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ABSTRACT 

 

The purpose of this study is to introduce an 

innovative method, the Adomian modified 

decomposition method, to solve the vibration problem 

of thin elastic plates. By applying the present method to 

vibration problem of thin plates, the fundamental and 

higher frequencies as well as their mode shapes can be 

obtained easily for common and complicated boundary 

conditions, including elastic supports. Other benefits of 

using this method can be realized in terms of rapid 

convergence, small computational expensiveness and 

stability in calculation.  The significant effects such as 

effects of boundary conditions, aspect ratios and 

translational and rotational spring constants, which 

lead to considerable changes in frequency results and 

mode shapes, are investigated and discussed. 
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1. INTRODUCTION 

 

The Adomain modified decomposition method 

( AMDM)  has been successfully applied to solve 

differential and integral equations of linear and 

nonlinear problems in the fields of mathematics, 

physics, biology and chemistry; while, for mechanical 

engineering, it is very rare.  The principle of this method 

is to decompose a solution into an infinite series which 

converges to exact solutions rapidly. The standard ADM 

and modified ADM were reviewed and discussed in Ref. 
[1] – [4] 

In mechanics, the standard ADM was applied to 

solve vibration analysis of one-stepped and multiple-
stepped beams [5]  – [6] .  In the study of Lai et al.  [7]  the 

standard ADM was also used to analyze free vibration of 

Euler-Bernoulli beams.  In their further investigations, 

they have extended their works to deal with free 

vibration of non-uniform Euler-Bernoulli beams and 

uniform Timoshenko beams using the modified version 

[8] – [9]. From literature survey, it is seen that the AMDM 

was applied for solving free vibration of isotropic beams 

only. 
Regarding to plate problems, the classical analytical 

methods, such as Navier and  -type solutions, for solving 

plate problems subjected to static and dynamic loadings 

are well-known, for example in Ref.  [1 0 ] . The extended 

Kantorovich method was employed to solve bending and 

buckling analysis of laminated composite and isotropic 

plates with various edge supports [11] – [12 ]. An accurate 

analytical method for calculating the static deflection 

and modal characteristics of orthotropic plates with 

general elastic boundary supports was presented by 

Khov et al.  [1 3 ] .  Leissa [1 4 ]  provided the close-form 

solution for analyzing free vibration of thin isotropic 

plates, of which two opposite edges were simply-
supported.  Dozio [ 1 5 ]  used a set of trigonometric 

functions as admissible solutions in the Ritz method in 

order to solve vibration problem of rectangular 

Kirchhoff plates.  Differential quadrature method (DQM) 
was developed to solve free vibration problem of 

variable thickness thin and moderately thick plates in the 

study of Malekzadeh and Shahpari [16 ]. A Fourier series 

method was conducted by Li and Daniels [1 7 ]  to deal 

with vibrations of elastically restrained plates including 

added mass effect. 
In present study, to the best of authors’ knowledge, 
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it is the first time to apply AMDM to solve the vibration 

problem of thin elastic plates supported by all of 

common and elastically restrained boundary conditions. 
The fundamental and higher frequencies and their mode 

shapes in relation to various kinds of boundary 

conditions are presented and discussed.  The significant 

effects such as spring constant values and plate aspect 

ratios are also taken into account. 
 

2. THE AMDM BACKGROUND 

 

Consider a general differential equation, 

composing of linear and nonlinear parts, including any 

given function as follows. 
 

( ) ( ) ( ) ( )L x R x N x g x                 (1) 
 

Where L is the linear invertible operator of the highest-
order derivative, R, the remainder of the linear operator,

( )N x , the nonlinear term and ( )g x  is defined as any 

given function.  It is noted that the Eq.  ( 1)  is an initial-
value or a boundary-value problem.  The solution of Eq. 
(1) can take the following form 

 
1 1 1( ) ( ) ( ) ( )x L g x L R x L N x                   (2) 

 

where   is the constant of integration.  According to an 

initial-value problem, the inverse operator 
1

L


 is 

regarded as a definite integration from 0 to x.  The 

AMDM is applied to solve Eq. (2) by decomposing ( )x  
into an infinite series as follows 

 

0

( ) .k

k
k

x C x




                 (3) 

 

And the nonlinear term ( )N x   is decomposed as: 
 

0 1 2
0

( ) ( , , ..., )k

k k
k

N x x C C C C




             (4) 

