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ABSTRACT

This paper presents a discrete-time linear quadratic
regulator (LQR) augmented with integral action for high-
performance speed control of permanent-magnet syn-
chronousmotor (PMSM) drives. Integral augmentation is
embedded directly into the discrete-time LQR framework
to eliminate steady-state error in both reference-speed
tracking and load disturbance rejection. A discrete-time
Lyapunov function is derived, with real-time evaluation
under parametric uncertainty, to guarantee asymptotic
stability of the closed-loop system. A MATLAB m-file
implementation enables fine-grained tuning of sampling
rates and seamless translation to embedded architectures.
Robustness is assessed via a comprehensive simulation
suite comprising step changes in speed reference, load-
torque disturbances, ±10% variations in stator resistance
and inductance, and ±15% variations in rotor inertia and
viscous friction. Head-to-head benchmarking against a
cascaded PI controller and a standard discrete-time LQR
(without integral action) under identical scenarios quan-
tifies improvements in convergence rate, overshoot, and
disturbance-rejection performance. Simulation results
demonstrate rapid convergence, minimal overshoot, and
zero steady-state error, confirming the proposed method
as a reliable, implementation-ready alternative for robust
PMSM speed control.

Keywords: Discrete-Time LQR, Integral action, Lya-
punov stability, Parametric uncertainty, PMSM speed
control

1. INTRODUCTION
PMSMs are widely adopted in high-performance

applications, including electric vehicles, robotics, and
aerospace systems, owing to their superior torque den-
sity, efficiency, and dynamic performance [1] ,[2]. How-
ever, intrinsic nonlinearities and parameter sensitivity
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pose challenges for conventional control strategies, es-
pecially under varying load and parameter disturbances
[3].

LQR control has emerged as a powerful solution
for such systems, offering formal optimality through
quadratic-cost minimization and ensuring closed-loop
stability [4]. Discrete-time LQR design is particularly
attractive in embedded and digital control, enabling
efficient implementation on microcontrollers and digital
signal processor (DSP) platforms. Nonetheless, classical
LQR lacks integral action, which can yield nonzero
steady-state errors when tracking references or rejecting
disturbances [5]. To address this limitation, integral
augmentation within the discrete-time LQR framework
has been proposed, improving steady-state accuracy
without sacrificing optimality [6], [7].

Recent advances in LQR applications have further
improved PMSM speed control. In [8], a discrete-
time LQR speed controller tailored for PMSMs is in-
troduced, demonstrating stable and efficient regulation.
Building on this, [9] proposes a continuous-time LQR
speed control scheme that highlights the potential of
optimal control in motor-drive systems. To address
fixed-gain limitations, [10] and [11] explore intelligent
tuning strategies such as the artificial-bee colony and
other nature-inspired methods, for autotuning LQR gains
under varying motor conditions. Disturbance handling
has also been enhanced, for example, via feedforward
compensation and state estimation [12], and by integrat-
ing disturbance observer or sliding-mode concepts into
the LQR framework [13]. More recently, multithreaded
LQR controllers have been reported for real-time state-
feedback implementation in PMSM applications [14],
reflecting interest in LQR-based strategies for embedded
motor control platforms.

Despite these advances, systematic robustness anal-
ysis for discrete-time implementations remains under-
developed, particularly with respect to parameter drift
(e.g., stator resistance and inductance) and operational
stresses (e.g., load-torque disturbances). Lyapunov-based
stability analysis and real-time evaluation of a Lyapunov
function have recently emerged as promising methods
for validating theoretical guarantees and assessing con-
troller performance under model uncertainties [15], [16].

This work adopts a fully discrete-time, simulation-
driven methodology to close the gap between theoretical
optimal control and practical embedded implementation.
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Controller weights are selected via Bryson’s rule to
balance speed-tracking and control effort. A MATLAB
m-file toolchain supports flexible sampling rate tuning,
direct code generation for DSP/microcontroller targets,
and real-time Lyapunov-function monitoring under pa-
rameter drift. Robustness is evaluated through scenario-
based tests, reference steps, load-torque disturbances,
±10% stator-parameter and ±15% rotor-parameter varia-
tions. This end-to-end workflow provides a reproducible
path from design to implementation and a fair basis for
head-to-head comparisons with a cascaded PI, a non-
integral discrete-time LQR, and the proposed LQR with
integral action, evidencing gains in convergence rate,
overshoot, and disturbance rejection. Accordingly, the
main contributions of this paper are as follows.
1. Integral action is embedded in the discrete-time LQR

framework for PMSM speed control, guaranteeing
zero steady-state error in both reference-speed track-
ing and load-disturbance rejection.

2. A discrete-time Lyapunov function is derived, with
real-time evaluation under parameter uncertainty to
demonstrate asymptotic stability of the closed-loop
system.

3. A MATLAB m-file implementation enables fine-
grained tuning of sampling rates and direct translation
to embedded architectures.

4. A comprehensive simulation suite, comprising step
changes in the speed reference, load-torque distur-
bances, ±10% stator-parameter variations, and ±15%
rotor-parameter variations, is used to assess robust-
ness.

5. Comparative evaluation of a cascade PI controller,
a discrete-time LQR without integral action, and
the proposed integral-action LQR under identical
scenarios is used to quantify improvements in speed-
tracking accuracy and disturbance rejection.

The proposed approach bridges theoretical control de-
sign with practical implementation, targeting embedded
applications where high-speed digital control of PMSM
drives is required.

