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ABSTRACT

This paper presents a discrete-time linear quadratic
regulator (LQR) augmented with integral action for high-
performance speed control of permanent-magnet syn-
chronous motor (PMSM) drives. Integral augmentation is
embedded directly into the discrete-time LQR framework
to eliminate steady-state error in both reference-speed
tracking and load disturbance rejection. A discrete-time
Lyapunov function is derived, with real-time evaluation
under parametric uncertainty, to guarantee asymptotic
stability of the closed-loop system. A MATLAB m-file
implementation enables fine-grained tuning of sampling
rates and seamless translation to embedded architectures.
Robustness is assessed via a comprehensive simulation
suite comprising step changes in speed reference, load-
torque disturbances, +10% variations in stator resistance
and inductance, and +15% variations in rotor inertia and
viscous friction. Head-to-head benchmarking against a
cascaded PI controller and a standard discrete-time LQR
(without integral action) under identical scenarios quan-
tifies improvements in convergence rate, overshoot, and
disturbance-rejection performance. Simulation results
demonstrate rapid convergence, minimal overshoot, and
zero steady-state error, confirming the proposed method
as a reliable, implementation-ready alternative for robust
PMSM speed control.

Keywords: Discrete-Time LQR, Integral action, Lya-
punov stability, Parametric uncertainty, PMSM speed
control

1. INTRODUCTION

PMSMs are widely adopted in high-performance
applications, including electric vehicles, robotics, and
aerospace systems, owing to their superior torque den-
sity, efficiency, and dynamic performance [1] ,[2]. How-
ever, intrinsic nonlinearities and parameter sensitivity
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pose challenges for conventional control strategies, es-
pecially under varying load and parameter disturbances
[3].

LQR control has emerged as a powerful solution
for such systems, offering formal optimality through
quadratic-cost minimization and ensuring closed-loop
stability [4]. Discrete-time LQR design is particularly
attractive in embedded and digital control, enabling
efficient implementation on microcontrollers and digital
signal processor (DSP) platforms. Nonetheless, classical
LQOR lacks integral action, which can yield nonzero
steady-state errors when tracking references or rejecting
disturbances [5]. To address this limitation, integral
augmentation within the discrete-time LQR framework
has been proposed, improving steady-state accuracy
without sacrificing optimality [6], [7].

Recent advances in LQR applications have further
improved PMSM speed control. In [8], a discrete-
time LQR speed controller tailored for PMSMs is in-
troduced, demonstrating stable and efficient regulation.
Building on this, [9] proposes a continuous-time LQR
speed control scheme that highlights the potential of
optimal control in motor-drive systems. To address
fixed-gain limitations, [10] and [11] explore intelligent
tuning strategies such as the artificial-bee colony and
other nature-inspired methods, for autotuning LQR gains
under varying motor conditions. Disturbance handling
has also been enhanced, for example, via feedforward
compensation and state estimation [12], and by integrat-
ing disturbance observer or sliding-mode concepts into
the LQR framework [13]. More recently, multithreaded
LOR controllers have been reported for real-time state-
feedback implementation in PMSM applications [14],
reflecting interest in LQR-based strategies for embedded
motor control platforms.

Despite these advances, systematic robustness anal-
ysis for discrete-time implementations remains under-
developed, particularly with respect to parameter drift
(e.g., stator resistance and inductance) and operational
stresses (e.g., load-torque disturbances). Lyapunov-based
stability analysis and real-time evaluation of a Lyapunov
function have recently emerged as promising methods
for validating theoretical guarantees and assessing con-
troller performance under model uncertainties [15], [16].

This work adopts a fully discrete-time, simulation-
driven methodology to close the gap between theoretical
optimal control and practical embedded implementation.
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Controller weights are selected via Bryson’s rule to
balance speed-tracking and control effort. A MATLAB
m-file toolchain supports flexible sampling rate tuning,
direct code generation for DSP/microcontroller targets,
and real-time Lyapunov-function monitoring under pa-
rameter drift. Robustness is evaluated through scenario-
based tests, reference steps, load-torque disturbances,
+10% stator-parameter and +15% rotor-parameter varia-
tions. This end-to-end workflow provides a reproducible
path from design to implementation and a fair basis for
head-to-head comparisons with a cascaded PI, a non-
integral discrete-time LQR, and the proposed LQR with
integral action, evidencing gains in convergence rate,
overshoot, and disturbance rejection. Accordingly, the
main contributions of this paper are as follows.

1. Integral action is embedded in the discrete-time LQR
framework for PMSM speed control, guaranteeing
zero steady-state error in both reference-speed track-
ing and load-disturbance rejection.

2. A discrete-time Lyapunov function is derived, with
real-time evaluation under parameter uncertainty to
demonstrate asymptotic stability of the closed-loop
system.