 

where k are known as Adomian coefficient.  For ( )g x , 

it is also required to decompose as: 
 

0

( ) k

k
k

g x G x




                (5) 

 

Substituting Eqs. (3 - 5) into Eq. (2), one can obtain 

   
 

1 1

0 0 0

1

0 1 2
0

( )

( , , ..., .

k k k

k k k
k k k

k

k k
k

x C L G L C

L x C C C C

x x x
  

 

  






       

 

           (6) 

The recurrence relation with respect to initial condition 

is applied to obtain the coefficient Ck in Eq. (6). However, 

all series in Eq.  ( 6)  cannot be determined exactly in 

practice so that a truncated series, 
1

0

K k

kk
C x



 , is used to 

approximate the solution. 
 

3. VIBRATION OF RECTANGULAR PLATES 

 

The well-known governing differential equation for 

vibration of isotropic rectangular thin plates is 

 
4 4 4

4 2 2 4 2

( , , ) ( , , ) ( , , ) ( , , )
2 0

w t w t w t h w t

D t

        

   

   
   

    
        (7) 

 

Where ( , , )w t   is the transverse deflection,  , the 

plate mass density, t is time and 3 212(1 )D Eh    , 

the flexural rigidity of the plate.  Assuming the solution 

of the problem as ( , , ) ( , )i tw t e W    , the time 

independent governing equation in dimensionless form 

can be obtained as: 
 

4 4 4
2 4 2

4 2 2 4

( , ) ( , ) ( , )
2 ( , ) 0

W x y W x y W x y
W x y

x x y y
 

  
   

   

 (8) 
 

Where ,x y
a b

 
  , 

a

b
    and 

2 ( / )a h D    is 

the frequency parameter. 
In this study, we consider simply supported plates 

along 0,1y   and arbitrarily supported along 0,1x  . A 

plate deflection function which satisfies these conditions 

is 

 

( , ) ( )sin( )W x y x n y              (9) 
 

Consequently, the governing equation of the plates 

can be reduced to an ordinary differential equation as: 
 

4 2
2 2 2 4 4 4 2

4 2

( ) ( )
2 ( ) ( ) 0

d x d x
n n x

dx dx
   

 
           (10) 

 

Let us consider a rectangular plate simply 

supported along y =  0,1 and elastically restrained along x 
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= 0,1 as shown in Fig. 1. The counterclockwise four-letter 

symbolic notation will be used for describing boundary 

conditions of the plates throughout this paper.  For 

example, the ESES plate as shown in Fig.  1 has the left 

edge (x= 0)  elastically supported (E)  by translational and 

rotational springs, therefore the first letter in the 

boundary condition notation is E.  The following letters 

are given according to the counterclockwise direction 

respectively. 
 

Simply support (S)

Simply support (S)

E
la

st
ic

 s
u
p
p
or

t 
(E

)

E
la

st
ic

 s
u
p
p
or

t 
(E

)

a

b

 

Fig. 1 Geometry of a Rectangular Plate with ESES 

Boundary Condition 

 

The boundary conditions along the elastically 

restrained edges can be expressed as 

 

( , )TL xK W x y Q ;
( , )

RL x

W x y
K M

x


 


, along x = 0  

                (11) 
 

( , )TR xK W x y Q  ;
( , )

RR x

W x y
K M

x





 along x = 1 

                (12) 
 

where 

 
2 2

2 2

( , ) ( , )
x

W x y W x y
M D

x y


  
   

  
 

3 3

3 2

( , ) ( , )
(2 )x

W x y W x y
Q D

x x y


  
    

   
       (13) 

 

Where TLK , RLK  are translational and rotational 

spring constants along x =  0, and TRK  , RRK  , for  x =  1 

respectively.  Substituting the plate deflection, Eq.  ( 9) , 

into the boundary condition equations, Eqs. (11) and (12), 
the following dimensionless boundary equations are 

obtained. 
 

along x = 0 

3
2 2 2

3

( ) ( )
(2 ) ( ) 0TL

d x d x
n x

dxd x
   

 
         (14a) 

 
2

2 2 2

2

( ) ( )
( ) 0RL

d x d x
n x

dxd x
  

 
         (14b) 

 

along x = 1 
3

2 2 2

3

( ) ( )
(2 ) ( ) 0TR

d x d x
n x

dxd x
   

 
         (15a) 

