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A Novel Model for Measuring the Amount of Four
Pesticides with Rapid Safety Classification
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ABSTRACT

According to the Food and Agriculture Organization
of the United Nations (FAO) reports that approximately
4.5 million tons of pesticides are used worldwide per
year, and estimates that pesticide poisoning causes
approximately up to 40,000 deaths per year. This
research proposes a novel exponential with constant
parametric model for evaluating the levels of pesticide
residues on vegetables. The original contribution lies in
the model’s capability to predict the maximum spectral
power density (MSPD) in [pW/cm?] from reflected light
spectrum signals when integrated with our previously
portable developed VIS-NIR spectrometer. To evaluate
the performance of the proposed model, experiments
were conducted via four test pesticides carbendazim,
cypermethrin, diazinon, and imidacloprid across ten
different concentration levels ranging from one to ten
milligrams per liter. The results demonstrate superior
performance with the highest R score and the lowest
root mean squared error (RMSE), and precisely achieve
the safety levels of the four pesticide residues according
to maximum residue limits (MRL) with the Accuracy of
one and the harmonic mean recall specificity (HMRS) of
one when compared to the line equation, quadratic and
partial least squares regression (PLSR) models.

Keywords:  exponential plus constant model, line
equation model classification, maximum spectral power
density (MSPD)

1. INTRODUCTION

The Food and Agriculture Organization (FAO) reports
global pesticide usage of approximately 4.5 million
tons annually [1], estimated pesticide poisoning causing
20,000-40,000 deaths per year [2]. These chemicals per-
sist in environmental systems for extended periods, and
despite bans in developed nations, their usage continues
in many developing countries [3]. Consequently, there
is an urgent need for rapid, accurate on-site pesticide
residue detection methods. This necessity has driven
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the development of portable detection devices based
on visible and near-infrared (VIS-NIR) spectroscopy, a
technique that is cost-effective, environmentally sus-
tainable, requires minimal sample preparation, and is
suitable for both qualitative and quantitative analysis
[4-12]. Tsagkaris et al. [13] reviewed light-based
detection methods for pesticide residues, demonstrating
their potential for efficient food monitoring. Similarly,
Zainurin et al. [14] developed an ESP32-based portable
spectrometer for measuring various contaminants in
water, while Nazarloo et al. [15] applied VIS/NIR
spectroscopy for non-destructive detection of profenofos
residues in tomatoes.

The development of field-deployable spectrometers,
however, faces significant challenges. A primary ob-
stacle is the nonlinear relationship of spectral data
and pesticide concentrations, which is compounded
by environmental interferences (temperature, humidity,
pressure) that introduce variability. Therefore, enhanc-
ing data quality by applying smoothing techniques and
multivariate scatter correction (MSC), in addition to de-
veloping predictive models using various methods such
as partial least squares discriminant analysis (PLS-DA),
PLSR, and advanced approaches like one-dimensional
convolutional neural networks (1D-CNN) and deep
transfer learning (DTL), remains critical. Heydarov et
al. [16] designed a portable spectrometer employing
support vector machines (SVM) and convolutional neu-
ral networks (CNN) for food spectral analysis, while
Nazarloo et al. [17] combined VIS/NIRS with PLSR and
artificial neural networks (ANN) for pesticide residue
detection in tomatoes. Additionally, Li et al. [18] utilized
spectral data across 216 bands (950 nm -1,666 nm)
with pre-processing methods and the corrective adaptive
reweighted sampling (CARS) algorithm to detect toxins
in cabbage flowers, achieving an R? of 0.9688. Rodriguez
etal. [19] employed NIR spectroscopy with PLS to predict
chlorpyrifos-methyl levels in rice varieties, and Sun et al.
[20] integrated spectral analysis with CNN, developing
a model with an R? of 0.883. Further studies using
comparable approaches are documented in [21-25].

The computational complexity of the previous
methods presents a significant constraint for portable
spectrometers operating on microcontrollers (MCUs).
Nevertheless, NIR spectral data typically exhibit charac-
teristic peaks corresponding to chemical bond vibrations
within samples. Aira et al. [26] demonstrated a curve-
fitting plot for diffuse reflectance at five-hundred-sixty-
nanometres wavelength for each glyphosate concen-
tration obtained from a linear polynomial model with
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Fig. 1: An overview of the research methodology.

a R-square score of 0.9106, and facilitated pesticide
concentration prediction and detection without excessive
computational requirements.

However, linear models often provide insufficient
accuracy for this application. Various calibration curve
models have been developed to enhance prediction
precision. Dinesha et al. [27] applied spectrophotometric
methods to construct a standard curve for Coragen con-
centration prediction, achieving an R? 0f 0.976. Zohar et
al. [28] and Zhang et al. [29] determined that higher-
order polynomial models are sometimes necessary to
capture nonlinear relationships. ABASS et al. [30] im-
plemented a quadratic polynomial model to address these
nonlinearities, and Ostertagova [31] and Elshewey et al.
[32] demonstrated the superiority of this approach over
linear models. Zahedi et al. [33] and Locascio et al. [34]
also developed polynomial models offering enhanced
flexibility in capturing complex spectral behaviour while
Zhang et al. [35], Wang et al’s [95] and Hu et al.
[96] proposed that exponential regression models may
be optimal for pesticide residue concentration prediction
compared to linear and quadratic approaches.