3. A MATLAB m-file implementation enables fine-
grained tuning of sampling rates and direct translation
to embedded architectures.

4. A comprehensive simulation suite, comprising step
changes in the speed reference, load-torque distur-
bances, +£10% stator-parameter variations, and +15%
rotor-parameter variations, is used to assess robust-
ness.

5. Comparative evaluation of a cascade PI controller,
a discrete-time LQR without integral action, and
the proposed integral-action LQR under identical
scenarios is used to quantify improvements in speed-
tracking accuracy and disturbance rejection.

The proposed approach bridges theoretical control de-
sign with practical implementation, targeting embedded
applications where high-speed digital control of PMSM
drives is required.

2. MODEL LINEARIZATION AND PLANT REPRE-
SENTATION

2.1 Decoupling of Cross-Coupled Terms

In the dg frame, the PMSM voltage equations contain
cross-coupling terms that complicate independent axis
control. These terms are compensated using decoupling
voltages [8]

Uy, = —Lspw,,i, (1)
Ugo = Lypw,iq + pw, . (2)

The actual control inputs are then
Ug =ugy +ug, (3)

Uy = Ugy + Uy, (4)

2.2 Continuous-Time Linearized Model

After applying decoupling and linearizing around the

nominal point (i;,i,*],a),*n) = (0, I;‘,co,*n), the PMSM is
linearized to yield a decoupled continuous-time state-

space model [10][11][17]

‘2_’; = Ax(t) + Bu(t) + ET, (1) (5)
ig()
withx(t)=[ i () ] u(t)=[Z"“((,t)) ]
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2.3 Discrete-Time Model via Zero-Order Hold

For real-time implementation, the model is discretized
using zero-order hold (ZOH) with sampling time T§. The
discrete-time state-space model becomes

x[k + 1] = A x[k] + Byulk] + E,T;[k]  (6)

In the discrete-time state-space model, the state vector
at time stepk, denotedx[k], comprises the system states,
typically the d- and g-axis currents (A) and rotor speed
(rad/s). The subsequent state at the next time step is
represented by with the same unit composition. The con-
trol input vector u[k]consists of the decoupled voltages
[ugqlkl, uqq[k]]T (V). The load torque disturbance at step
is expressed as T [k] (N-m). The model is governed by
matrices A;,B,, and E,.

The discrete matrices are computed as A; = eATS,

B, = /OTS eAdr - B and E, = fOTS eAdr - E.

This discrete model is used as the plant in the design
of the LQR controller in Section 3.

2.4 Space-Vector PWM and Average-Value Inverter
Model

To bridge the LQR controller’s output and the PMSM
plant, this study employs an average-value modelling ap-
proach for both the space vector pulse width modulation
(SVPWM) and the voltage source inverter (VSI). These
models provide a computationally efficient interface
suitable for control-oriented simulation and real-time
implementation.

- SVPWM
At each discrete sampling instant k, the control law
generates u,[k] and u,[k], which are then transformed
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into the af frame voltages, u,[k] and uﬂ[k], using the
inverse Park transformation

[ Uy k] ] _ [ cos(6,[k])

—sin(4,[k]) ugylkl
uglkl sin(6,[k]) '

cos(0,[k]) ugy k]

Where 0,[k] is the electrical rotor angle at discrete
time step k. The voltages u,[k] and uﬂ[k] are then con-
verted into three-phase modulation indices, m,[k], my[k],
m,[k], using the average min-max SVPWM method as

u [k J—uf} fserlk]
—22 - 405

m,[k]
m,[k]
Vdc

Where, V. is the DC link voltage of the VSI and
u,lkl, uylkl, u [k] are the phase-equivalent voltages de-
rived from the af frame via inverse Clarke transforma-
tion, and u, s ;,[k] is the average of the maximum and
minimum phase voltages at each sampling step. This
method ensures balanced PWM duty cycles with reduced
computational overhead.

ua[k]_uoffset[k] + 05

de
otk s rsalkl 65 | ®)

- Average Value Model of Inverter
The inverter’s three-phase output voltages, v,[k],
vylk], v.[k], are computed using the modulation indices

bkl ] o [ 2 -1 =1 7[ mylkl
[ v, [k] ]: "’C[ -1 2 -1 ” my[k] ] )
v, [k] 3o =1 2 || mlk

This formulation ensures the sum of phase voltages re-
mains zero, maintaining balanced three-phase operation.

