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ABSTRACT

The purpose of this study is to introduce an
innovative  method, the Adomian  modified
decomposition method, to solve the vibration problem
of thin elastic plates. By applying the present method to
vibration problem of thin plates, the fundamental and
higher frequencies as well as their mode shapes can be
obtained easily for common and complicated boundary
conditions, including elastic supports. Other benefits of
using this method can be realized in terms of rapid
convergence, small computational expensiveness and
stability in calculation. The significant effects such as
effects of boundary conditions, aspect ratios and
translational and rotational spring constants, which
lead to considerable changes in frequency results and
mode shapes, are investigated and discussed.

Keyword: The Adomian modified decomposition method;
Natural frequencies; Mode shapes; Vibration of plates

1. INTRODUCTION

The Adomain modified decomposition method
( AMDM) has been successfully applied to solve
differential and integral equations of linear and
nonlinear problems in the fields of mathematics,
physics, biology and chemistry; while, for mechanical
engineering, it is very rare. The principle of this method
is to decompose a solution into an infinite series which
converges to exact solutions rapidly. The standard ADM
and modified ADM were reviewed and discussed in Ref.
(-

In mechanics, the standard ADM was applied to

solve vibration analysis of one-stepped and multiple-
stepped beams 51 - 161. In the study of Lai et al. (77 the
standard ADM was also used to analyze free vibration of
Euler-Bernoulli beams. In their further investigations,
they have extended their works to deal with free
vibration of non-uniform Euler-Bernoulli beams and
uniform Timoshenko beams using the modified version
[81-191. From literature survey, it is seen that the AMDM
was applied for solving free vibration of isotropic beams
only.

Regarding to plate problems, the classical analytical
methods, such as Navier and -type solutions, for solving
plate problems subjected to static and dynamic loadings
are well-known, for example in Ref. [101. The extended
Kantorovich method was employed to solve bending and
buckling analysis of laminated composite and isotropic
plates with various edge supports 1111-1121. An accurate
analytical method for calculating the static deflection
and modal characteristics of orthotropic plates with
general elastic boundary supports was presented by
Khov et al. 11 371. Leissa 11 4 1 provided the close-form
solution for analyzing free vibration of thin isotropic
plates, of which two opposite edges were simply-
supported. Dozio (1 5 1 used a set of trigonometric
functions as admissible solutions in the Ritz method in
order to solve vibration problem of rectangular
Kirchhoff plates. Differential quadrature method (DQM)
was developed to solve free vibration problem of
variable thickness thin and moderately thick plates in the
study of Malekzadeh and Shahpari (161. A Fourier series
method was conducted by Li and Daniels (1 71 to deal
with vibrations of elastically restrained plates including
added mass effect.

In present study, to the best of authors> knowledge,
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it is the first time to apply AMDM to solve the vibration
problem of thin elastic plates supported by all of
common and elastically restrained boundary conditions.

The fundamental and higher frequencies and their mode
shapes in relation to various kinds of boundary
conditions are presented and discussed. The significant

effects such as spring constant values and plate aspect
ratios are also taken into account.

2. THE AMDM BACKGROUND

Consider a general differential  equation,
composing of linear and nonlinear parts, including any
given function as follows.

LY (X)+R¥Y(x)+ N¥(x)=g(x) @
Where L is the linear invertible operator of the highest-
order derivative, R, the remainder of the linear operator,
N¥(X), the nonlinear term and g(x) is defined as any
given function. It is noted that the Eq. (1) is an initial-
value or a boundary-value problem. The solution of Eq.
(1) can take the following form

P(x)=®+L'g(x) - L'R¥(X) - L'N¥F(X) @

where @ is the constant of integration. According to an

initial-value problem, the inverse operator Lt s
regarded as a definite integration from 0 to x. The
AMDM is applied to solve Eq. (2) by decomposing ¥ (x)
into an infinite series as follows

P(x)= 3 C,x~. 3
k=0

And the nonlinear term NW(x) is decomposed as:

N (x) = éxkAk (,.C,.C,...C,) @

where A, are known as Adomian coefficient. For g(x),
it is also required to decompose as:

g(x) = ékak )

Substituting Egs. 3-5)into Eq. 2), one can obtain
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‘P(x):iCka:<D+L’1(§kak)—fl(§jckxk) )
k=0 k=0 k=0

_L-l(goxkAk(co,cl,cz...,ck).

The recurrence relation with respect to initial condition
is applied to obtain the coefficient Cy in Eq. (6). However,

all series in Eq. (6) cannot be determined exactly in
practice so that a truncated series, Zk:l C, X", is used to
approximate the solution.