Based on these considerations in recent research,
Natthasak and Suchart [36] successfully detected four
pesticides namely Carbendazim, Cypermethrin, Diazi-
non, and Imidacloprid on chili samples by identifying
MSPD at specific wavelengths on the developed residue
profiles of each of the four pesticides. Unfortunately,
there has been no study on concentration prediction in
terms of its ability to estimate pesticide concentrations
and to be used as a safer warning for consumption of
vegetables and fruits. Therefore, a proposed parametric
model is presented, which provides the desired concen-
tration prediction values for the four target pesticides on
chili. The performance evaluation of the proposed model
is compared with first- and second-order polynomial
models.

This paper is divided into four sections: Introduction,
Methods, Results, and Conclusions. Section II details the
spectral data collection, parametric model development,
and model performance with evaluation metrics. Next,
Section III presents the experimental results and discus-

sions, and Section IV summarizes the main findings and
proposes directions for future research.

2. MATERIALS AND METHOD

This section describes the methodology for collecting
spectral data and developing both the proposed model
and the comparative models using the MSPD from the
training dataset. It also covers the MRL standard in
mg/L and its conversion to spectral power density (SPD)
in the unit of [W/cm?]. Additionally, it explains the
MSPD classification process for determining “Safe” status
or “Unsafe” status, along with the evaluation of model
performance.

2.1 Spectral Data Collection

Previous research by Natthasak and Suchart [36] had
already demonstrated the high efficiency of a VIS-NIR
portable spectrometer that can measure spectral values
in [yW/cm?] at eighteen different wavelengths: 410 nm,
435 nm, 460 nm, 485 nm, 510 nm, 535 nm, 560 nm,
585 nm, 610 nm, 645 nm, 680 nm, 705 nm, 730 nm,
760 nm, 810 nm, 860 nm, 900 nm, and 940 nm. As we
known that properties of the four pesticides give spectral
peaks at different wavelengths. For example, the spectral
peak values for carbendazim, cypermethrin, diazinon,
and imidacloprid occur at wavelengths of 460 nm, 535
nm, 900 nm, and 810 nm, respectively.

In the preparation procedure, 480 chili samples with
pesticide residues obtained from a field in Phitsanulok,
Thailand, were carefully processed within the laboratory
environment complying with ISO/IEC 17025:2005 and
ISO/IEC 17025:2017 [37, 38].

The model development required input data in the
form of MSPD values, which were derived from dif-
fuse reflectance spectra. These spectra were obtained
when the portable VIS-NIR spectrometer developed by
Natthasak and Suchart [36] was applied to four pesticide
residues on chili seeds samples at ten different concen-
trations: 1, 2, 3,4, 5,6, 7, 8, 9, and 10 [mg/L].

The simplest class of either line equation or polyno-
mial modeling problems is concerned with phenomenon
that are describable by the MSPD value and a specific
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pesticide concentration as designated by the symbols
x;[n] and n,i € 1,2,3,4 represents a type of the four
pesticides on chili samples; that is, Carbendazim (i = 1),
Cypermethrin (i = 2), Diazinon (i = 3) and Imidacloprid
(i =4).

To ensure the developed model’s stability in ac-
curately and precisely approximating the MSPD for
the pesticides, the researchers divided the data into a
training set of 320 samples for determining the model’s
parameters and a test set of 160 samples for evaluating
the model’s efficiency. The 2:1 ratio of training to
testing samples is suitable for evaluating the model’s
performance, as the test set will serve as new data to
assess the accuracy and precision of the approximation
process using the parameters obtained from the training
set.

For the purpose of this presentation, it is useful to
interpret the independent value x;[n] as the cause value
and n as the associated effect value. If the data points
tend to lie on a straight line, a commonly used model for
relating the y;[#n] and n of this data set would be a line
equation model [39 - 47] which takes the form:

yilnl = an+ aqq (1)

The objective of the line equation modeling is clearly
assigned values to the slope parameter a; and the vertical
axis intercept parameter a, so that this line equation
model best fits the given data points in some well-defined
sense. On the other hand, a more appropriate model
might be a quadratic model [48 - 55] in which each of the
y;[n] values with respective to the index n representing
as a non-negative real number n. The estimated data
element is given by

yiln] = a2n2 +an+ag (2)

As with the line equation model sense, the parameters
ag, a;, and a, of quadratic model are selected so that
this hypothesized model best fits given data points in
some well-defined sense. The optimum line equation
or quadratic fit in the least squares error sense is also
discussed in [56 - 63].