 
2

2 2 2

2

( ) ( )
( ) 0RR

d x d x
n x

dxd x
  

 
         (15b) 

 

Where,  
3

TL

TL

K a

D
  , RL

RL

K a

D
   ,

 

3

TR

TR

K a

D
  , 

   and
 

RR
RR

K a

D
   

 

4. APPLICATION OF AMDM TO VIBRATION 

PROBLEM OF PLATES 

 

Following the AMDM outlined in section 2, the 

solution of the vibration problem of Eq.  (10)  is obtained 

as: 
 

2
1 2 2 2 4 4 4 2

2
( ) ( ) 2 ( ) ( )

d
x x L n n x

dx
     

       
 

                (16) 
 

where 1

0 0 0 0
.... .

x x x x

L dxdxdxdx       Substituting the 

decomposing infinite series 
0

( ) k

kk
x C x




   into Eq. 

(16) yields: 
 

1 2 2 2

2

0 0

4 4 4 2

0

( ) ( ) 2 ( 1)( 2)

( )

k k

k k

k k

k

k

k

x C x x L n k k C x

n C x

 

 

 




 






      




  



 



                (17) 
 

Integrating Eq. (17) leads to 
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4

0 0

2 2 2

2

0

4 4 4 2

0

( ) ( )
( 1)( 2)( 3)( 4)

2 ( 1)( 2)

( )

k
k

k

k k

k

k

k

k

k

k

x
x C x x

k k k k

n k k C x

n C x

 

 

 

 












     

   


  



  



 





 

(18) 
 

Where the constants of integration are: 
 

2 2 3 3

2 3

(0) (0) (0)
( ) (0)

2 6

d d x d x
x x

dx dx dx

  
            (19) 

 

From Eq.  (18), it can be seen that the initial coefficients 

of xk, which are related to the initial boundary condition, 

can be expressed as: 

2 3

0 1 2 32 3

(0) 1 (0) 1 (0)
(0), , ,

2 6

d d d
C C C C

dx dx dx

  
    

 (20) 
 

Other coefficients kC  for 4k  , can be obtained 

from the following recurrence relation. 

2 2 2

2

4

4 4 4 2

4

1
2 ( 2)( 3)

( 1)( 2)( 3)

( )

k k

k

k

C n k k C
k k k k

n C

 

 









    

  



(21) 
 

 Hence, the coefficients that satisfy the initial 

boundary conditions at 0x   for various types of 

boundary conditions can be achieved as presented in 

Table 1 

 

Table 1 Initial Coefficients for Various Types of Boundary Conditions at x=0 

B.C. 
0C  1C  2C  3C  

Simply (S) 0 
1A  0 

2A  

Clamped (C) 0 0 
1A  2A  

Free (F) 
1A  2A  2 2 2

1 / 2A n   2 2 2

2 (2 ) / 6A n    

Elastic (E) 
1A  2A  2 2 2

1 2/ 2 / 2RLA n A    2 2 2

2 1(2 ) / 6 TLA n A      

 

From the initial coefficients 0C  to 3C  tabulated in 

Table 1, other kC  , for 4k  , can be expressed in terms 

of arbitrary constants, 1A and 2A . Now all of kC , for k = 
0  to   , are ready to be inserted into the solution 

0

( ) k

k

k

x C x




  .  In practice, however, it is impossible 

to determine all the coefficients kC  for the whole series 

solution.  The appropriate approach is to truncate the 

series for K-term approximation, ie.  
1

0

( )
K

k

k

k

x C x




  . 

The next step is to substitute the solution that already 

satisfies the initial boundary condition into various 

boundary condition equations at x =  1, which are 

presented in Table 2 

The results of the substitution yield two equations 

that can be written as follows 

 
[ ] [ ]

1 1 2 2( ) ( ) 0,K K

r rf A f A    r = 1,2.        (22) 
 

For non-trivial solutions, the determinant of the 

coefficient matrix in Eq.  (2 2 )  is set to zero.  Thus, the 

frequency equation is obtained from: 

 
[ ] [ ]

11 12

[ ] [ ]

21 22

( ) ( )
0

( ) ( )

K K

K K

f f

f f

 


 
           (23) 

 

Solving the frequency equation, one can obtain the ith 

approximated frequency, [ ]K

i  corresponding to K 

terms.  The appropriate value of K is determined from 

convergence study with the following criterion, 

 
[ ] [ 1]K K

i i                (24) 