3. VIBRATION OF RECTANGULAR PLATES

The well-known governing differential equation for
vibration of isotropic rectangular thin plates is

W) ,

oW, n.t)  a'wE,nt)  phawEnt)
a&*

-
o&%on’ on’ D o 0

Where w(&,n,t) is the transverse deflection, p, the
plate mass density, t is time and D =Eh®/12(1-v?) ,
the flexural rigidity of the plate. Assuming the solution
of the problem as w(&,n,t) ='W (&,77), the time

independent governing equation in dimensionless form
can be obtained as:

aAW(X’ y) + 2/12 64W (Xl y) +/14 64W(X’ y)

o axoy? ot TWeN=0

®)

Wherex:i,y:%, /‘L:% and Q=wa’,[(ph/D) is
a

the frequency parameter.

In this study, we consider simply supported plates
along y=0,1 and arbitrarily supported along x=0,1. A
plate deflection function which satisfies these conditions
is
W(x,y) =Y (x)sin(nzy) ©))

Consequently, the governing equation of the plates
can be reduced to an ordinary differential equation as:

4 2
d*¥(x) 220272 M+(,14n47r4 —Q*)¥(x)=0

dx* dx? a0

Let us consider a rectangular plate simply
supported along y = 0,1 and elastically restrained along x
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= 0,1 as shown in Fig. 1. The counterclockwise four-letter

symbolic notation will be used for describing boundary
conditions of the plates throughout this paper. For
example, the ESES plate as shown in Fig. 1 has the left
edge (x=0) elastically supported (E) by translational and
rotational springs, therefore the first letter in the
boundary condition notation is E. The following letters
are given according to the counterclockwise direction
respectively.

Simply support (S)

% Simply support (S)

Fig. 1 Geometry of a Rectangular Plate with ESES
Boundary Condition

The boundary conditions along the elastically
restrained edges can be expressed as

WyY) _

KTLW (X, Y) = Qx ; KRL ax

M,, along x=0

an

OW (%, Y)

KigW (X, Y) = —Q, ; Kgg ———2% =M, along x=1

A2

where

M. :_D(azvv(x, Y, , W y)j
Ox> 8y2
)63W(x y)
oxoy*

a3

QX:—D[%HZ—

Where K, , Kg are translational and rotational
spring constants along x = 0, and K.y , Kz , for x-1
respectively. Substituting the plate deflection, Eq. (9,
into the boundary condition equations, Egs. (11)and (12),

the following dimensionless boundary equations are
obtained.

along x=0

3
d;(X)‘Q—v)AZnZ Zd\y() +A ¥()=0  d4a
X
2
LW vt - o0 =0
along x=1
d*W(x) d‘I’(X)
¥ER -(@2-v)A'n’z* o Pr¥()=0 d5a
d? ‘P(X) A2 Z\P(X)+ﬂRR d\P(X) =0 (15b)
X
a a K..a®
Where, g, = Kn P = D v Prr = Tg !
K a
and S = E;

4. APPLICATION OF AMDM TO VIBRATION
PROBLEM OF PLATES

Following the AMDM outlined in section 2, the
solution of the vibration problem of Eq. (10) is obtained

as:

W(x) =D(x)+ L 24%n° ZZ\P
X

(/14 4 4 QZ)LP(X):|
16)

where L™= J:j:j: Jj....dxdxdxdx. Substituting  the

decomposing infinite series ¥(x)=>_" C,x* into Eq.
(16)yields:

P(x) =D CxX =d(x)+L"* |:2ﬂ,2n27[22(k +(k +2)C, %
k=0

k=0
—(A*n*z* —QZ)ZCkxk}
k=0

an

Integrating Eq. (17) leads to
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k+4

P00=2,C = (D(XH{;) (k+ Dk + 2k +3)(k +4)

x{ZﬂznzﬂZZ(k +1)(k+2)C, "
k=0

—(A'n'z* Q%)) C X }}
k=0

18)
Where the constants of integration are:
2 2 3 3
o) = (0)+ 11O, AFO X dHO X g,
dx dx® 2 dx* 6

From Eq. (18), it can be seen that the initial coefficients

of x¥, which are related to the initial boundary condition,
can be expressed as:
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d¥ (0 1d°¥(0 1d°¥(0
G, -0, =010 ¢ _LIHO o 1)
20)