In addition, nine sets of SPD data per pesticide con-
centration level were used as training data for the PLSR
method [87], which combines the concepts of principal
component analysis (PCA) [88, 89] with polynomial re-
gression to obtain MSPD estimates at each concentration
level. These estimates are denoted by the sequence
symbols x[P[n], where n € 1,2,3,...,10 represents
the concentration levels as non-negative integers. The
MSPDs for y;[n] ranging from 0 to 11 mg/L as shown in
Table 2.

The next section presents a novel approach to develop
the optimal parameters for the proposed exponential-
plus-constant model.

2.2 Exponential Model Development

In general data analysis, the synthesis of line equation
or polynomial models has so far been directed toward

the tracking trend that are either line or polynomial
in nature. The concept of our proposed model is now
generalized to the case where the trend of the spectral
sequence being tracked is equal to a linear combination
of exponentials, given by:

yilnl = ape" + a,d} (3)

where y;[n] is the estimated values of the spectral data
sequence at a specific pesticide concentration (n) ranging
from 1 mg/L to 10 mg/L forn € 1,2,3...,10.

To predict the present behaviour of the given spectra
sequence {x;[n]} based on knowledge of the past spectra
element values is clearly a valuable asset to know
the concentration of toxic residues in vegetables and
fruits at a level that can be safely consumed. The
linear combination of exponentials in relationship (3) is
instructive when consider the simplest case of the given
spectra sequence whose values satisfy the homogeneous
linear non-recursive relationship given by

x;[n] —ax;[n— 11— px;[n—-2]=0 (4)

for all integers n where the two fixed scalars a and f
can be either real or complex number. Given that the
second term in Eq. (3) holds for all integer values of
concentration n, This study inserts it into the underlying
homogeneous linear non-recursive relationship in Eq. (4)
to establish the relationship between the two scalarsa
and f, that is,

a=e—peV (5)

Substituting the real scalar a in Equation (5) into the
linear relationship in Equation (4) yields:

x;[n] = ex;[n— 11 = pe""Vx,[n— 11— x;[n = 2] (6)

To determine the optimum scalar f that tracks the
spectral sequence {x;[n]}, the fidelity of approximation
is measured by the sum of squared error magnitudes; that
is,

10

FB =Y xn = ex;ln— 11+ ple™ x;ln — 1] = x;[n — 2
n=3
(7)

A necessary condition for this sum of squared errors
to be minimized is that the derivative of f(B) with respect
to the real variable f zero. This leads to the optimum
value of the scalar ﬂo, specified by:

S19. (xilnl = ex;[n = 1)(x;[n — 2] — e x;[n — 1])

=
223 (elx;[n — 1] = x;[n — 2])°

(8)
Substituting the above optimum scalar ° into Equa-
tion Eq. (5), the optimum scalar a® is given by

a’ =e— ple! 9)

Both optimum scalars a® and p° appear in the linear
relationship of Equation (4), and the optimum coefficient
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ag obtained from the associated polynomial equation is
given by
ag — 0!

(10)

Then, the optimum coefficient agin Eq. (10) substi-
tuted into the relationship in Eq. (3) results in

(11)

The determination of the two optimum coefficients a,
and q for tracking the spectral sequence {x;[n]} is then
sought. Again, the fidelity of approximation is measured
by the sum of squared error magnitudes, specified by:

yilnl = ag(e)" + a; (=%

10

glag,a)) = Z

n=1

)
x;[n] + ag(e)" — al(ag) (12)

The exponential model parameters in Eq. (11) are to be
selected so that the error function g(ay, a;) as specified
by Eq. (12) is minimized in the sum of model error sense.
Therefore, the optimum coefficients ag and a(l) can be
obtained by the normal equation [64 — 68, 70, 71]

Z"2ya=2"x (13)
where X is a 10 X 1 vector with elements x;[n] for n €
1,2,3...,10, a = [ag a(l)]T is an 2 X 1 optimum vector,
and Z is a 10 X 2 matrix with elements given by

e! (ag)1
@
z=|° ("3) (14)
e'9 ((1('))9
el() (a(j)]o

Moreover, since the two parameter roots: ag and e
are nonzero and distinct, it follows that the data matrix
ZT Z is invertible [69, 72 - 80]. Therefore, the optimum
parameters a(l) and ag are obtained by the left multiplying
each side of the normal relationship in Eq. (13) by the
inverse matrix (Z7 Z)™! to give

a=ZTz)y'z"x (15)

After obtaining the parameters according to Eq. (10)
and Eq. (13) for the developed exponential model in
Equation (11), the model was trained using the MSPD
data of four pesticides carbendazim, cypermethrin, di-
azinon, and imidacloprid within the concentration range
of 1 mg/L to 10 mg/L, as described in Section 2.2. This
exponential model was then applied to approximate
the MSPD values of each pesticide as a function of
its concentration. The objective was to determine
the threshold values of reflectivity power density that
correspond to the MRL for safe consumption, following
standard guidelines [81, 82]. These values are presented
in Table 1.

Since the spectrometer developed by Natthasak and
Suchart [36] measured pesticide residue levels on chili

Table 1: MRL of the four pesticides on the chili seeds in the
unit of [mg/L].