2. MODEL LINEARIZATION AND PLANT REPRE-
SENTATION

2.1 Decoupling of Cross-Coupled Terms

In the 𝑑𝑞 frame, the PMSM voltage equations contain
cross-coupling terms that complicate independent axis
control. These terms are compensated using decoupling
voltages [8]

𝑢𝑑𝑜 = −𝐿𝑠𝑝𝜔𝑚𝑖𝑞 (1)

𝑢𝑞𝑜 = 𝐿𝑠𝑝𝜔𝑚𝑖𝑑 + 𝑝𝜔𝑚𝜓𝑓 . (2)

The actual control inputs are then

𝑢𝑑 = 𝑢𝑑𝑑 + 𝑢𝑑𝑜 (3)

𝑢𝑞 = 𝑢𝑞𝑞 + 𝑢𝑞𝑜. (4)

2.2 Continuous-Time Linearized Model
After applying decoupling and linearizing around the

nominal point (𝑖∗
𝑑 , 𝑖∗

𝑞 , 𝜔∗
𝑚) = (0, 𝐼∗

𝑞 , 𝜔∗
𝑚), the PMSM is

linearized to yield a decoupled continuous-time state-
space model [10][11][17]

𝑑𝑥
𝑑𝑡 = 𝐀𝑥(𝑡) + 𝐁𝑢(𝑡) + 𝐄𝑇𝐿(𝑡) (5)

with 𝑥(𝑡) =
⎡⎢⎢⎣

𝑖𝑑(𝑡)
𝑖𝑞(𝑡)

𝜔𝑚(𝑡)

⎤⎥⎥⎦
, 𝑢(𝑡) = [

𝑢𝑑𝑑(𝑡)
𝑢𝑞𝑞(𝑡) ],

𝐀 =
⎡
⎢
⎢
⎢
⎣

− 𝑅𝑠
𝐿𝑠

0 0
0 − 𝑅𝑠

𝐿𝑠
0

0 3
2

𝑝𝜓𝑓
𝐽𝑚

− 𝐵𝑚
𝐽𝑚

⎤
⎥
⎥
⎥
⎦

,𝐁 =
⎡
⎢
⎢
⎢
⎣

1
𝐿𝑠

0
0 1

𝐿𝑠
0 0

⎤
⎥
⎥
⎥
⎦

,

𝐄 =
⎡
⎢
⎢
⎣

0
0

− 1
𝐽𝑚

⎤
⎥
⎥
⎦

.

2.3 Discrete-Time Model via Zero-Order Hold
For real-time implementation, the model is discretized

using zero-order hold (ZOH) with sampling time 𝑇𝑠. The
discrete-time state-space model becomes

𝑥[𝑘 + 1] = 𝐀𝑑𝑥[𝑘] + 𝐁𝑑𝑢[𝑘] + 𝐄𝑑𝑇𝐿[𝑘] (6)

In the discrete-time state-space model, the state vector
at time step𝑘, denoted𝑥[𝑘], comprises the system states,
typically the d- and q-axis currents (A) and rotor speed
(rad/s). The subsequent state at the next time step is
represented by with the same unit composition. The con-
trol input vector 𝑢[𝑘]consists of the decoupled voltages
[𝑢𝑑𝑑[𝑘], 𝑢𝑞𝑞[𝑘]]𝑇 (V ). The load torque disturbance at step
is expressed as 𝑇𝐿[𝑘] (N·m). The model is governed by
matrices 𝐀𝑑 ,𝐁𝑑 , and 𝐄𝑑 .

The discrete matrices are computed as 𝐀𝑑 = 𝑒𝐀𝑇𝑠 ,
𝐁𝑑 = ∫𝑇𝑠

0 𝑒𝐀𝜏𝑑𝜏 ⋅ 𝐁 and 𝐄𝑑 = ∫𝑇𝑠
0 𝑒𝐀𝜏𝑑𝜏 ⋅ 𝐄.

This discrete model is used as the plant in the design
of the LQR controller in Section 3.

2.4 Space-Vector PWM and Average-Value Inverter
Model

To bridge the LQR controller’s output and the PMSM
plant, this study employs an average-value modelling ap-
proach for both the space vector pulse width modulation
(SVPWM) and the voltage source inverter (VSI). These
models provide a computationally efficient interface
suitable for control-oriented simulation and real-time
implementation.

· SVPWM
At each discrete sampling instant 𝑘, the control law

generates 𝑢𝑑[𝑘] and 𝑢𝑞[𝑘], which are then transformed
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into the 𝛼𝛽 frame voltages, 𝑢𝛼[𝑘] and 𝑢𝛽[𝑘], using the
inverse Park transformation

[
𝑢𝛼[𝑘]
𝑢𝛽[𝑘] ] = [

𝑐𝑜𝑠(𝜃𝑒[𝑘]) −𝑠𝑖𝑛(𝜃𝑒[𝑘])
𝑠𝑖𝑛(𝜃𝑒[𝑘]) 𝑐𝑜𝑠(𝜃𝑒[𝑘]) ] [

𝑢𝑑[𝑘]
𝑢𝑞[𝑘] ] .

(7)
Where 𝜃𝑒[𝑘] is the electrical rotor angle at discrete

time step 𝑘. The voltages 𝑢𝛼[𝑘] and 𝑢𝛽[𝑘] are then con-
verted into three-phase modulation indices, 𝑚𝑎[𝑘], 𝑚𝑏[𝑘],
𝑚𝑐[𝑘], using the average min-max SVPWM method as

⎡⎢⎢⎣

𝑚𝑎[𝑘]
𝑚𝑏[𝑘]
𝑚𝑐[𝑘]

⎤⎥⎥⎦
=

⎡
⎢
⎢
⎢
⎢
⎣

𝑢𝑎[𝑘]−𝑢𝑜𝑓𝑓𝑠𝑒𝑡[𝑘]
𝑉𝑑𝑐

+ 0.5
𝑢𝑏[𝑘]−𝑢𝑜𝑓𝑓𝑠𝑒𝑡[𝑘]

𝑉𝑑𝑐
+ 0.5

𝑢𝑐 [𝑘]−𝑢𝑜𝑓𝑓𝑠𝑒𝑡[𝑘]
𝑉𝑑𝑐

+ 0.5

⎤
⎥
⎥
⎥
⎥
⎦

. (8)

Where, 𝑉𝑑𝑐 is the DC link voltage of the VSI and
𝑢𝑎[𝑘], 𝑢𝑏[𝑘], 𝑢𝑐[𝑘] are the phase-equivalent voltages de-
rived from the 𝛼𝛽 frame via inverse Clarke transforma-
tion, and 𝑢𝑜𝑓𝑓𝑠𝑒𝑡[𝑘] is the average of the maximum and
minimum phase voltages at each sampling step. This
method ensures balanced PWM duty cycles with reduced
computational overhead.