3. DISCRETE LQR CONTROLLER DESIGN WITH
INTEGRAL ACTION

3.1 Decoupling of Cross-Coupled Terms

The discrete LQR controller is designed for the lin-
earized, decoupled PMSM model in real units as shown
in (6). The objective is to determine the state feedback
control law as (10). that minimizes the infinite-horizon
quadratic cost function in (11).

ulk] = —Kx[k] (10)

o0
J =) (x[k1" QxIk] + ulk]" Rulk]) (11)

k=0

Where, K denotes the state feedback gain matrix

designed using the LQR method. The symbol J repre-
sents the cost function that the LQR controller aims to
minimize. The matrix Q is the state weighting matrix,
which penalizes deviations of the system states, while R
is the input weighting matrix, which penalizes excessive
control effort. With Q > 0 and R > 0, The optimal
gain matrix K is obtained by solve the discrete algebraic
Riccati equation (DARE) [19],

P=A"PA,

12
—AlPB,(R+B!PB,)"'B/PA, + Q. (12)

The optimal feedback gain is

K =[R+B!PB,)"'B/PA,. (13)

While this LQR controller optimizes transient per-
formance, it does not inherently eliminate steady state
errors for step speed references. To achieve zero
steady state error, an integral action is incorporated by
augmenting the system with an integral state of the speed
error

xrlk + 11 = x;[k] + Ty(w),[k] — 0, [k]).  (14)
The augmented state vector becomes
iqlk]
x| gtk
gl = [ . ] S T
x;1K]
Finally, the augmented discrete-time system is written
as
Xauglk + 11 = Agug X gug k] + By gulk]+ (16)
E 0,0 [k] + D, T [K].
Where w},[k] denotes the speed reference at sample
. _ Ay 0
k. The augmented matrices are A, = —C.T, 1|

L

[0 0 1]

E .
. | o= [ | v
C, =
According to the augmented LQR controller is de-
signed by solving the DARE for the augmented system,
yielding the control law
x[k]
ulk] = =Ko x 0 lk1 = — [ K, K; | [ 1 1K] ] :
(17)

This ensures optimal transient response and zero
steady-state error for step speed references, providing
a robust and high-performance PMSM speed control
solution.

Moreover, unlike classical control methods where
bandwidth is explicitly designed , the bandwidth of the
discrete LQR controller is an implicit outcome of the
trade-off between state regulation ( Q and R ). The
solution of the DARE inherently balances these factors,
determining the controllers closed-loop bandwidth with-
out requiring explicit bandwidth specification. Therefore,
in this study, bandwidth is not directly designed but
rather emerges as a result of the systematic tuning
process.

3.2 Weight Selection via Bryson’s Rule

The weighting matrices Q and R are systematically
tuned using Bryson’s rule [18]. It is critical to emphasize
that the tuning of Q and R is performed on the aug-
mented discrete-time PMSM model with integral action,
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1: Require

2: State variables:

3 T = [da, tqy Wms T1 ),

4: = .

5.  Maximum acceptable values:

6: Tmax = [id.max: iq.max- Wi, max ‘Tf.max:r
T Umax = [udd,ma:cr qu.max]-

8: Ensure:

9: Qe R1*1

10: R eR?*2,

11: Imitialize:

12: Q « Og54,

13: R < 034o2.

14: for i = ltod do 1

16 Q8 ¢+ ——=
Tmax E))

16: end for

17: for j = 1to2 do

s 1
18: R(J:J) T
('u-max (.} ) )
19: end for

20: return Q, R

Fig. 1: Bryson’s Rule Tuning of Q and R.

not on the nominal linearized model alone.

Bryson’s rule assigns diagonal LQR weights as the
inverse square of the maximum acceptable magnitudes
of the states and inputs [20]. Fig.1 illustrates the
implementation used to select the diagonal weighting
matrices Q and R. The state components are x; €
{ig, iq,a)m,xl} fori =1,...,4, and the input components
are u; € {ud,uq} for j = 1,2. For each component, a
maximum acceptable magnitude Xy, (i)) OF Ugmax,(j)) IS
specified. The matrices Q and R are initialized as zero
matrices of size 4 X 4 and 2 X 2, respectively. For each
state index i,

1

Q(i,i) = (18)

Xmax(i)

For each input index j,
R S 1

U~ 2 : (19)

(max(j))
This assignment satisfies Bryson’s rule. Any unit-

sized deviation of a state or input, relative to its specified
maximum, contributes equally to the LQR cost.

3.3 PI Tuning to Match LQR Bandwidth and Damp-
ing

- Closed-Loop Dynamics Equivalence with the LQR Base-
line

This subsection concerns the outer speed loop. The
inner current loops (i, i) are tuned once by bandwidth
separation (approximately 5 to 10 times faster than the
speed loop) and kept identical across PI, LQR with and

without integral action for a fair comparison. With a fast-
inner current loop, the speed plant from torque (or i) to
speed is well approximated by a first-order continuous
model

K
Glo)=—t— =X (20)
J,s+B, ts+1
where K = % andrt = IJ;—”’. To extract the damping

ratio and natural frequency from the LOR step response,
the signal is first normalized to a unit step. The damp-
ing ratio(¢)is determined from the peak overshoot(M,)
using the standard second-order relation. The peak-to-

peak interval (T),)between successive maxima yields the
damped frequency(w,; = ZT—”), from which the natural
p