MRL [mg/L]
Carbendazim  Cypermethrin  Diazinon  Imidacloprid
i=1 (=2) =3) =4
2 2 0.01 0.01

Table 2: MRL of the four pesticides on the chili in the unit
of [u W/em?].

Model MRL [pW /cm?]
Carbendazim Cypermethrin Diazinon Imidacloprid
(i=1) (i=2) (i=3) (i=4)
Line &t 6% 6% 8k
Quadratic 510 520 63 52
PLSR sF 8% st P
Propose 8, S, 33 64

using the reflectivity power density of incident light
in [uW/cm?], it was necessary to convert the MRL
threshold values in Table 1 from [mg/L] into [#W/cm?]
This conversion was achieved using the exponential
model in Eq. (11), providing the MRL threshold values
in Table 2. The obtained result is compared with results
from PLSR, line equation, and quadratic models.

Each of the parameter 6, as shown in Table 2 is
the MRL threshold value in the unit of [gW/cm?] for
each type of the four pesticide residues: Carbendazim,
Cypermethrin, Diazinon and Imidacloprid in cases of
i=1,2,3 and 4, respectively. When substituting n =
2 [mg/L] into the exponential model developed in the
relationship (11), both §; and 8, values are equal to y,[2]
in the unit of [yW/cm?]; that is,

61 =0, = a(l)(ag)2 + a8e2 (16)

Likewise, when substituting n = 0.01 [mg/L] into the
developed model in the Eq. (11), both 63 and 6, values
are also equal to ;[0.01] in the unit of [#W/cm?], which
are given by

83 = 84 = a)e®.01 + a’(a))°.01 (17)

In addition, the threshold values obtained from the
Line and Quadratic models are generated for each
pesticide residues, as shown in the line two and the line
three of Table 2. The threshold values obtained from the
Line equation model in Eq. (1) are defined as follows:

61L = 55‘ = ay + 2a] (18)
, and

8y =68; =ay+0.0ld] (19)

Similarly, the threshold values obtained from the
Quadratic model in Eq. (2) are given by

59 = 62 = ay + 4a, + 24, (20)
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,and

52 =62 = ay +107%a; +0.01a, (21)

For criteria values derived from the PLSR model in
equation (3), the criteria values 5f and 55 are set equal to
the MSPD value at a concentration of 2 mg/L. Meanwhile,
the values 55 and éf are approximated outside the range
using the linear interpolation method [90]. The resulting
criteria correspond to the MSPD value at a concentration
of 0.01 mg/L.

The output MSPD (y,;[n]) is compared to the MRL
[uW/cm?]. y;[n] are classified as “Safe” if the y;[n] <
MRL [pW/cm?] and “Unsafe” if it exceeds M RL
[uW/cm?].

Following the optimum parameter of the four mod-
els performed ten-times cross-validation with the 4:1
train/test data ratio to enhance model reliability and
robustness, and after computing the MRL thresholds in
[W/em?] for each pesticide using the proposed expo-
nential model and the other models (6, 5[P , 6[Q, 5iL), the
models will be evaluated in terms of: prediction accuracy
of the MRL values, and classification performance in
determining the safety levels ("Safe” or "Unsafe”) on the
test dataset. The methods and evaluation metrics used
for this performance assessment are described in the
following section.

2.3 Model Performance and Evaluation

To evaluate the performance of the developed model
in estimating the output element of the power density
of the incident light on pesticide residues on chili seeds,
two indicators; that is, the R-squared value (Rz) and
the root mean square error (RMSE) were used in this
research. Each of the two indicators is a crucial measure
of how well the developed model fits the estimated values
of the output power density sequence {y;[n]} for i €
{1,2,3,4} and n € {1,2,3,...,10}. For a given input
power density sequence {x;[n]} for i € {1,2,3,4} and
ne {1,2,3,...,10}, the R-squared value is defined as

S0 (xiln] = yilnl)?
Y10 (il = w)?

The p value is the average of the input MSPD sequence
{x;[n]} for i € {1,2,3,4}, and the p value is simplify

specified by
1 10
”_TﬁzLﬂMM]

It is clear that the R-squared value provides the
percentage of variation in the estimated values of the
output MSPD sequence {y;[n]} described by the input
MSPD sequence {x;[n]} at a given pesticide concentra-
tion [mg/L] for n € {1,2,3,...,10}.

The R? value range is less than or equal to one. If the
R%value is one, the variance in the error data is zero; that
is the model perfectly generates the estimated data, while
if the R? value is zero, it means that the model provides
the estimated data using the mean to predict. In general,

R*=1-

(22)

(23)

if the R? values are greater than 0.8, then the prediction
model is considered to be acceptable, and if the R? values
are greater than 0.9, then the model is indicated to be high
accuracy [83-84].