· Average Value Model of Inverter
The inverter’s three-phase output voltages, 𝑣𝑎[𝑘],

𝑣𝑏[𝑘], 𝑣𝑐[𝑘], are computed using the modulation indices

⎡⎢⎢⎣

𝑣𝑎[𝑘]
𝑣𝑏[𝑘]
𝑣𝑐[𝑘]

⎤⎥⎥⎦
= 𝑉𝑑𝑐

3
⎡⎢⎢⎣

2 −1 −1
−1 2 −1
−1 −1 2

⎤⎥⎥⎦

⎡⎢⎢⎣

𝑚𝑎[𝑘]
𝑚𝑏[𝑘]
𝑚𝑐[𝑘]

⎤⎥⎥⎦
. (9)

This formulation ensures the sum of phase voltages re-
mains zero, maintaining balanced three-phase operation.

3. DISCRETE LQR CONTROLLER DESIGN WITH
INTEGRAL ACTION

3.1 Decoupling of Cross-Coupled Terms
The discrete LQR controller is designed for the lin-

earized, decoupled PMSM model in real units as shown
in (6). The objective is to determine the state feedback
control law as (10). that minimizes the infinite-horizon
quadratic cost function in (11).

𝑢[𝑘] = −𝐊𝑥[𝑘] (10)

𝐉 =
∞

∑
𝑘=0

(𝑥[𝑘]𝑇𝐐𝑥[𝑘] + 𝑢[𝑘]𝑇𝐑𝑢[𝑘]) (11)

Where, K denotes the state feedback gain matrix
designed using the LQR method. The symbol J repre-
sents the cost function that the LQR controller aims to
minimize. The matrix Q is the state weighting matrix,
which penalizes deviations of the system states, while R
is the input weighting matrix, which penalizes excessive
control effort. With Q ≥ 0 and R > 0, The optimal
gain matrix K is obtained by solve the discrete algebraic
Riccati equation (DARE) [19],

𝐏 = 𝐀𝑇
𝑑 𝐏𝐀𝑑

− 𝐀𝑇
𝑑 𝐏𝐁𝑑(𝐑 + 𝐁𝑇

𝑑 𝐏𝐁𝑑)−1𝐁𝑇
𝑑 𝐏𝐀𝑑 + 𝐐. (12)

The optimal feedback gain is

𝐊 = (𝐑 + 𝐁𝑇
𝑑 𝐏𝐁𝑑)−1𝐁𝑇

𝑑 𝐏𝐀𝑑 . (13)

While this LQR controller optimizes transient per-
formance, it does not inherently eliminate steady state
errors for step speed references. To achieve zero
steady state error, an integral action is incorporated by
augmenting the systemwith an integral state of the speed
error

𝑥𝐼 [𝑘 + 1] = 𝑥𝐼 [𝑘] + 𝑇𝑠(𝜔∗
𝑚[𝑘] − 𝜔𝑚[𝑘]). (14)

The augmented state vector becomes

𝑥𝑎𝑢𝑔[𝑘] = [
𝑥[𝑘]
𝑥𝐼 [𝑘] ] =

⎡
⎢
⎢
⎢
⎣

𝑖𝑑[𝑘]
𝑖𝑞[𝑘]

𝜔𝑚[𝑘]
𝑥𝐼 [𝑘]

⎤
⎥
⎥
⎥
⎦

. (15)

Finally, the augmented discrete-time system is written
as

𝑥𝑎𝑢𝑔[𝑘 + 1] = 𝐀𝑎𝑢𝑔𝑥𝑎𝑢𝑔[𝑘] + 𝐁𝑎𝑢𝑔𝑢[𝑘]+
𝐄𝑎𝑔𝑢𝜔∗

𝑚[𝑘] + 𝐃𝑎𝑢𝑔𝑇𝐿[𝑘]. (16)

Where 𝜔∗
𝑚[𝑘] denotes the speed reference at sample

𝑘. The augmented matrices are 𝐀𝑎𝑢𝑔 = [
𝐀𝑑 0

−𝐂𝜔𝑇𝑠 1 ],

𝐁𝑎𝑢𝑔 = [
𝐁𝑑
0 ], 𝐄𝑎𝑢𝑔 = [

0
𝑇𝑠 ], 𝐃𝑎𝑢𝑔 = [

𝐄𝑑
0 ], with

𝐂𝜔 = [ 0 0 1 ].

According to the augmented LQR controller is de-
signed by solving the DARE for the augmented system,
yielding the control law

𝑢[𝑘] = −𝐊𝑎𝑢𝑔𝑥𝑎𝑢𝑔[𝑘] = − [ 𝐊𝑥 𝐊𝐼 ] [
𝑥[𝑘]
𝑥𝐼 [𝑘] ] .

(17)
This ensures optimal transient response and zero

steady-state error for step speed references, providing
a robust and high-performance PMSM speed control
solution.

Moreover, unlike classical control methods where
bandwidth is explicitly designed , the bandwidth of the
discrete LQR controller is an implicit outcome of the
trade-off between state regulation ( Q and R ). The
solution of the DARE inherently balances these factors,
determining the controllers closed-loop bandwidth with-
out requiring explicit bandwidth specification. Therefore,
in this study, bandwidth is not directly designed but
rather emerges as a result of the systematic tuning
process.

3.2 Weight Selection via Bryson’s Rule
The weighting matrices Q and R are systematically

tuned using Bryson’s rule [18]. It is critical to emphasize
that the tuning of Q and R is performed on the aug-
mented discrete-time PMSM model with integral action,



4 ECTI TRANSACTIONS ON ELECTRICAL ENGINEERING, ELECTRONICS, AND COMMUNICATIONS VOL.23, NO.3 OCTOBER 2025

Fig. 1: Bryson’s Rule Tuning of Q and R.

not on the nominal linearized model alone.
Bryson’s rule assigns diagonal LQR weights as the

inverse square of the maximum acceptable magnitudes
of the states and inputs [20]. Fig.1 illustrates the
implementation used to select the diagonal weighting
matrices Q and R. The state components are 𝑥𝑖 ∈
{𝑖𝑑 , 𝑖𝑞 , 𝜔𝑚, 𝑥𝐼 } for 𝑖 = 1, … , 4, and the input components
are 𝑢𝑗 ∈ {𝑢𝑑 , 𝑢𝑞} for 𝑗 = 1, 2. For each component, a
maximum acceptable magnitude 𝑥(max,(𝑖)) or 𝑢(max,(𝑗)) is
specified. The matrices Q and R are initialized as zero
matrices of size 4 × 4 and 2 × 2, respectively. For each
state index 𝑖,

𝑄(𝑖,𝑖) = 1
𝑥2

(𝑚𝑎𝑥(𝑖))
. (18)

For each input index 𝑗,

𝑅(𝑗,𝑗) = 1
𝑢2

(𝑚𝑎𝑥(𝑗))
. (19)

This assignment satisfies Bryson’s rule. Any unit-
sized deviation of a state or input, relative to its specified
maximum, contributes equally to the LQR cost.

