999 and 2002, respectively, and the Ph.D.
in Electronic and Electrical Engineering from
the University of Strathclyde, Glasgow, UK. in
2008. He is currently an Assistant Professor
in the Department of Electrical Engineering,
School of Engineering, KMITL. His research
interests include electrical machines and AC

drives, power electronics applications for renewable energy, condition
monitoring and fault diagnosis for electrical machines and power
converters, and DSP applications for AC drives and power electronics
converters. e-mail: warachart.su@kmitl.ac.th