 

Where    is a given error tolerance.  The amplitudes of 

vibrating plates can be obtained from either equation of 

Eq. (22), that is: 
 

[ ] [ ]

1

2 1[ ] [ ]

2

( )
,

( )

K K

r i

n K

r i

f
A A

f


 


 r = 1 or 2.         (25) 
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Setting the value of A1 to unity yields the result of A2 for 

substituting back into all coefficients Ck. Thus, the mode 

shapes corresponding to any frequency can be obtained 

as: 
 

1

0

( , ) sin( ).
K

k

k

k

W x y C x n y




           

(26) 

Table 2 Equations of Various Types of Boundary Conditions at x = 1 

B.C. Boundary condition equations 

Simply (S) 

(1) 0   
2

2 2 2

2

(1)
(1) 0n

x
 

 
  


 

Clamped (C) 
(1) 0   

(1)
0

x





 

Free (F) 

2
2 2 2

2

(1)
(1) 0n

x
 

 
  


 

3
2 2 2

3

(1) (1)
(2 ) 0n

xx
  

  
  


 

Elastic (E) 

2
2 2 2

2

(1) (1)
(1) 0RRn

xx
  

  
   


 

3
2 2 2

3

(1) (1)
(2 ) (1) 0TRn

xx
   

  
    


 

 

5. NUMERICAL RESULTS AND DISCUSSION 

 

5.1 RESULTS FOR COMMON BOUNDARY 

CONDITIONS 

 

To demonstrate the effectiveness and rate of 

convergence of AMDM in solving vibration problems of 

thin plates, fundamental and higher frequencies, as well 

as their mode shapes of square plates, regarding to three 

types of boundary conditions are presented in Table 3. 
Boundary conditions considered in this demonstration 

are SSSS, SSCS and SSFS.  According to the tabulated 

frequency results, AMDM gives accurate results with 

small number of approximated terms (K=25). However, to 

guarantee an accuracy, subsequent calculations for K=35 

will be used throughout this paper.  To validate our 

method, the present results are compared with available 

results in Ref.  [ 15]  for the case of simply supported 

boundary condition ( SSSS) .  We also found out that 

AMDM shows very good computational stability for any 

boundary conditions.  Some mode shapes of the square 

plates, corresponding to frequency results in Table 3, are 

plotted in Fig.2 using Eq.(26) 
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Table 3 Convergence Study for Frequency Results of Square Plates with Three Boundary Conditions 

  Mode (x,y) 

B.C. K (1,1) (1,2) (2,1) (2,2) (1,3) (2,3) (3,3) (1,4) 

SSSS 25 19.729 49.308 49.338 78.892 98.606 128.215 181.789 167.627 

 30 19.729 49.308 49.338 78.917 98.606 128.215 177.553 167.623 

 33 19.729 49.308 49.338 78.917 98.606 128.215 177.563 167.623 

 35 19.729 49.308 49.338 78.917 98.606 128.215 177.563 167.623 

[15]  19.739 49.348 49.348 78.960 98.697 128.305 - - 

SSCS 25 23.637 51.636 58.636 86.099 100.188 133.756 - 168.859 

 30 23.637 51.635 58.637 86.096 100.181 133.704 188.026 168.802 

 33 23.637 51.635 58.637 86.096 100.181 133.704 188.029 168.802 

 35 23.637 51.635 58.637 86.096 100.181 133.704 188.025 168.804 

SSFS 25 11.675 41.158 27.745 59.029 90.306 109.018 146.085 159.925 

 30 11.675 41.157 27.745 59.025 90.207 108.834 145.569 159.029 

 33 11.675 41.157 27.745 59.025 90.205 108.829 145.551 158.960 

 35 11.675 41.157 27.745 59.025 90.205 108.828 145.550 158.933 

 

 

 

 
SSSS (1,1) 

 
SSSS (2,2) 

 
SSSS (3,3) 

 
SSCS (1,1) 

 
SSCS (2,2) 

 
SSCS (3,3) 

 
SSFS (1,1) 

 
SSFS (2,2) 

 
SSFS (3,3) 

 

Fig.2 Mode Shapes of Square Plates with Different Boundary Conditions 
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Table 4 Frequency Results of Rectangular Plates for Six Boundary Conditions 