3.3 PI Tuning toMatch LQR Bandwidth and Damp-
ing

⋅ Closed-Loop Dynamics Equivalence with the LQR Base-
line

This subsection concerns the outer speed loop. The
inner current loops (𝑖𝑑 , 𝑖𝑞) are tuned once by bandwidth
separation (approximately 5 to 10 times faster than the
speed loop) and kept identical across PI, LQR with and

without integral action for a fair comparison. With a fast-
inner current loop, the speed plant from torque (or 𝑖∗

𝑞 ) to
speed is well approximated by a first-order continuous
model

𝐆(𝑠) = 𝐾𝑡
𝐽𝑚𝑠 + 𝐵𝑚

= 𝐾
𝜏𝑠 + 1 , (20)

where 𝐾 = 𝐾𝑡
𝐵𝑚

and𝜏 = 𝐽𝑚
𝐵𝑚

. To extract the damping
ratio and natural frequency from the LQR step response,
the signal is first normalized to a unit step. The damp-
ing ratio(𝜁)is determined from the peak overshoot(𝑀𝑝)
using the standard second-order relation. The peak-to-
peak interval (𝑇𝑝)between successive maxima yields the
damped frequency(𝜔𝑑 = 2𝜋

𝑇𝑝
), from which the natural

frequency follows as 𝜔𝑛 = 𝜔𝑑
√1−𝜁2 . For effectively non-

oscillatory responses, 𝜔𝑛 may be estimated from the 2%
settling time (𝑇𝑠𝑒𝑡𝑡𝑙𝑒).

𝜁 = √
(𝑙𝑛𝑀𝑝)2

𝜋2 + (𝑙𝑛𝑀𝑝)2 , 𝜔𝑛 ≈ 4
𝜁𝑇𝑠𝑒𝑡𝑡𝑙𝑒

(21)

For a continuous PI controller, 𝐂(𝑠) = 𝐾𝑠𝑝𝑑
𝑝 + 𝐾𝑠𝑝𝑑

𝑖
𝑠 ,

matching the unity-feedback characteristic

𝜏𝑠2 + (1 + 𝐾𝐾𝑠𝑝𝑑
𝑝 )𝑠 + 𝐾𝐾𝑠𝑝𝑑

𝑖 = 𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔2
𝑛 (22)

gives closed-form seed gains

𝐾𝑠𝑝𝑑0
𝑝 = 2𝜁𝜔𝑛𝐽𝑚 − 𝐵𝑚

𝐾𝑡
, 𝐾𝑠𝑝𝑑0

𝑖 = 𝜔2
𝑛𝐽𝑚
𝐾𝑡

(23)

Then, implementation is discrete

𝐂(𝑧) = 𝐾𝑠𝑝𝑑
𝑝 + 𝐾𝑠𝑝𝑑

𝑖
𝑇𝑠

1 − 𝑧−1 (24)

and control output,

𝑢[𝑘] = 𝑢[𝑘−1]+𝐾𝑠𝑝𝑑
𝑝 (𝑒[𝑘]−𝑒[𝑘−1])+𝐾𝑠𝑝𝑑

𝑖 𝑇𝑠𝑒[𝑘] (25)

with output saturation and integrator anti-windup,
where 𝑒[𝑘] = 𝜔∗[𝑘] − 𝜔[𝑘].

⋅ Two-Stage Tuning Procedure
Step 1 Analytic initial gains: The speed-loop PI gains

𝐾𝑠𝑝𝑑0
𝑝 and 𝐾𝑠𝑝𝑑0

𝑖 are computed from (23) by using the
LQR baseline (measured 𝑡𝐿𝑄𝑅

𝑟 and 𝑂𝑆𝐿𝑄𝑅) together with
the plant parameters 𝐽𝑚, 𝐵𝑚and𝐾𝑡. This choice matches
the LQR intended bandwidth and damping on the ideal
(nominal) plant.

Step 2 Practical refinement: Candidate gains are
evaluated in a neighborhood of the analytic initial values
𝐾𝑠𝑝𝑑0

𝑝 and 𝐾𝑠𝑝𝑑0
𝑖 . Let 𝛼𝑝 ∈ [0.5, 3], 𝛼𝑖 ∈ [0.05, 1.5]and

set 𝐾𝑠𝑝𝑑
𝑝 = 𝛼𝑝𝐾𝑠𝑝𝑑0

𝑝 , 𝐾𝑠𝑝𝑑
𝑖 = 𝛼𝑖𝐾

𝑠𝑝𝑑0
𝑖 . Each candi-

date is assessed using the discrete speed-loop model,
which accounts for the inner-loop bandwidth, actuator
saturation, and anti-windup. For each candidate, a
speed step is simulated and the rise time 𝑡𝑟, percent
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overshoot OS, and control-effort 𝑅𝑀𝑆(𝑢) are recorded.
The implemented gains are those that minimize subject
to practical constraints: no sustained saturation (e.g., >
50 ms) and classical robustness margins (phase margin
≥ 45∘, gain margin ≥ 6 dB). The quantities 𝑡𝐿𝑄𝑅

𝑟 and
𝑂𝑆𝐿𝑄𝑅 are measured from the LQR baseline. The
weights 𝜔1, 𝜔2,and 𝜔3 are nonnegative (typical values
𝜔1 = 𝜔2 = 1, 𝜔3 = 0.5). The control-effort RMS used
in 𝐽𝑡𝑢𝑛𝑒 is defined by

𝐽𝑡𝑢𝑛𝑒 = 𝜔1(𝑡𝑟 − 𝑡𝐿𝑄𝑅
𝑟 )2 + 𝜔2(𝑂𝑆 − 𝑂𝑆𝐿𝑄𝑅)2

+ 𝜔3𝑅𝑀𝑆(𝑢)2, (26)

𝑅𝑀𝑆(𝑢) =
√√√√
⎷

1
𝑁

𝑘0+𝑁−1

∑
𝑘=𝑘0

𝑢[𝑘]2, (27)

where 𝑘0 is the step index and 𝑁 = 𝑇𝑠𝑒𝑡𝑡𝑙𝑒/𝑇𝑠.