Then, the other indicator in measuring the model
performance in this research is the RMSE value. The
RMSE value offers a magnitude measure of the prediction
error in the same unit as the power density. For a given
input MSPD sequence {x;[n]} for i € {1,2,3,4} and
ne {1,2,3,...,10}, the RMSE is defined as

1 10
RSE = /5 B Gxlol = 1)’

The RMSE value range is greater than or equal to
zero. If the RMSE value is zero, the deviation between
the input and output MSPD is zero; that is, the model
perfectly generates the output MSPD. Increased RMSE
values reflect greater differences between input / output
MSPD.

The model’s performance in classifying output MSPD
as “Safe” or “Unsafe” is evaluated using a test dataset
of 160 samples, which includes 32 “Safe” cases and 128
“Unsafe” cases (a 1:4 ratio). Due to this class uneven
distribution, both Accuracy and the Harmonic Mean
of Recall and Specificity (HMRS) are used to ensure a
comprehensive evaluation. This approach assesses not
only the overall accuracy, but also the model’s ability to
correctly identify the underrepresented “Safe” class.

Accuracy is calculated as:

(24)

(TP +TN)
(TP+TN + FP + FN)

Accuracy = (25)

It is clear that TP and TN are the number of times
that the developed model correctly predicts the “Safe”
and “Unsafe” MSPD, respectively. FP is the number of
the “Safe” MSPD sample that is wrongly predicted to be
“Unsafe”, but FN is the number of the “Unsafe” MSPD
sample that is wrongly predicted to be “Safe”, Although
Accuracy is a good metric for evaluating the overall
correctness of a model, but it may not clearly reflect
the performance difference between “Safe” and “Unsafe”
cases, Therefore, additional metrics are needed to assess
accuracy in each specific case. In general, Recall is used
to measure the model’s ability to correctly identify “Safe”
cases, while Specificity measures its ability to correctly
identify “Unsafe” cases. In this research, both the Recall
and the Specificity are simplified into a single metric by
using the harmonic mean of the two values, which is
called “HMRS” and can be expressed as follows:

HMRS = T 2 i
—T1pr— t 78—
TP+FN TN+FP
, Or
HMRS = 2XTPXTN
(TPX(TN+FP)+TN X (TP + FN)

(26)
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The HMRS value is a metric that evaluates the ability
of the developed model to identify either a “Safe” case
in terms of “Specificity” or an “Unsafe” case in terms
of “Recall” It provides the performance to be evaluated
even if there is a different proportion of the “Safe” and
“Unsafe” cases; therefore, it is necessary to add the HMRS
value to measure the accuracy of the different proportion
of the two cases. The developed model will be highly
efficient if and only if both the Accuracy and HMRS
values are close to one. If the HMRS value remains low
despite a very high Accuracy value, the developed model
is still considered to be low in efficiency. Furthermore,
the HMRS value cannot be calculated in the case of
a situation where only one class occurs. However,
such a case is difficult to occur since the test samples
contain both classes in this research. The four previous
metrics: R2, RMSE, Accuracy and HMRS described in
this section focus on selecting metrics based on the error
distribution between the MSPD prediction data and the
MSPD original data, which is used as the input for the
developed model. This idea follows Sokolova et al. [85],
and also focuses on selecting metrics to consider the
impact of such errors following the idea of Koutsandreas
et al. [86]. The next section will verify the effective
results of testing the performance of the developed model
in identifying “Safe” and “Unsafe” cases for 480 samples
of pesticide residues on chili seeds.

3. RESULTS AND DISCUSSION

In this section, the performance and evaluation results
of the developed model will be presented to determine the
threshold value of each pesticide residue on chili, and the
threshold value is then applied to test the accuracy of a
group of pesticide residues on chili. The outline of this
section consists of the results of the MSPD data collection
obtained from the incident light on chili, the performance
results of the developed model, and the accuracy results
in determining the safety level of pesticide residues on
chili seeds.

3.1 MSPD Data Collection Results

The results of spectral reflectance data collection for
the four pesticide residues at concentrations ranging
from 1-10 [mg/L] on chili samples, following the pro-
cedures outlined in Section 2.1, are shown in Fig. 2(a)-
(d). Each graph displays the power density [¢#W/cm?] of
measured light at wavelengths from 410 nm to 910 nm
for each type of pesticide residue, namely carbendazim,
cypermethrin, diazinon, and imidacloprid.

From the power density of the diffuse reflectance
spectra in Fig. 2, it is shown that the peak value of the
power density occurs at the same wavelength position
across all concentrations for each of the four pesticide
residues. It is also found that the wavelengths at the
positions of maximum power density are 460 nm, 535
nm, 900 nm, and 810 nm for carbendazim residues in Fig.
2(a), cypermethrin residues in Fig. 2(b), diazinon residues
in Fig. 2(c), and imidacloprid residues in Fig. 2(d),

Table 3: A classification level of the 160 test samples.