@Dy

frequency follows as w, = . For effectively non-

&2

oscillatory responses, w, may be estimated from the 2%
settling time (T,;,)-

N

(lnMp)2 4
C=\Zramr e ™
T +(lnMp) CTsertte

: K
For a continuous PI controller, C(s) = K;p d + ’T

matching the unity-feedback characteristic

(21)

w2 + (1 + KKD)s + KK = 8 + 2l w,s + 0} (22)

gives closed-form seed gains

Ksde _ 2§wnJm B Bm spd0 _ w%"m 23
S A i
t t
Then, implementation is discrete
T
Cz)= K™ + K7 — (24)

and control output,
ulk] = ulk =11+ K" (elk]— e[k — 1)+ K*' T,e[k] (25)

with output saturation and integrator anti-windup,
where e[k] = 0*[k] — w[k].

- Two-Stage Tuning Procedure
Step 1 Analytic initial gains: The speed-loop PI gains

K’ “Oand K" “Oare computed from (23) by using the

LOR baseline (measured t,LQRand 0S1OR) together with
the plant parameters J,,, B,,andK,. This choice matches
the LOR intended bandwidth and damping on the ideal
(nominal) plant.

Step 2 Practical refinement: Candidate gains are
evaluated in a neighborhood of the analytic initial values

K%and K7, Let a, € [0.5,3],a; € [0.05,1.5]and
set K;pd = apK;de, Kfpd = a,-KiSde Each candi-

date is assessed using the discrete speed-loop model,
which accounts for the inner-loop bandwidth, actuator
saturation, and anti-windup. For each candidate, a
speed step is simulated and the rise time ¢,, percent
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overshoot OS, and control-effort RM S(u) are recorded.
The implemented gains are those that minimize subject
to practical constraints: no sustained saturation (e.g., >
50 ms) and classical robustness margins (phase margin
> 45°, gain margin > 6 dB). The quantities t,LQRand
OSTOR are measured from the LQR baseline. The
weights w;, w,,and @5 are nonnegative (typical values
w; = wy = 1,w3 = 0.5). The control-effort RMS used
in J,,,, is defined by

LOR
Jine = @11, — 1:2%Y 4+ 0,(0S — 0SLORY?

+ w3 RM S(u)?, (20
ko+N—1

RM S(u) % Y ulkl, (27)
k=k0

where k is the step index and N = T,/ T

4. STABILITY ANALYSIS

4.1 Stability of the Augmented Discrete-Time Sys-
tem

According to (15) - (17), the resulting in closed-loop
system dynamics is represented as

Xauglk + 11 = (Ague — Buyg aug)xaug[k]
+E,,,onlk]l + T [kl

agu

(28)

aug

For stability analysis, focusing on the homogeneous
system without external inputs is considered as

Xaug [k + ] (Aaug BaugKaug) aug[k]' (29)

4.2 Lyapunov Stability Proof

The stability of the closed-loop system is analyzed by
constructing a Lyapunov candidate function based on the
solution P > 0 of the DARE

P= AZug]?Aaug T

An PB, (R + BuugPBuug) B, PA,, (30)

+Q.
The Lyapunov function is defined as
V(X gg) = XigPX - (31)
This function is positive definite for all x,,, # 0 with
P > 0. The discrete Lyapunov inequality is satisfied

V(xguglk + 11 = Vix g [K]) =
aug[ ] ((Aaug aug aug)TP(Aaug augKaug) -P)
Xgug <0 (32)

By using Lyapunov stability theorem, this ensures that

Jim V(K] (33)
im (g (KD (34)

Therefore, the closed-loop augmented system under
the designed LQR controller is asymptotically stable.

Table 1: Motor Parameters and Inverter Specifications.

Symbol \ Value | Unit
Motor parameters
R, 2.20 Q
L 8.72 mH
o 3.17x107° kg -m?
B, 5.28x107 Nm-s-rad™
p 4 -
4 0.0617 Wb
Rated Values

1 rated 2.70 Arms

Vl/mled 200 Vrms

Orgred 3000 rpm

Trated 1.41 Nm

Inverter Specification

Vae 320 vV

Vinax 250 vV

L 6 A

Table 2: LQR Controller Weights via Bryson’s Rule.

Variables Value Weight
I max 64 0(1,1)=2.78 x1072
Iy max 64 0(2,2)=2.78x107?
o, 4500 rpm | 0(3,3)=4.938x107*
X1 max 3000 rpm | O(4,4)=1.11x10""
Ui max 250 V R(1,1)=1.60x10"
Ugq max 250 V R(2,2)=1.60x107°

4.3 Stability under Parameter Uncertainty

In practical PMSM systems, parameters such as R
L, J,and B, are subjected to variations. These
uncertainties can be modeled as additive perturbations,
Agyg + AA and B, + AB. The perturbed closed-loop
system becomes

aug

Xauglk +1] =

35
~ By Koug + AA — ABK 0 )xy,,0[K] (35)

(A

aug

Stability is maintained if the perturbations are suffi-
ciently small such that the Lyapunov inequality remains
satisfied

) P
-P<O.