4. STABILITY ANALYSIS
4.1 Stability of the Augmented Discrete-Time Sys-

tem
According to (15) - (17), the resulting in closed-loop

system dynamics is represented as

𝑥𝑎𝑢𝑔[𝑘 + 1] = (𝐀𝑎𝑢𝑔 − 𝐁𝑎𝑢𝑔𝐊𝑎𝑢𝑔)𝑥𝑎𝑢𝑔[𝑘]
+ 𝐄𝑎𝑔𝑢𝜔∗

𝑚[𝑘] + 𝐃𝑎𝑢𝑔𝑇𝐿[𝑘]. (28)

For stability analysis, focusing on the homogeneous
system without external inputs is considered as

𝑥𝑎𝑢𝑔[𝑘 + 1] = (𝐀𝑎𝑢𝑔 − 𝐁𝑎𝑢𝑔𝐊𝑎𝑢𝑔)𝑥𝑎𝑢𝑔[𝑘]. (29)

4.2 Lyapunov Stability Proof
The stability of the closed-loop system is analyzed by

constructing a Lyapunov candidate function based on the
solution P > 0 of the DARE

𝐏 = 𝐀𝑇
𝑎𝑢𝑔𝐏𝐀𝑎𝑢𝑔

− 𝐀𝑇
𝑎𝑢𝑔𝐏𝐁𝑎𝑢𝑔(𝐑 + 𝐁𝑇

𝑎𝑢𝑔𝐏𝐁𝑎𝑢𝑔)−1𝐁𝑇
𝑎𝑢𝑔𝐏𝐀𝑎𝑢𝑔

+ 𝐐.
(30)

The Lyapunov function is defined as

𝐕(𝑥𝑎𝑢𝑔) = 𝑥𝑇
𝑎𝑢𝑔𝐏𝑥𝑎𝑢𝑔 . (31)

This function is positive definite for all 𝑥𝑎𝑢𝑔 ≠ 0 with
P > 0. The discrete Lyapunov inequality is satisfied

V(𝑥𝑎𝑢𝑔[𝑘 + 1] − V𝑥𝑎𝑢𝑔[𝑘]) =
𝑥𝑎𝑢𝑔[𝑘]𝑇 ((A𝑎𝑢𝑔 − B𝑎𝑢𝑔K𝑎𝑢𝑔)𝑇P(A𝑎𝑢𝑔 − B𝑎𝑢𝑔K𝑎𝑢𝑔) − P)
𝑥𝑎𝑢𝑔 < 0 (32)

By using Lyapunov stability theorem, this ensures that

lim
𝑘→∞

𝐕(𝑥𝑎𝑢𝑔[𝑘]) (33)

lim
𝑘→∞

(𝑥𝑎𝑢𝑔[𝑘]) (34)

Therefore, the closed-loop augmented system under
the designed LQR controller is asymptotically stable.

Table 1: Motor Parameters and Inverter Specifications.

Table 2: LQR Controller Weights via Bryson’s Rule.

4.3 Stability under Parameter Uncertainty

In practical PMSM systems, parameters such as 𝑅𝑠,
𝐿𝑠, 𝐽𝑚 and 𝐵𝑚 are subjected to variations. These
uncertainties can be modeled as additive perturbations,
𝐀𝑎𝑢𝑔 + Δ𝐀 and 𝐁𝑎𝑢𝑔 + Δ𝐁. The perturbed closed-loop
system becomes

𝑥𝑎𝑢𝑔[𝑘 + 1] =
(𝐀𝑎𝑢𝑔 − 𝐁𝑎𝑢𝑔𝐊𝑎𝑢𝑔 + Δ𝐀 − Δ𝐁𝐊𝑎𝑢𝑔)𝑥𝑎𝑢𝑔[𝑘] (35)

Stability is maintained if the perturbations are suffi-
ciently small such that the Lyapunov inequality remains
satisfied

(𝐀𝑎𝑢𝑔 − 𝐁𝑎𝑢𝑔𝐊𝑎𝑢𝑔 + Δ𝐀 − Δ𝐁𝐊𝑎𝑢𝑔)𝑇𝐏
(𝐀𝑎𝑢𝑔 − 𝐁𝑎𝑢𝑔𝐊𝑎𝑢𝑔 + Δ𝐀 − Δ𝐁𝐊𝑎𝑢𝑔) − 𝐏 < 0. (36)

This condition defines the systems robust stability
margin. For the designed LQR controller, theoretical
guarantees and simulations confirm that stability is
preserved for typical parameter uncertainties within
±10%to ±15%.
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Table 3: Simulation Scenarios.

Fig. 2: Block Diagrams of the Three Discrete-Time PMSM
Speed-Control Schemes: (a) Cascaded PI Controllers, (b)
Standard LQR without Integral Action with Explicit Decou-
pling, (c) Proposed LQR with Integral Action.

5. SIMULATION RESULTS AND PERFORMANCE
VALIDATION

5.1 Simulation Framework

The PMSMmodel used in this study is based on a typ-
ical surface-mounted machine commonly employed in
industrial applications. Table 1 summarizes the key rated
parameters of the PMSM and the inverter specifications
used for simulation studies. These parameters form the

foundation for system modelling, controller design, and
the selection of maximum acceptable values for the state
and input variables in the Bryson’s rule tuning process.
The motors electrical and mechanical characteristics,
along with the inverter’s voltage and current limits,
ensure that the simulation scenarios reflect realistic and
practical operational conditions.