 SSSS   SSCS 

(Mode) (1,1) (2,1) (3,1)  (Mode) (1,1) (2,1) (3,1) 

λ=0.5 12.335 41.943 91.291  λ=0.5 17.330 52.096 106.476 

λ=1.0 

[14] 
19.729 

19.739 

49.338 

49.348 

98.686 

98.696 

 λ=1.0 

[14] 
23.637 

23.646 

58.637 

58.646 

113.218 

113.228 

λ=1.5 

[14] 
32.054 

32.076 

61.663 

61.685 

111.010 

111.033 

 λ=1.5 

[14] 
35.030 

- 
69.892 

- 
124.612 

- 
λ=2.5 

[14] 
71.492 

71.556 

101.163 

101.163 

150.450 

150.512 

 λ=2.5 

[14] 
73.377 

- 
107.359 

- 
161.924 

- 

 SSFS   FSFS 

(Mode) (1,1) (2,1) (3,1)  (Mode) (1,1) (2,1) (3,1) 

λ=0.5 4.031 18.818 53.022  λ=0.5 2.376 6.877 26.369 

λ=1.0 

[14] 
11.675 

11.685 

27.745 

27.756 

61.849 

61.861 

 λ=1.0 

[14] 
9.622 

9.631 

16.124 

16.135 

36.713 

36.726 

λ=1.5 23.988 41.150 75.794  λ=1.5 21.799 29.185 51.620 

λ=2.5 63.225 81.543 117.679  λ=2.5 60.924 69.016 92.218 

 FSCS   CSCS 

(Mode) (1,1) (2,1) (3,1)  (Mode) (1,1) (2,1) (3,1) 

λ=0.5 5.702 24.941 64.399  λ=0.5 23.814 63.533 122.911 

λ=1.0 

[14] 
12.678 

12.687 

33.055 

33.065 

72.387 

72.398 

 λ=1.0 

[14] 
28.943 

28.951 

69.319 

69.327 

129.032 

129.096 

λ=1.5 24.672 45.732 85.375  λ=1.5 39.070 79.506 139.021 

λ=2.5 63.617 84.993 122.604  λ=2.5 75.772 116.616 140.450 

 

Table 4 presents frequency results of rectangular 

plates with six different boundary conditions. The aspect 

ratio a b    is varied from 0. 5 to 2. 5.  The existing 

results of Leissa [14]  are used to validate our results.  Of 

all boundary conditions considered in this table, CSCS 

plates provide the greatest values of frequencies for all 

aspect ratios, whereas, the FSFS plates give the lowest 

ones.  Increase the values of the aspect ratio leads to 

increase of frequencies for every boundary condition. 

5.2 RESULTS FOR ELASTICALLY 

RESTRAINED BOUNDARY CONDITIONS 

 

To validate results for elastic edge supports, only 

the available frequencies results for the square plate of 

Ref. [15] are shown in Table 5. It is seen that all modes of 

frequencies agree very well.  

 

Table 5 Comparison of Frequency Results of a Square Plate with Elastic Boundary Condition 

    Mode 

B.C. βTR βRR Source (1,1) (1,2) (2,1) (2,2) (3,1) (3,2) 

CSES 10 0 Present 13.923 42.050 33.666 63.261 72.672 102.592 

   [15] 13.932 42.089 33.677 63.298 72.684 - 
 100 10 Present 19.391 44.773 40.710 67.011 81.042 107.567 

   [15] 19.398 44.810 40.719 67.043 81.052 - 
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To investigate effects of aspect ratios on 

frequencies of elastically restrained edges, the 

frequencies for the cases of CSES, SSES, FSES and 

ESES are shown in Table 6.  All spring constant values 

are set to be the same:  βTL=βRL=  βTR=βRR= 100.  From 

observation, it is seen that all frequencies increase as the 

aspect ratios. 

 

Table 6 Frequency Results with Elastic Edge Supports for Different Aspect Ratios. 