Other coefficients C, fork>4, can be obtained
from the following recurrence relation.
l S 2,22
C. = 2A2°n“z°(k—-2)(k—3)C
‘ k(k—l)(k—2)(k—3)k§[ 7 (k-2 =9C,

-('n'z -Q°)C,, |
21)

Hence, the coefficients that satisfy the initial
boundary conditions at x=0 for various types of
boundary conditions can be achieved as presented in
Table 1

Table 1 Initial Coefficients for Various Types of Boundary Conditions at x=0

BC. C, C, c, C,

Simply S) 0 A 0 A

Clamped (C) 0 0 A A,

Free F) A A, AvA’n®z? |2 A,(2-v)A*n*z* 16
Elastic (E) A A, AVAR 7?2+ A B |12 A, (2-v)A°n*z% 16— ABy

From the initial coefficients C, to C, tabulated in
Table 1, other C, , for k>4, can be expressed in terms
of arbitrary constants, A and A,.Now all of C, , for k=
0 to oo , are ready to be inserted into the solution

¥(x) =Y C.x“ . In practice, however, it is impossible
k=0

to determine all the coefficients C, for the whole series
solution. The appropriate approach is to truncate the

K-1
series for K-term approximation, ie. ‘P(x)=ZCkxk .
k=0
The next step is to substitute the solution that already
satisfies the initial boundary condition into various
boundary condition equations at x = 1, which are
presented in Table 2
The results of the substitution yield two equations
that can be written as follows

fYNQA + f5I(QA, =0,r-12 22)

For non-rivial solutions, the determinant of the
coefficient matrix in Eq. (2 2) is set to zero. Thus, the
frequency equation is obtained from:

Q) 5NQ)|_

= 23)
1@ 59

Solving the frequency equation, one can obtain the it"
approximated frequency, Q! corresponding to K
terms. The appropriate value of K is determined from
convergence study with the following criterion,
o -l <5 24

Where & is a given error tolerance. The amplitudes of

vibrating plates can be obtained from either equation of
Eq.22), that is:

fi (@)

A=—-"—1_2A r-lor2 (25)
)
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Setting the value of A; to unity yields the result of A for
substituting back into all coefficients Ck. Thus, the mode
shapes corresponding to any frequency can be obtained
as:

119

W(x,y) = ilckxk sin(nzy).

k=0

(26)

Table 2 Equations of Various Types of Boundary Conditions at x =1

B.C. Boundary condition equations
Y1) =0
Simply S) 2
i o) 2wy =0
0°X
Y1) =0
Clamped (C) @ _,
P
2
a;’(l) VAN Y () =0
Free (F . X
a \f(l) _ (2_‘/)/'{2“2”2 6‘{’(1) — O
0°X OX
2
0 \I;(l) VAP () + Pen ovd =0
. o°X OX
Elastic (E)
¥ (1)

°x

-(2-v)A’n*z’ a\P—(l)—,[)’TR‘P(l) =0
OX

5. NUMERICAL RESULTS AND DISCUSSION

51 RESULTS FOR COMMON BOUNDARY

CONDITIONS

To demonstrate the effectiveness and rate of
convergence of AMDM in solving vibration problems of
thin plates, fundamental and higher frequencies, as well
as their mode shapes of square plates, regarding to three
types of boundary conditions are presented in Table 3.
Boundary conditions considered in this demonstration
are SSSS, SSCS and SSFS. According to the tabulated

frequency results, AMDM gives accurate results with
small number of approximated terms (K-25). However, to
guarantee an accuracy, subsequent calculations for K=35
will be used throughout this paper. To validate our
method, the present results are compared with available
results in Ref. (157 for the case of simply supported
boundary condition (SSSS). We also found out that
AMDM shows very good computational stability for any
boundary conditions. Some mode shapes of the square
plates, corresponding to frequency results in Table 3, are
plotted in Fig.2 using Eq.26)
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Table 3 Convergence Study for Frequency Results of Square Plates with Three Boundary Conditions

Mode ,y)

B.C. K a1 a,2) 2,1 2,2 a,3 2,3 (€F) 4,4

SSSS 25 19.729 49.308 49.338 78.892 98.606 128215  181.789 167.627
30 19.729 49.308 49.338 78917 98.606 128215 177553 167.623
33 19.729 49.308 49.338 78917 98.606 128215  177.563 167623
35 19.729 49.308 49.338 78917 98.606 128215  177.563 167623
(15 19.739 49.348 49.348 78.960 98.697 128.305