(A
(A

~ B, K, + AA — ABK,
- B, K, + AA — ABK

aug

(36)

aug aug)

This condition defines the systems robust stability
margin. For the designed LQR controller, theoretical
guarantees and simulations confirm that stability is
preserved for typical parameter uncertainties within
+10%to +15%.
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Table 3: Simulation Scenarios.

Scenario Description

S1 Step change in reference speed at noload condition
from 0 to 1500 rpm at standstill and compare speed
responses of PI, LQR without integral action, and
LQR with integral action controllers.
S2 Step change in load from 0 to 1.41 Nm at 0.5 s during
keeping constant reference speed at 1500 rpm and
compare speed responses of PI, LQR without
integral action, and LQR with integral action

controllers.

S3 Combined step disturbance with step speed change
from 0 to 1500 rpm and step torque change from 0 to
141 NmatOs

S4 Parameter variation test with R and L +10%, J

m

and B, +15%

10 kHz Sampling Rate ¥, I
o . % | Inverse i . * _1" *
1 E Park | o SV = v,

PWM [ Inverter _'-'}‘-Ms.\l

Trans.
u, e 9 ! 6
oo ElLe e
U |
— |
\'.-\'.?__‘
100 kHz

Sampling Rate

(a)

10 kHz Sampling Rate v, I
LQR Inverse m * b '
Lontroller Park '”;' S"' ’".-. Inverter -'
Without Teaus. PWM | PAISM
Integral - T [ ()] v. | ©®
action 4] 5 -
 — T
i ™ . |
= Decoupling | Q
o a2
I 100 kHz

Sampling Rate

(b)
10 kHz Sampling Rate v, I
LOQR . * Vs ‘
Controller SV ;h- — —‘-
With Integral| "y PWM | m(-; l) ter 'p’\([;')\[
acti 8 m v
(E:Z:J)nI ® — - e
3 £l - i T
_|Decoupling ;
12) e
100 kHz
Sampling Rate

()

Fig. 2: Block Diagrams of the Three Discrete-Time PMSM
Speed-Control Schemes: (a) Cascaded PI Controllers, (b)
Standard LQR without Integral Action with Explicit Decou-
pling, (c) Proposed LQR with Integral Action.

5. SIMULATION RESULTS AND PERFORMANCE
VALIDATION

5.1 Simulation Framework

The PMSM model used in this study is based on a typ-
ical surface-mounted machine commonly employed in
industrial applications. Table 1 summarizes the key rated
parameters of the PMSM and the inverter specifications
used for simulation studies. These parameters form the

foundation for system modelling, controller design, and
the selection of maximum acceptable values for the state
and input variables in the Bryson’s rule tuning process.
The motors electrical and mechanical characteristics,
along with the inverter’s voltage and current limits,
ensure that the simulation scenarios reflect realistic and
practical operational conditions.

The maximum acceptable values for the state and
input variables in Bryson’s rule are selected based on
the PMSMs rated parameters and practical operational
limits. The current limits i; ., and i ., are set slightly
above the motors rated peak current to allow for transient
conditions. The maximum rotor speed is set to @,, 5 =
1.5®, 4.4 to provide an overspeed margin. The integral-
state bound is chosen as X 4 = €pax Tuccum With €5, &
Orated A Ty = 1 s. The maximum control signals
Ugd max and Uy gy reflect expected controller output
magnitudes and are distinct from the total motor voltages
uy and u, which also include decoupling terms. This
selection ensures a systematic and balanced LQR tuning
aligned with realistic system constraints, as summarized
in Table 2.

The simulation environment, implemented entirely
in MATLAB m-files, adopts a multi-rate architecture as
illustrated in Fig. 2. Three discrete-time speed control
schemes - (a) cascaded PI controllers, (b) a standard LQR
without integral action plus explicit decoupling, and (c)
the proposed LQR with integral action - execute their
control algorithms at a 10 kHz sampling rate, while
the inverter and PMSM plant model run at 100 kHz
to emulate typical SVPWM switching frequencies and
capture high-frequency dynamics. This setup closely
reproduces the timing and computational constraints of
real-time digital control hardware, thereby ensuring that
the design and performance validation remain practically
relevant.

A series of simulation scenarios are designed to
evaluate the controller’s performance in speed tracking,
disturbance rejection, and robustness under parameter
variations. These scenarios, summarized Table 3, include
step changes in reference speed, load torque, and com-
bined disturbances.