The maximum acceptable values for the state and
input variables in Bryson’s rule are selected based on
the PMSMs rated parameters and practical operational
limits. The current limits 𝑖𝑑,𝑚𝑎𝑥 and 𝑖𝑞,𝑚𝑎𝑥 are set slightly
above themotors rated peak current to allow for transient
conditions. The maximum rotor speed is set to 𝜔𝑚,𝑚𝑎𝑥 =
1.5𝜔𝑟𝑎𝑡𝑒𝑑 to provide an overspeed margin. The integral-
state bound is chosen as 𝑥𝐼,𝑚𝑎𝑥 = 𝑒𝑚𝑎𝑥𝑇𝑎𝑐𝑐𝑢𝑚 with 𝑒𝑚𝑎𝑥 ≈
𝜔𝑟𝑎𝑡𝑒𝑑 and 𝑇𝑎𝑐𝑐𝑢𝑚 = 1 s. The maximum control signals
𝑢𝑑𝑑,𝑚𝑎𝑥 and 𝑢𝑞𝑞,𝑚𝑎𝑥 reflect expected controller output
magnitudes and are distinct from the total motor voltages
𝑢𝑑 and 𝑢𝑞 which also include decoupling terms. This
selection ensures a systematic and balanced LQR tuning
aligned with realistic system constraints, as summarized
in Table 2.

The simulation environment, implemented entirely
in MATLAB m-files, adopts a multi-rate architecture as
illustrated in Fig. 2. Three discrete-time speed control
schemes - (a) cascaded PI controllers, (b) a standard LQR
without integral action plus explicit decoupling, and (c)
the proposed LQR with integral action - execute their
control algorithms at a 10 kHz sampling rate, while
the inverter and PMSM plant model run at 100 kHz
to emulate typical SVPWM switching frequencies and
capture high-frequency dynamics. This setup closely
reproduces the timing and computational constraints of
real-time digital control hardware, thereby ensuring that
the design and performance validation remain practically
relevant.

A series of simulation scenarios are designed to
evaluate the controller’s performance in speed tracking,
disturbance rejection, and robustness under parameter
variations. These scenarios, summarized Table 3, include
step changes in reference speed, load torque, and com-
bined disturbances.

Moreover, Table 4 summarizes the controller tuning
parameters for the cascaded PI, discrete LQR, and discrete
LQR with integral action schemes. For the PI controller,
the table lists the proportional and integral gains for
both the speed and current control loops. For the LQR-
based controllers, the state weighting matrix Q, input
weighting matrix R, and the integral state weighting
𝑞𝐼 used in the LQR with integral action design are
provided. The exact definitions of the Q and R matrices
are given below the table, reflecting the trade-offs applied
in the optimal control design to balance state regulation
and control effort.

5.2 Speed Tracking Performance

Fig. 3 presents the speed tracking performance of the
discrete LQR controller with integral action under a step
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Table 4: Controller Tuning Parameters.

Fig. 3: Simulation Results for a No-Load Step-Speed
Change to a 1500 rpm Reference: (a) Rotor Speed ; (b) D-
axis Current ; (c) Q-axis Current ; and (d) Electromagnetic
Torque . Responses are Shown for the PI Controller,
Discrete-Time LQR without Integral Action (LQRnoI), and
Discrete-Time LQR with Integral Action (LQRI).

change in reference speed from 0 to 1500 rpm, starting
rom standstill, in a no-load condition. Fig.3(a) shows
the trade-off between transient response and steady-
state accuracy. The cascaded PI controller delivers the

fastest rise time of about 2 ms and zero steady-state
error while producing the largest overshoot of roughly 17
percent. The standard discrete-time LQR slows slightly,
reaching the setpoint in about 2.3 mswith overshoot near
3 percent, but retains a steady-state speed error of 10
rpm. The integral-action LQR arrives at the reference
in around 2.5 ms with moderate overshoot of 12 percent
and completely eliminates steady-state error, achieving
an optimal balance between damping and accuracy.

In Fig. 3(b) the d-axis current transient peaks around
0.12 A for the cascaded PI, around 0.03 A for the LQR
without integral action and around 0.016 A for the
integral-augmented LQR. The PI loop exhibits modest
oscillation before settling exactly to zero current. The
standard LQR leaves a small steady bias of 0.015 A while
the integral-augmented LQR returns to zero with the
fastest damping.

In Fig. 3(c) the q-axis current overshoot reaches
near 9.5 A for the PI controller, near 9 A for the LQR
without integral action and near 8.5 A for the integral-
augmented LQR before all three decay to zero in steady
state. These results confirm that adding integral action
both lowers peak currents and achieves exact current
regulation under no-load conditions.

Fig. 3(d) depicts the electromagnetic torque 𝑇𝑒. A
brief acceleration pulse occurs at the step (peak ≈ 4.5
N·m in the left inset), followed by a decay to a negligible
steady level (right inset shows |𝑇𝑒| < 0.1N·m). The
cascaded PI trace exhibits the largest peak and a slight
undershoot; the non-integral LQR peaks lower with a
lightly damped tail; and the integral-action LQR gives the
lowest peak and the fastest decay, yielding the smallest
residual ripple. No sustained saturation is observed.

5.3 Disturbance Rejection Performance

Fig. 4 illustrates the systems response to a load
torque disturbance of 1.41 Nm applied at t = 0.5 s while
maintaining a constant reference speed of 1500 rpm. In
Fig. 4(a), following the 0 to 1.41 Nm load torque step at 0.5
s, the PI controller exhibits a speed dip to 555 rpm, while
the LQR with integral action controller reaches a similar
minimum of 550 rpm. The LQR without integral action
maintains a much smaller deviation, settling near 1050
rpm. In terms of recovery, the LQR with integral action
controller demonstrates the fastest dynamic response,
returning to within 5 rpm of the 1500 rpm reference in
35 ms. The PI controller follows with a slower recovery,
reaching the same margin in 80 ms. The LQR without
integral action fails to eliminate the steady-state error
due to the absence of integral compensation.

The d-axis current responses in Fig.4(b) reveal distinct
transient and steady-state behaviours. In the left inset,
the PI controller shows a pronounced dynamic response
with overshoot and undershoot, peaking near 0.15 A and
dipping below zero before settling. Both LQR controllers
exhibit fast responses with minimal transient deviation.