Classification Number of test samples
levels (=1 | (i=2) | (=3) | (i=4) | Total
“Safe” 8 8 8 8 32
“Unsafe” 32 32 32 32 128

respectively. These peak values of power density for the
four given pesticide residues are the same as those found
by Natthasak and Suchart [36]. Next, the peak values of
the power density for each pesticide concentration were
then generated as a data sequence; that is, the MSPD
sequence {x;[n]} in the unit of [pW/cm?] with respect
to pesticide concentration (n) in the unit of [mg/L] for
n € {1,2,3,...,10}, as shown in Fig. 3(a), Fig. 3(b),
Fig. 3(c), and Fig. 3(d) for (i = 1) carbendazim residues,
(i = 2) cypermethrin residues, (i = 3) diazinon residues
and (i = 4) imidacloprid residues, respectively.

After preparing the training dataset as the input data
sequence {x;[n]} for finding all optimum parameters
of the developed model in the spectral data collection
process, the next step is to verify the evaluation accuracy
of the developed model to identify the test samples of
pesticide residues on chili, whether they are safe or not.
The test set consists of a total 160 samples, comprising
40 samples per pesticide. There are ten concentration
levels for each of the four test pesticides, in which the
concentration levels for carbendazim and cypermethrin
are 1, 2, ..., 9 and 10 [mg/L], and those for diazinon
and imidacloprid are 0.005, 0.01, 1, 2, ..., 7 and 8 mg/L.
There are four samples for each of the ten concentration
levels. The test data set of 160 samples is classified as
either a “Safe” case or an “Unsafe” case for consumers,
strictly following the M RL criteria. According to the
classification process conducted in the main laboratory
under ISO/IEC 17025:2005 and ISO/IEC 17025:2017 stan-
dards, it is verified that the “Safe” case for carbendazim
and cypermethrin is less than or equal to 2 [mg/L], and
for diazinon and imidacloprid, it is less than or equal
to 0.01 [mg/L]. Finally, Table 3 shows a classification
summary of the total 160 samples, identifying 32 samples
as the “Safe” level and 128 samples as the “Unsafe” level.
The ratio of the “Safe” level to the “Unsafe” level is 1:4.
This means that 8 samples are classified as the “Safe”
level and 32 samples as the “Unsafe” level for each of
the four pesticides: carbendazim (i = 1), cypermethrin
(i = 2), diazinon (i = 3) and imidacloprid (i = 4). The
160 test samples are used to evaluate their classification
performance.

3.2 Results about the Proposed Model Efficiency

The MSPD sequence {x;[n]} with respective to a
pesticide concentration (1) for n € {1,2,3,...,10} as an
input sequence to the proposed model, the PLSR model,
the quadratic model, and the line equation models to
produce the predicted output MSPD sequence {y;[n]} as
shown in Table 4. The optimum parameters in Table 5
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Fig. 2: Diffuse Reflectance Spectra of Four Pesticides at Various Concentrations: (a) Carbendazim (b) Cypermethrin (c)

Diazinon (d) Imidacloprid.
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Fig.3: MSPD [u W/em?] from Chili Spectra with Pesticide (a) Carbendazim, (b) Cypermethrin, (c) Diazinon, and (d)

Imidacloprid.

of the four models, calculated by using the least squares
regression (LSR), are discussed in Section 2.

Fig. 4 shows a plot of the MSPD input data x;[x] in

[#W/cm?] and four MSPD output data yiln]lin [4W/cm?]
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Table 4: MSPD Values in [ W/cm?] of Input x;[n] and Output y;[n] for Four Pesticides i € {1,2,3,4} at Ten Different
Concentrationsn € {1,2,3,...,10} in [mg/L].

Pesticide Items MSPD values [pW/em?]
types Concentration n [mg/L] 1 2 3 4 5 6 7 8 9 10
Carbendazim Input data x, [n] 636.93 668.70 704.50 755.92 807.08 842.97 895.12 976.22 1096.28 1316.50
Line output data y, [n] 572.19 638.38 704.57 770.76 836.95 903.14 969.33 1035.52 1101.71 1167.90
Quadratic output data y, [n] 644.57 668.94 701.70 742.86 792.43 850.38 916.74 991.50 1074.65 1166.20
PLSR 663.99 668.98 689.26 724.84 775.72 841.89 923.35 1020.11 1132.17 1259.52
Proposed output data y; [n] 634.90 671.65 710.62 752.09 796.65 845.67 902.60 976.68 1092.69 1317.74
Cypermethrin Input data x,[n] 300.90 333.48 384.68 404.55 501.85 562.50 620.57 733.63 843.41 1186.22
Line output data y,[n] 205.77 290.54 375.31 460.08 544.85 629.62 714.39 799.16 883.93 968.70
Quadratic output data y,[n] 350.82 369.98 407.38 463.02 536.90 629.02 739.38 867.98 1014.82 1179.90
PLSR 334.06 333.26 353.86 395.86 459.25 544.05 650.24 777.83 926.82 1097.21
Proposed output data y,[n] 304.23 341.02 382.35 428.98 482.05 543.77 618.99 719.77 877.52 1176.07
Diazinon Input data x3[n] 300.62 348.7 382.52 442.69 496.08 564.47 661.26 760.97 842.4 1122.52
Line output data y;[n] 224.83 306.46 388.09 469.72 551.35 632.98 714.61 796.24 877.87 959.50
Quadratic output data y;[n] 305.20 340.16 384.6 438.40 501.7 574.5 656.7 748.4 849.5 960
PLSR 326.01 340.25 371.33 419.25 484.03 565.65 664.12 779.43 911.60 1060.61
Proposed output data y;[n] 306.60 346.01 390.54 440.98 498.40 564.57 642.97 741.59 880.48 1112.23
Imidacloprid Input data x, [n] 806.56 855.21 905.54 953.28 1011.90 1063.68 1143.43 1251.85 1313.16 1584.68
Line output data y,[n] 746.34 822.48 898.62 974.76 1050.90 1127.04 1203.18 1279.32 1355.46 1431.60
Quadratic output data y,[n] 812.48 851.93 898.14 951.11 1010.85 1077.35 1150.62 1230.65 1317.44 1411.00
PLSR 861.29 885.88 923.21 973.30 1036.14 1111.73 1200.07 1301.16 1415.00 1541.59
Proposed output data y,[n] 809.56 855.36 903.82 955.26 1010.26 1070.12 1138.14 1222.99 1347.94 1575.93