Moreover, Table 4 summarizes the controller tuning
parameters for the cascaded P, discrete LQR, and discrete
LOR with integral action schemes. For the PI controller,
the table lists the proportional and integral gains for
both the speed and current control loops. For the LQR-
based controllers, the state weighting matrix Q, input
weighting matrix R, and the integral state weighting
gy used in the LQR with integral action design are
provided. The exact definitions of the Q and R matrices
are given below the table, reflecting the trade-offs applied
in the optimal control design to balance state regulation
and control effort.

5.2 Speed Tracking Performance

Fig. 3 presents the speed tracking performance of the
discrete LQR controller with integral action under a step
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Table 4: Controller Tuning Parameters.

Parameter Cascaded Discrete Discrete

PI LQR LQR+1
7, [ms] 0.1 0.1 0.1
K;]’” 0 0.0430 - -
K40 11.10 - -
K 0.09 - -
K 1.5 - -
K, 3.0 - _
K} 15 - _
0 - Opor Or
R - Ryl Ry

qr - - 55.55

Onor= diag(2.50 x 105, 2.78, 39.50),
0= diag(111200, 0.2780, 0.0049),

Ruor= diag(16, 16)
Rr= diag(0.064, 0.064)
Note: Closed-form initial gains were computed by matching the

LQR baselines natural frequency and rise time (@, = 360 rad/s), ¢, ~

5 ms); the implemented gains were then selected via the discrete-
time refinement in (24) under saturation and robustness constraints.

2”““1 TS0 THIT

s I I 3
g 1600 \ T m—
Ew0of L _ i~
N 1400 1190
0 2 1 6 208200 :
0 L ¥107% L L
0 0.5 1 1.5 2 2.5 3
(@)
. . . -
: 12
U.Zk 01 0.0
el 3|
Py " (
AN WY | Lok,
= ol 0.02
o LoR,
0.2 0 2 1 6 295290 3
L k103 i
0 0.5 1 L5 2 2.5 3
)]
ml r— ‘ e . ;
< V‘V?\ i ‘ bl
2 o : k; | LR -
- ] Logy

i
o
[
ra
o

10 T— T T .

E 5 i e !l EQR 1
6@ “I S LQRMI
= l— i S 1 .n1 1
0 2 1 [§} 298 299 3
O I P2 (1 i I
0 0.5 1 L3 2 25 3
G
Time (3}
Fig.3: Simulation Results for a No-Load Step-Speed

Change to a 1500 rpm Reference: (a) Rotor Speed ; (b) D-
axis Current ; (c) Q-axis Current ; and (d) Electromagnetic
Torque . Responses are Shown for the PI Controller,
Discrete-Time LQR without Integral Action (LQRnol), and
Discrete-Time LQR with Integral Action (LQRI).

change in reference speed from 0 to 1500 rpm, starting
rom standstill, in a no-load condition. Fig.3(a) shows
the trade-off between transient response and steady-
state accuracy. The cascaded PI controller delivers the

fastest rise time of about 2 ms and zero steady-state
error while producing the largest overshoot of roughly 17
percent. The standard discrete-time LQR slows slightly,
reaching the setpoint in about 2.3 ms with overshoot near
3 percent, but retains a steady-state speed error of 10
rpm. The integral-action LQR arrives at the reference
in around 2.5 ms with moderate overshoot of 12 percent
and completely eliminates steady-state error, achieving
an optimal balance between damping and accuracy.

In Fig. 3(b) the d-axis current transient peaks around
0.12 A for the cascaded PI, around 0.03 A for the LQR
without integral action and around 0.016 A for the
integral-augmented LQR. The PI loop exhibits modest
oscillation before settling exactly to zero current. The
standard LQR leaves a small steady bias of 0.015 A while
the integral-augmented LQR returns to zero with the
fastest damping.

In Fig. 3(c) the q-axis current overshoot reaches
near 9.5 A for the PI controller, near 9 A for the LQR
without integral action and near 8.5 A for the integral-
augmented LQR before all three decay to zero in steady
state. These results confirm that adding integral action
both lowers peak currents and achieves exact current
regulation under no-load conditions.

Fig. 3(d) depicts the electromagnetic torque 7,. A
brief acceleration pulse occurs at the step (peak ~ 4.5
N'm in the left inset), followed by a decay to a negligible
steady level (right inset shows |Te| < 0.IN'm). The
cascaded PI trace exhibits the largest peak and a slight
undershoot; the non-integral LQR peaks lower with a
lightly damped tail; and the integral-action LQR gives the
lowest peak and the fastest decay, yielding the smallest
residual ripple. No sustained saturation is observed.