The LQR controllers, with and without integral action,
reach their final values almost immediately and show no
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Fig. 4: Transient and Steady-State Responses to a Step
Change in Load Torque from 0 to 1.41 Nm at 0.5 s with
a 1500 rpm Speed Reference: (a) Rotor Speed ; (b) D-axis
Current ; (c) Q-axis Current ; and (d) Electromagnetic
Torque ; for PI, Discrete LQR without Integral Action and
Discrete LQR with Integral Action Controllers.

observable overshoot. In the steady state, as seen in the
right inset, the PI controller converges to zero error while
both LQR controllers maintain small but nonzero steady-
state values, indicating a slight d-axis current offset under
the same load condition. This nonzero d-axis current in
both LQR controllers results from their control design,
which does not explicitly regulate the d-axis current to
zero but rather focuses on optimizing system states based
on a predefined cost function.

In Fig. 4(c), the q-axis current responses reflect the
torque demand required to maintain constant speed at
1500 rpm. In the left inset, the LQR without integral
action exhibits the fastest rise time of 8ms, while both the
LQR with integral action controller and the PI controller
follow with similar rise times of 10 ms. In terms of
overshoot, the PI controller shows the highest at 5 A,
followed by the LQR with integral action controller at
4.8 A, and the LQR without integral action with the
lowest overshoot at 4 A.These differences result from the
control characteristics. the LQR without integral action
is designed for fast state feedback without accumulated
error, leading to fast but lower amplitude response.

The PI controller lacks optimal gain tuning, resulting
in a higher overshoot. The LQR with integral action,
although optimized and equipped with integral action,
accumulates error more slowly at the beginning, slightly
increasing overshoot. In the steady state, as shown
in the right inset, all controllers settle to similar 𝑖𝑞
values around 3.83 A, with slight deviations reflecting
the balance between tracking performance and current
regulation in each control design.

In Fig. 4(d), the electromagnetic torque 𝑇𝑒 shows how
the drive accommodates the applied load. At t = 0.5 s, the
load step induces a brief transient above the final value
(left inset); thereafter 𝑇𝑒 converges to the imposed level of
around 1.41 N·m with negligible ripple (right inset). The
cascaded PI trace exhibits the largest peak with a small
rebound; the nonintegral LQR produces the lowest peak
but a slightly longer decay; and the integral-action LQR
gives an intermediate peak with the shortest settling. No
torque saturation is observed.

Fig. 5 presents the system response under a combined
disturbance, where both the reference speed and the
load torque experience step changes simultaneously. The
speed reference is stepped from 0 to 1500 rpm, and the
load torque 𝑇𝐿 is stepped from 0 to 1.41 N·m at t = 0 s. Fig.
5(a) shows the motor speed 𝜔𝑚 tracking the reference
speed 𝜔∗

𝑚. The controller achieves tr of approximately
0.1248 s, a 𝑡𝑠 of 0.6466 s, and an overshoot of 2.83%.
The ±2% bounds confirm that the speed stabilizes within
acceptable limits after the transient, demonstrating the
system’s ability to handle simultaneous changes in speed
reference and load torque.

Fig. 5(b) illustrates the 𝑖𝑞 response, which quickly rises
to approximately 3.8 A to supply the necessary torque
for both speed tracking and load disturbance compensa-
tion. The 𝑖𝑞 current stabilizes smoothly, indicating the
controller’s effective regulation of the torque-producing
current. Fig.5(c) displays the load torque profile 𝑇𝐿,
confirming the step change applied at t = 0 s.

These results validate the discrete LQR controller with
integral action as a robust solution for simultaneous
speed and load disturbances. The system exhibits fast
transient performance, acceptable overshoot, and zero
steady-state error, confirming the controller’s suitability
for practical PMSM drive applications.

5.4 Robustness Analysis

Fig. 6 presents the robustness evaluation of the
discrete LQR controller with integral action under pa-
rameter uncertainties, defined as scenario S4 in Table
3. The analysis considers ±10%variations in the 𝑅𝑠
and 𝐿𝑠, as well as ±15% variations in the 𝐽𝑚 and 𝐵𝑚,
relative to the nominal motormodel. These perturbations
are introduced independently, while maintaining a fixed
operating point at 1500 rpm with no-load condition.

The main plot in Fig.6 illustrates the 𝜔𝑚 for each
perturbed case in comparison to the nominal model.
Across all cases, the system exhibits consistent and
stable tracking of the reference speed. Although slight
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Fig. 5: System Response of the Discrete LQR Controller
with Integral Action Under a Combined Step Disturbance:
Reference Speed Step from 0 to 1500 rpm and Load Torque
Step from 0 to 1.41 Nm at t = 0 s. (a) Motor speed an , with
2% bounds, and (b) response. (c) Load torque profile.

differences in transient performance are observable,
especially under variations in 𝐽𝑚 and 𝐵𝑚, the overall
settling behaviour remains within acceptable bounds,
and all responses converge smoothly to the desired speed
with negligible steady-state error. This confirms that
the controller maintains performance robustness against
realistic plant parameter deviations.

The inset plot shows the evolution of the Lyapunov
function as shown in (31) , computed at each time
step using the solution P of the DARE. The function
demonstrates monotonic decay in all cases, validating the
theoretical asymptotic stability of the closed-loop system
despite the presence of parameter uncertainty.

Together, these results confirm that the proposed
discrete LQR controller with integral action is robust not
only in maintaining speed regulation but also in pre-
serving closed-loop stability under bounded parametric
deviations.

6. CONCLUSION

This paper presents the design and simulation-based
evaluation of a discrete-time LQR controller with integral
action for precise speed regulation of PMSM drives.
The proposed method systematically addresses key chal-
lenges associated with digital control implementation
and steady-state accuracy. First, the PMSM model is
linearized and decoupled to enable state-space control

Fig. 6: Robustness Evaluation of the Discrete LQR Con-
troller with Integral Action Under 10% Electrical and 15%
Mechanical Parameter Variations

formulation. The resulting continuous-time model is
then discretized using a ZOH method to ensure compat-
ibility with digital control platforms. An integral state is
augmented to the system to eliminate steady-state speed
tracking error. Finally, Bryson’s rule is employed to
systematically tune the LQR weighting matrices Q and R,
ensuring balanced performance between state regulation
and control effort.