SSCS 25 23.637 51.636 58.636 86.099 100.188 133.756 - 168.859
30 23.637 51.635 58.637 86.096 100.181 133704  188.026 168.802
33 23637 51.635 58.637 86.096 100181 133704  188.029 168.802
35 23.637 51.635 58.637 86.096 100.181 133704  188.025 168.804

SSFS 25 11675 41158 27.745 59.029 90.306 109.018 146.085 159925
30 11675 41157 27.745 59.025 90.207 108.834 145569 159.029
33 11675 41157 27.745 59.025 90.205 108.829 145551 158.960
35 11675 41157 27.745 59.025 90.205 108.828 145550 158.933

SSSS 2,2

¥ -
,»,-/,,:0 e
S  JETRSSANSN S

!
‘\“\““

SSCS 4,1

SSCS 2,2

F S
F
SSFS 1,1 SSFS 2,2) SSFS 3,3

Fig.2 Mode Shapes of Square Plates with Different Boundary Conditions
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Table 4 Frequency Results of Rectangular Plates for Six Boundary Conditions

SSSS SSCS
(Mode) 4,1 2,1 A, (Mode) 4,1 2,1 A,
2=05 12335 41943 91.291 2=05 17.330 52.096 106476
A=1.0 19.729 49338 98.686 2=10 23637 58637 113218
14 19.739 49348 98.696 (14 23.646 58.646 113228
A=15 32054 61.663 111010 A=15 35.030 69.892 124612
14 32076 61.685 111.033 14 - - -
A=25 71492 101163 150450 A=25 73377 107.359 161924
14 71556 101.163 150512 14
SSFS FSFS
(Mode) 4,1 2,1 A, (Mode) 4,1 2,1 A,
A-05 4031 18818 53.022 2=05 2376 6.877 26.369
A=1.0 11675 27.745 61.849 2=10 9622 16.124 36.713
14 11685 27.756 61.861 14 9631 16.135 36.726
A=15 23988 41150 75.794 A=15 21.799 29.185 51.620
A=25 63.225 81543 117679 A=25 60.924 69.016 92218
FSCS CSCs
(Mode) a4, 2,1 (€A (Mode) 4,1 2,1 €N
A-05 5702 24941 64.399 2=05 23814 63533 122911
A=1.0 12678 33.055 72387 2=10 28943 69.319 129032
14 12687 33.065 72398 (14 28951 69.327 129.096
A=15 24.672 45732 85.375 A=15 39.070 79.506 139021
A=25 63.617 84.993 122604 A=25 75.772 116616 140450
Table 4 presents frequency results of rectangular 52 RESULTS FOR ELASTICALLY

plates with six different boundary conditions. The aspect
ratio A=a/b is varied from 0.5 to 2.5. The existing

results of Leissa (14 are used to validate our results. Of
all boundary conditions considered in this table, CSCS
plates provide the greatest values of frequencies for all
aspect ratios, whereas, the FSFS plates give the lowest
ones. Increase the values of the aspect ratio leads to

increase of frequencies for every boundary condition.

RESTRAINED BOUNDARY CONDITIONS

To validate results for elastic edge supports, only
the available frequencies results for the square plate of
Ref (151 are shown in Table 5. It is seen that all modes of

frequencies agree very well.

Table 5 Comparison of Frequency Results of a Square Plate with Elastic Boundary Condition

Mode
B.C. Brr Brr Source 4,1 a,2 2,1 2,2 3.1 3.2
CSES 10 0 Present ~ 13.923 42.050 33666 63.261 72672 102592
(15 13932 42,089 33677 63.298 72684
100 10 Present  19.391 44773 40.710 67.011 81.042 107567
115 19.398 44810 40.719 67.043 81052
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To investigate effects of aspect ratios on
frequencies of elastically restrained edges, the
frequencies for the cases of CSES, SSES, FSES and
ESES are shown in Table 6. All spring constant values
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are set to be the same: BTL=pRL- BPTR=BRR=100. From

observation, it is seen that all frequencies increase as the
aspect ratios.

Table 6 Frequency Results with Elastic Edge Supports for Different Aspect Ratios.