5.3 Disturbance Rejection Performance

Fig. 4 illustrates the systems response to a load
torque disturbance of 1.41 Nm applied at t = 0.5 s while
maintaining a constant reference speed of 1500 rpm. In
Fig. 4(a), following the 0 to 1.41 Nm load torque step at 0.5
s, the PI controller exhibits a speed dip to 555 rpm, while
the LQR with integral action controller reaches a similar
minimum of 550 rpm. The LQR without integral action
maintains a much smaller deviation, settling near 1050
rpm. In terms of recovery, the LQR with integral action
controller demonstrates the fastest dynamic response,
returning to within 5 rpm of the 1500 rpm reference in
35 ms. The PI controller follows with a slower recovery,
reaching the same margin in 80 ms. The LQR without
integral action fails to eliminate the steady-state error
due to the absence of integral compensation.

The d-axis current responses in Fig.4(b) reveal distinct
transient and steady-state behaviours. In the left inset,
the PI controller shows a pronounced dynamic response
with overshoot and undershoot, peaking near 0.15 A and
dipping below zero before settling. Both LQR controllers
exhibit fast responses with minimal transient deviation.

The LOR controllers, with and without integral action,
reach their final values almost immediately and show no
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Fig.4: Transient and Steady-State Responses to a Step
Change in Load Torque from 0 to 1.41 Nm at 0.5 s with
a 1500 rpm Speed Reference: (a) Rotor Speed ; (b) D-axis
Current ; (c) Q-axis Current ; and (d) Electromagnetic
Torque ; for PI, Discrete LQR without Integral Action and
Discrete LQR with Integral Action Controllers.

observable overshoot. In the steady state, as seen in the
right inset, the PI controller converges to zero error while
both LQR controllers maintain small but nonzero steady-
state values, indicating a slight d-axis current offset under
the same load condition. This nonzero d-axis current in
both LQR controllers results from their control design,
which does not explicitly regulate the d-axis current to
zero but rather focuses on optimizing system states based
on a predefined cost function.

In Fig. 4(c), the g-axis current responses reflect the
torque demand required to maintain constant speed at
1500 rpm. In the left inset, the LQR without integral
action exhibits the fastest rise time of 8 ms, while both the
LOR with integral action controller and the PI controller
follow with similar rise times of 10 ms. In terms of
overshoot, the PI controller shows the highest at 5 A,
followed by the LQR with integral action controller at
4.8 A, and the LQR without integral action with the
lowest overshoot at 4 A. These differences result from the
control characteristics. the LQR without integral action
is designed for fast state feedback without accumulated
error, leading to fast but lower amplitude response.

The PI controller lacks optimal gain tuning, resulting
in a higher overshoot. The LQR with integral action,
although optimized and equipped with integral action,
accumulates error more slowly at the beginning, slightly
increasing overshoot. In the steady state, as shown
in the right inset, all controllers settle to similar i q
values around 3.83 A, with slight deviations reflecting
the balance between tracking performance and current
regulation in each control design.

In Fig. 4(d), the electromagnetic torque T, shows how
the drive accommodates the applied load. Att=0.5s, the
load step induces a brief transient above the final value
(left inset); thereafter T, converges to the imposed level of
around 1.41 N-m with negligible ripple (right inset). The
cascaded PI trace exhibits the largest peak with a small
rebound; the nonintegral LQR produces the lowest peak
but a slightly longer decay; and the integral-action LQR
gives an intermediate peak with the shortest settling. No
torque saturation is observed.

Fig. 5 presents the system response under a combined
disturbance, where both the reference speed and the
load torque experience step changes simultaneously. The
speed reference is stepped from 0 to 1500 rpm, and the
load torque 77 is stepped from 0 to 1.41 N-m at t = 0 s. Fig.
5(a) shows the motor speed w,, tracking the reference
speed w),. The controller achieves tr of approximately
0.1248 s, a t, of 0.6466 s, and an overshoot of 2.83%.
The +2% bounds confirm that the speed stabilizes within
acceptable limits after the transient, demonstrating the
system’s ability to handle simultaneous changes in speed
reference and load torque.

Fig. 5(b) illustrates the i, response, which quickly rises
to approximately 3.8 A to supply the necessary torque
for both speed tracking and load disturbance compensa-
tion. The i, current stabilizes smoothly, indicating the
controller’s effective regulation of the torque-producing
current. Fig.5(c) displays the load torque profile T,
confirming the step change applied att =0 s.

These results validate the discrete LQR controller with
integral action as a robust solution for simultaneous
speed and load disturbances. The system exhibits fast
transient performance, acceptable overshoot, and zero
steady-state error, confirming the controller’s suitability
for practical PMSM drive applications.

5.4 Robustness Analysis

Fig. 6 presents the robustness evaluation of the
discrete LQR controller with integral action under pa-
rameter uncertainties, defined as scenario S4 in Table
3. The analysis considers +10%variations in the Rj
and L, as well as +15% variations in the J,, and B,,,
relative to the nominal motor model. These perturbations
are introduced independently, while maintaining a fixed
operating point at 1500 rpm with no-load condition.