Table 5: Regression optimum parameters obtained from
the proposed, PLSR, quadratic, and line equation models.

Table 6: Efficiency of the four models for the four pesticides
(R* and RMSE).

Pesticide Model Parameters

Pesticide Model R? RMSE
types ay a; a p :
Carbendazim __ Line 506.000  66.190 - Carbendazim  Line 0.898 64.013
Quadratic 628.600 11.770 4.199 Quadratic 0.939 49.259
PLSR 674290  -17.954 7.648 PLSR 0.975 31.896
Proposed 0.012 1.058  600.170 Proposed 0.999 5.015
Cypermethrin Line 121.000 84.770 - Cypermethrin ~ Line 0.944 90.813
Quadratic  349.900 -8.200 9.120 Quadratic 0949 86,602
PLSR 356260  -32.896 10.699
Proposed 0.015 1.121 271.430 PLSR d 0.985 46.898
Diazinon Line 143200 81.630 - _ Propose 0.998 16.952
Quadratic 328500  -11.010 8.420 Diazinon Line 0.965 69.254
PLSR 279.700 20.780 4730 Quadratic 0.980 51.856
Proposed 0.009 1.128 271.690 PLSR 0.992 32416
Imidacloprid Line 670.200 76.140 - Proposed 0.998 15.432
Quadratic  779.800 29.300 3382 - - -
PLSR 849.460 5.458 6.376 Imidacloprid Iémed " 8'222 gg’gg
Proposed 0.011 1056 766.240 uadratic : :
PLSR 0.974 50.412
Proposed 0.998 14.859

with respect to ten concentrations n € {1,2,3,...,10}
in [mg/L] for each of the four pesticides: carbendazim,
cypermethrin, diazinon, and imidacloprid. The MSPD
values obtained from the measured data by the developed
method [36] and the estimated MSPD data generated by
the four models for each of the ten concentrations are
shown in Fig. 4. The proposed model provides the best
estimation when compared to the estimations of the line
equation, quadratic and PLSR models.

From Table 6, the proposed model can achieve the
highest R-square score and the lowest RMSE values
when compared to the three models, especially the PLSR
method corresponding with previous studies by Aira et
al. [26], Dinesha et al. [27], and Li et al. [91] for

predicting glyphosate, coragen, toxins in cauliflower,
respectively.

Then, the threshold value in [yW/cm?] for each of
the four pesticides, calculated from the estimated data
of the four model, as shown in Fig. 5, and determined
in the fourth line in Table 7 to classify the safety level
in terms of the MSPD value according to the MRL
standard criteria [81,82]. It is found that the proposed
model’s MRL threshold values in [pW/cm?] is 671.65,
341.02, 277.03 and 766.67 for carbendazim, cypermethrin,
diazinon, and imidacloprid, respectively. The remaining
threshold values from the line equation, quadratic and
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Table 7: MRL Threshold of four Pesticides on the Chili.

MRL [uW /cm?]

Table 8: Evaluation of four models for four pesticides
(Accuracy and HMRS).

Model

ode Carbendazim Cypermethrin  Diazinon imidacloprid Pesticide Model Accuracy HMRS
Line 638.38 290.54 144.02 670.96 Carbendazim Line 0.850 0.400

Quadratic 668.94 369.98 328.39 780.09 .
PLSR 668.97 333.26 279.91 849.51 Quadratic 0.975 0.933
Proposed 671.65 341.20 272.02 766.67 PLSR 0.975 0.933
Proposed 1.000 1.000
Cypermethrin Line 0.825 0.222
PLSR models. are shown in the first, second and third Quadratic 0.975 0.984
N Tree el v d to clasify the saet PLSR 0950 0857

ese threshold values are used to classify the safety

. . P d 1.000 1.000

level. If the MSPD is less than the given threshold value, — foPose
this means “Safe”, and if not, this means “Unsafe”. Diazinon Line 0.800 0.000
Quadratic 0.900 0.933
3.3 Proposed Model Evaluation Results PLSR 1.000 1.000
) Proposed 1.000 1.000
All threshold values in Table 7 are.used for 160 t.est Imidacloprid Line 0.800 0.000
samples of the MSPD output data obtained from the line Quadrat 0.975 0,934

equation, quadratic, PLSR and proposed model to identify Hadratic ’ '

the safety level of each type of the four pesticides. In PLSR 0.900 0.933
the evaluation of the model performance, Accuracy and Proposed 1.000 1.000

HMRS indicators are applied and calculated from Eq. (23)
and Eq. (24), respectively. Evaluation results in Table 8
clearly show the proposed model demonstrates superior
predictive performance in both metrics.