CSES SSES
(Mode) 4,1 2,1 3D (Mode) 4,1 2,1 3D
205 15505 35598 77619 A-05 12430 29.051 65.357
210 19472 41423 84.177 210 17.339 35.329 72572
A=15 29.116 52.000 95.336 A=15 27.782 46.656 84.675
A-25 66.051 90525 95.336 A-25 65.465 84914 123715
FSES ESES
(Mode) a4, 2,1 €N (Mode) 4,1 2,1 €N
A-05 5222 16.145 36.562 205 12671 23.003 46.354
A-10 11620 22297 44,652 A-10 16.185 27716 52.996
A-15 23195 33464 57763 A-15 25818 37515 64.477
A=25 61.788 71631 95.657 A=25 63.046 74.390 98.677

Consider ESES plate, as all spring constants are set
to zero the mode shapes become those of FSFS plate and

as spring constants are large the mode shapes assume
those of CSCS plate as shown in Fig. 3

BTI ZBRI ZBTR:BRRZO

Fig. 3 Mode Shapes of ESES Square Plates with Special Values of Spring Constants
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Table 7 Effects of Spring Constants on Fundamental Frequencies of Square Plates

Lri=PrRR
PrPrs BC. 0 1 102 10° 10° 10°
CSES 12678 12884 13401 13640 13673 13676 13676
0 SSES 11675 11814 12152 12304 12325 12327 12.327
FSES 9622 9.646 9.700 9.723 9726 9726 9726
ESES 9262 9672 9795 9851 9.859 9.860 9.860
CSES 12814 13010 13500 13728 13759 13763 13763
1 SSES 11797 11927 12243 12.386 12405 12407 12408
FSES 9.683 9.704 9.750 9.769 9771 9771 9772
ESES 9747 9792 9902 9953 9.959 9.960 9.960
CSES 13923 14039 14337 14480 14500 14502 14503
10 SSES 12777 12841 13.004 13.080 13.090 13091 13091
FSES 10125 10127 10131 10132 10.133 10133 10133
ESES 10.746 10.759 10.791 10.807 10.809 10.809 10.809
CSES 19.212 19.256 19.391 19472 19484 19485 19485
10? SSES 16.920 16.990 17.208 17.339 17.359 17361 17361
FSES 11241 11303 11500 11620 11638 11640 11640
ESES 15322 15470 15923 16.185 16.225 16.229 16.230
CSES 23.062 23532 25417 26.983 27.262 27.292 27295
108 SSES 19.380 19.762 21249 22427 22631 22652 22.655
FSES 11624 11749 12187 12487 12536 12541 12542
ESES 19.054 19.795 22810 25425 25905 25957 25962
CSES 23579 24137 26432 28.387 28.736 28.773 28777
104 SSES 19.694 20132 21867 23.266 23509 23535 23538
FSES 11669 11803 12276 12.604 12658 12663 12.664
ESES 19.659 20542 24321 27857 28533 28607 28615
CSES 23632 24199 26536 28529 28884 28922 28926
10° SSES 19.726 20170 21930 23351 23598 23625 23627
FSES 11674 11.809 12.285 12616 12670 12676 12.676
ESES 19.722 20621 24485 28127 28825 28902 28909

Table 7 presents the fundamental frequencies of square
plates supported by four types of elastic boundary
conditions. As expected, the frequencies become higher
as the translational and rotational spring constants
increase. To understand this behavior more clearly, the
case of ESES plates in Table 7 is chosen to display in a
3-D plot as shown in Fig. 4.

Fig.5 plots a graph of the fundamental frequency
results of ESES plates with respect to changes in aspect
ratios and spring constant values. It is observed that
increase in the values of aspect ratios and spring
constants leads to higher frequency results. The

considerable change in frequency results is seen in the
range of Sr.=BrL=Brr=Prr=10 to 1000

6. CONCLUDSIONS

In this study, the Adomian modified decomposition
method (AMDM) is implemented to do vibration analysis
of thin plates with various common and elastic edge
supports. The innovative method demonstrates plenty of
benefits as seen with rapid convergence, small
computational expensiveness and stability in calculation
as well as accuracy. The fundamental and higher
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frequencies, including their corresponding mode shapes,
for several types of boundary conditions are determined
easily. Numerical results have revealed that translational
and rotational spring constants have great impact on
both natural frequencies and mode shapes. Increasing the
values of the spring constants usually causes substantial
changes in frequencies and mode shapes. Additionally,
boundary conditions and aspect ratios also have great
influence on frequencies and mode shapes of plates

071

30 T

m25-30

| = 20-25
25 7
m15-20
20 71

u 10-
15 4 10-15

m5-10
7 100000

/" 1000 n0:5

Fig. 4 Fundamental Frequencies of ESES Plates with
Variable Translational and Rotational Spring Constants

u50-60
m40-50
W 30-40
= 20-30
m10-20

.
(=]
S  mol0
=]

, 1 T Pri=Prr=PrL=PRR

Fig. 5 Fundamental Frequencies of ESES Plates with
Different Spring Constants and Aspect
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