The main plot in Fig.6 illustrates the w,, for each
perturbed case in comparison to the nominal model.
Across all cases, the system exhibits consistent and
stable tracking of the reference speed. Although slight
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differences in transient performance are observable,
especially under variations in J,, and B,,, the overall
settling behaviour remains within acceptable bounds,
and all responses converge smoothly to the desired speed
with negligible steady-state error. This confirms that
the controller maintains performance robustness against
realistic plant parameter deviations.

The inset plot shows the evolution of the Lyapunov
function as shown in (31) , computed at each time
step using the solution P of the DARE. The function
demonstrates monotonic decay in all cases, validating the
theoretical asymptotic stability of the closed-loop system
despite the presence of parameter uncertainty.

Together, these results confirm that the proposed
discrete LQR controller with integral action is robust not
only in maintaining speed regulation but also in pre-
serving closed-loop stability under bounded parametric
deviations.

6. CONCLUSION

This paper presents the design and simulation-based
evaluation of a discrete-time LQR controller with integral
action for precise speed regulation of PMSM drives.
The proposed method systematically addresses key chal-
lenges associated with digital control implementation
and steady-state accuracy. First, the PMSM model is
linearized and decoupled to enable state-space control
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Fig. 6: Robustness Evaluation of the Discrete LQR Con-
troller with Integral Action Under 10% Electrical and 15%
Mechanical Parameter Variations

formulation. The resulting continuous-time model is
then discretized using a ZOH method to ensure compat-
ibility with digital control platforms. An integral state is
augmented to the system to eliminate steady-state speed
tracking error. Finally, Bryson’s rule is employed to
systematically tune the LQR weighting matrices Q and R,
ensuring balanced performance between state regulation
and control effort.

Simulation results confirm that the proposed con-
troller delivers precise speed tracking with fast settling
and minimal overshoot, effectively rejects disturbances
from sudden load torque variations, and maintains robust
stability and performance under parameter deviations
ranging from +10% to +15%. These findings confirm the
effectiveness of the proposed controller in ensuring high-
performance PMSM speed control within practical imple-
mentation constraints. The systematic tuning framework
and simulation validation provide a solid foundation
for future work, including experimental validation on
hardware platforms and extension to sensorless control
schemes.
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NOMENCLATURE

ig,ig dq-axis currents

Uy, control inputs in dg frame

UggsUgq decoupled control voltages
in dg frame

Uggs Ugo feedforward
compensation voltages in
dq frame

u control effort

T, electromagnetic torque

Ty load torque

R stator resistance

L, synchronous inductance

vy permanent-magnet  flux
linkage

p pole pairs

eJ, rotor inertia

B, viscous-friction coefficient

K, torque constant

0, electrical rotor angle

@, mechanical speed

Uy, g control inputs in af frame

mg, my, m, modulation indices

Vie DC-link voltage

Uy, Up, U, phase-equivalent voltages

Uy Uy, U, phase voltages

Upf fset PWM offset voltage

Vinaxs Lmax inverter limits

Lgiod rated current

Orated rated speed

T, ated rated torque

w;, speed reference

T, sampling period

ld,max’ lq,max

Dy max

T,

accum

xI,max

Ugd max> uqq,max

ai
¢
T
MP

TP

@q

wy,

Tsettle

I

oS

K;pd ’ Kispd
K;pdo’ K'sde

1

current bounds for
Bryson’s rule

speed bounds for
Bryson’s rule
error-accumulation
horizon used to set x; ;.
integral-state bound for
Bryson’s rule
dg-voltage
Bryson’s rule
integral state weighting
damping ratio
mechanical time constant
peak overshoot
peak-to-peak interval
damped frequency
natural frequency

2% settling time

rise time

percent overshoot

bounds for

speed-loop PI gains
analytic initial PI gains
(LOR-matched)

. 3k
tracking error (), — ®,,)

Jiune tuning objective

tt OoR t, measured from the
LOR baseline

OStoR OS measured from the
LOR baseline

1,0, W3 weights in J,,,,,,

RM S(u) control-effort used in J,,,,,

X state vector

X ug augmented state vector

Xy integral state

A state transition matrix

B input matrix

E disturbance matrix

A. By E, discrete-time matrices

K state feedback gain matrix

J LOR quadratic cost

R input weighting matrix

Q state weighting matrix

A g Baugs Equaugmented matrices

Koug augmented state feedback
gain matrix

P DARE solution

AA,AB additive model perturba-
tions

V(xXg) Lyapunov (value) function
of the augmented state

PMSM permanent-magnet
synchronous motor

LOR linear quadratic regulator

PI proportional-integral con-
troller

DSP digital signal processor

PWM pulse width modulation

SVPWM space vector pulse width
modulation

VSI voltage source inverter

DARE discrete algebraic Riccati
equation

ZOH zero-order hold
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