Classification test results using the MRL-based thresh-
old [pW/cm?] clearly demonstrate that the Proposed

model can perfectly classify both ”Safe” and “Unsafe”
samples across all four pesticide types: carbendazim,
cypermethrin, diazinon, and imidacloprid. It achieves
Accuracy and HMRS values of 1.000 throughout all



10 ECTI TRANSACTIONS ON ELECTRICAL ENGINEERING, ELECTRONICS, AND COMMUNICATIONS VOL.23, NO.2 JUNE 2025

Power density

@@=1)

(WW/em?)
1900
Ld
1400
0 _.,-"‘JLL;;-"" """" --Line
. —— E -~ -Quadratic
5 H":fag 3 -—PLSR
st —x -®-Proposed
400
0 1 2 3 4 5 6 7 8 9 10 11
Concentration (mg/L)
(a)

Power density
(1W/em?)

1500

1000

+%Line

+ 4+ Quadratic
-=-PLSR
«-®+Proposed

0" 1 2 3 4 5 6 7 8 9 10
Concentration (mg/L)

(©)

Power density

(=2)

(HW/em?)
2000
hd
1500
1000
8 <f)g = +Quadratic
' o & — S
FL S VIR PLSR
RS 3 @ -Proposed
Ly
0 1 2 3 4 5 6 7 8 9 10 11
Concentration (mg/L)
Power density (i=4)
(HW/em?)
2100

1600

+X-Line
1100

- Quadratic
oy -=PLSR
8y _.17'
H . --@-Proposed
5k —»
600

0.01
0

©
w
S
9

6 7 8 9 10 11
Concentration (mg/L)

(d)

Fig. 5: The Output MSPD (y;[n]) of four model and MRL [u W/cm?] Based Safety Threshold Determination for Four
Pesticides: (a) Carbendazim, (b) Cypermethrin, (c) Diazinon, and (d) Imidacloprid.

testing. The proposed model outperforms the PLSR
model, which has Accuracy values ranging from 0.900
to 1.000 and HMRS values between 0.875 and 1.000.
The Proposed model shows a higher Accuracy of 0-
10% and a higher HMRS of 0-12.5%. This difference
is particularly notable in terms of HMRS values, which
reflect a more balanced classification ability between
”Safe” and "Unsafe” classes. Although the quadratic and
line equation models provide Accuracy in the range from
0.800 to 0.975 and HMRS in the range from 0.000 to
0.984, they still cannot match the perfect classification
performance of the Proposed model. This demonstrates
the excellent ability of our new model to separate sample
groups.

The main advantages of the proposed model requir-
ing only three parameters are its simplicity and high
performance for pesticide detection without requiring
complex structures that consume high computing power
and memory as machine learning algorithms (SVM/SVR,
CNN) studied by Chang et al. [92], Orasan et al. [93],
and Rego et al. [94], which make them unsuitable for
resource-limited embedded systems.

4. CONCLUSION

The proposed model provides an efficient and practical
approach for determining the safety level of pesticide
residues on fruits and vegetables through the estima-
tion of optimal MSPD threshold values. This model,
compatible with the portable spectrometer developed

by Natthasak and Suchart [36], accurately predicts the
MSPD values (#W/cm?) of spectral signals resulting from
incident light reflected from chili contaminated with
four types of pesticides: carbendazim, cypermethrin,
diazinon, and imidacloprid. It effectively models MSPD
values across a concentration range of 1-10 mg/L for
each pesticide. When compared to PLSR, quadratic, and
linear models, the proposed model consistently achieves
the highest R> and the lowest RMSE, demonstrating
superior regression performance. Notably, the model
achieves perfect classification accuracy and HMRS values
of 1.000 for all pesticides and all cases, surpassing the
performance of the baseline models, particularly under
the MRL-based safety classification.

Beyond its predictive accuracy, the proposed model
offers structural simplicity and computational efficiency.
It requires the estimation of only three parameters per
pesticide and uses a single MSPD variable as input,
whereas PLSR relies on multiple latent variables derived
from analyzing reflectance data across a wide wavelength
spectrum. This simplicity reduces both model complexity
and computational cost, making it highly suitable for
real-time, portable, or embedded detection systems.
Therefore, the proposed model not only ensures accurate
prediction and robust safety classification but also offers
practical advantages in terms of implementation, calibra-
tion, and processing speed.
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