Simulation results confirm that the proposed con-
troller delivers precise speed tracking with fast settling
and minimal overshoot, effectively rejects disturbances
from sudden load torque variations, andmaintains robust
stability and performance under parameter deviations
ranging from ±10% to ±15%. These findings confirm the
effectiveness of the proposed controller in ensuring high-
performance PMSM speed control within practical imple-
mentation constraints. The systematic tuning framework
and simulation validation provide a solid foundation
for future work, including experimental validation on
hardware platforms and extension to sensorless control
schemes.
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NOMENCLATURE

𝑖𝑑 , 𝑖𝑞 dq-axis currents [A]
𝑢𝑑 , 𝑢𝑞 control inputs in dq frame [V ]
𝑢𝑑𝑑 , 𝑢𝑞𝑞 decoupled control voltages

in dq frame
[V ]

𝑢𝑑𝑜, 𝑢𝑞𝑜 feedforward
compensation voltages in
dq frame

[V ]

u control effort [V ]
𝑇𝑒 electromagnetic torque [N⋅m]
𝑇𝐿 load torque [N⋅m]
𝑅𝑠 stator resistance [Ω]
𝐿𝑠 synchronous inductance [H]
𝜓𝑓 permanent-magnet flux

linkage
[Wb]

p pole pairs [–]
e 𝐽𝑚 rotor inertia [𝑘𝑔 ⋅ 𝑚2]
𝐵𝑚 viscous-friction coefficient [𝑁⋅𝑚⋅𝑠

𝑟𝑎𝑑 ]
𝐾𝑡 torque constant [𝑁⋅𝑚

𝐴 ]
𝜃𝑒 electrical rotor angle [rad]
𝜔𝑚 mechanical speed [rad/s]
𝑢𝛼 , 𝑢𝛽 control inputs in 𝛼𝛽 frame [V ]
𝑚𝑎, 𝑚𝑏, 𝑚𝑐 modulation indices [–]
𝑉𝑑𝑐 DC-link voltage [V ]
𝑢𝑎, 𝑢𝑏, 𝑢𝑐 phase-equivalent voltages [V ]
𝑣𝑎, 𝑣𝑏, 𝑣𝑐 phase voltages [V ]
𝑢𝑜𝑓𝑓𝑠𝑒𝑡 PWM offset voltage [V ]
𝑉𝑚𝑎𝑥, 𝐼𝑚𝑎𝑥 inverter limits [V ],[A]
𝐼𝑟𝑎𝑡𝑒𝑑 rated current [A𝑟𝑚𝑠]
𝜔𝑟𝑎𝑡𝑒𝑑 rated speed [rpm]
𝑇𝑟𝑎𝑡𝑒𝑑 rated torque [N·m]
𝜔∗

𝑚 speed reference [rad/s]
𝑇𝑠 sampling period [s]
𝑖𝑑,𝑚𝑎𝑥, 𝑖𝑞,𝑚𝑎𝑥 current bounds for

Bryson’s rule
[A]

𝜔𝑚,𝑚𝑎𝑥 speed bounds for
Bryson’s rule

[rpm]

𝑇𝑎𝑐𝑐𝑢𝑚 error-accumulation
horizon used to set 𝑥𝐼,𝑚𝑎𝑥

[s]

𝑥𝐼,𝑚𝑎𝑥 integral-state bound for
Bryson’s rule

[rpm]

𝑢𝑑𝑑,𝑚𝑎𝑥, 𝑢𝑞𝑞,𝑚𝑎𝑥 dq-voltage bounds for
Bryson’s rule

[V ]

𝑞𝐼 integral state weighting [–]
𝜁 damping ratio [–]
𝜏 mechanical time constant [s]
𝑀𝑃 peak overshoot [–]
𝑇𝑃 peak-to-peak interval [s]
𝜔𝑑 damped frequency [rad/s]
𝜔𝑛 natural frequency [rad/s]
𝑇𝑠𝑒𝑡𝑡𝑙𝑒 2% settling time [s]
𝑡𝑟 rise time [s]
OS percent overshoot [%]
𝐾𝑠𝑝𝑑

𝑃 , 𝐾𝑠𝑝𝑑
𝑖 speed-loop PI gains [–]

𝐾𝑠𝑝𝑑0
𝑃 , 𝐾𝑠𝑝𝑑0

𝑖 analytic initial PI gains
(LQR-matched)

[–]

e tracking error (𝜔∗
𝑚 − 𝜔𝑚) [rad/s]

𝐽𝑡𝑢𝑛𝑒 tuning objective [–]
𝑡𝐿𝑄𝑅
𝑟 𝑡𝑟 measured from the

LQR baseline
[s]

𝑂𝑆𝐿𝑄𝑅 OS measured from the
LQR baseline

[%]

𝜔1, 𝜔2, 𝜔3 weights in 𝐽𝑡𝑢𝑛𝑒 [–]
𝑅𝑀𝑆(𝑢) control-effort used in 𝐽𝑡𝑢𝑛𝑒 [–]
x state vector
𝑥𝑎𝑢𝑔 augmented state vector
𝑥𝐼 integral state
A state transition matrix
B input matrix
E disturbance matrix
𝐀𝑑 ,𝐁𝑑 ,𝐄𝑑 discrete-time matrices
K state feedback gain matrix
J LQR quadratic cost
R input weighting matrix
Q state weighting matrix
𝐀𝑎𝑢𝑔 ,𝐁𝑎𝑢𝑔 ,𝐄𝑎𝑢𝑔augmented matrices
𝐊𝑎𝑢𝑔 augmented state feedback

gain matrix
P DARE solution
𝛥A,𝛥B additive model perturba-

tions
V(x𝑎𝑢𝑔) Lyapunov (value) function

of the augmented state
PMSM permanent-magnet

synchronous motor
LQR linear quadratic regulator
PI proportional-integral con-

troller
DSP digital signal processor
PWM pulse width modulation
SVPWM space vector pulse width

modulation
VSI voltage source inverter
DARE discrete algebraic Riccati

equation
ZOH zero-order hold
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