 CSES   SSES 

(Mode) (1,1) (2,1) (3,1)  (Mode) (1,1) (2,1) (3,1) 

λ=0.5 15.505 35.598 77.619  λ=0.5 12.430 29.051 65.357 

λ=1.0 19.472 41.423 84.177  λ=1.0 17.339 35.329 72.572 

λ=1.5 29.116 52.000 95.336  λ=1.5 27.782 46.656 84.675 

λ=2.5 66.051 90.525 95.336  λ=2.5 65.465 84.914 123.715 

 FSES   ESES 

(Mode) (1,1) (2,1) (3,1)  (Mode) (1,1) (2,1) (3,1) 

λ=0.5 5.222 16.145 36.562  λ=0.5 12.671 23.003 46.354 

λ=1.0 11.620 22.297 44.652  λ=1.0 16.185 27.716 52.996 

λ=1.5 23.195 33.464 57.763  λ=1.5 25.818 37.515 64.477 

λ=2.5 61.788 71.631 95.657  λ=2.5 63.046 74.390 98.677 

 

Consider ESES plate, as all spring constants are set 

to zero the mode shapes become those of FSFS plate and 

as spring constants are large the mode shapes assume 

those of CSCS plate as shown in Fig. 3
 

 

 

 

 
Fig. 3 Mode Shapes of ESES Square Plates with Special Values of Spring Constants 

 

 

 

 

 

 

 

 

 

βTL=βRL =βTR=βRR=0 

 

βTL=βRL =βTR=βRR=102 

 

(1,1) (2,2) 

(1,1) (2,2) 
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Table 7 Effects of Spring Constants on Fundamental Frequencies of Square Plates 

  βRL=βRR      

βTL=βTR B.C. 0 1 10 102 103 104 105 

 CSES 12.678 12.884 13.401 13.640 13.673 13.676 13.676 

0 SSES 11.675 11.814 12.152 12.304 12.325 12.327 12.327 

 FSES 9.622 9.646 9.700 9.723 9.726 9.726 9.726 

 ESES 9.262 9.672 9.795 9.851 9.859 9.860 9.860 

 CSES 12.814 13.010 13.500 13.728 13.759 13.763 13.763 

1 SSES 11.797 11.927 12.243 12.386 12.405 12.407 12.408 

 FSES 9.683 9.704 9.750 9.769 9.771 9.771 9.772 

 ESES 9.747 9.792 9.902 9.953 9.959 9.960 9.960 

 CSES 13.923 14.039 14.337 14.480 14.500 14.502 14.503 

10 SSES 12.777 12.841 13.004 13.080 13.090 13.091 13.091 

 FSES 10.125 10.127 10.131 10.132 10.133 10.133 10.133 

 ESES 10.746 10.759 10.791 10.807 10.809 10.809 10.809 

 CSES 19.212 19.256 19.391 19.472 19.484 19.485 19.485 

102 SSES 16.920 16.990 17.208 17.339 17.359 17.361 17.361 

 FSES 11.241 11.303 11.500 11.620 11.638 11.640 11.640 

 ESES 15.322 15.470 15.923 16.185 16.225 16.229 16.230 

 CSES 23.062 23.532 25.417 26.983 27.262 27.292 27.295 

103 SSES 19.380 19.762 21.249 22.427 22.631 22.652 22.655 

 FSES 11.624 11.749 12.187 12.487 12.536 12.541 12.542 

 ESES 19.054 19.795 22.810 25.425 25.905 25.957 25.962 

 CSES 23.579 24.137 26.432 28.387 28.736 28.773 28.777 

104 SSES 19.694 20.132 21.867 23.266 23.509 23.535 23.538 

 FSES 11.669 11.803 12.276 12.604 12.658 12.663 12.664 

 ESES 19.659 20.542 24.321 27.857 28.533 28.607 28.615 

 CSES 23.632 24.199 26.536 28.529 28.884 28.922 28.926 

105 SSES 19.726 20.170 21.930 23.351 23.598 23.625 23.627 

 FSES 11.674 11.809 12.285 12.616 12.670 12.676 12.676 

 ESES 19.722 20.621 24.485 28.127 28.825 28.902 28.909 

 

Table 7 presents the fundamental frequencies of square 

plates supported by four types of elastic boundary 

conditions.  As expected, the frequencies become higher 

as the translational and rotational spring constants 

increase.  To understand this behavior more clearly, the 

case of ESES plates in Table 7 is chosen to display in a 

3-D plot as shown in Fig. 4.   
Fig. 5 plots a graph of the fundamental frequency 

results of ESES plates with respect to changes in aspect 

ratios and spring constant values. It is observed that 

increase in the values of aspect ratios and spring 

constants leads to higher frequency results. The 

considerable change in frequency results is seen in the 

range of βTL=βRL= βTR=βRR=10 to 1000 

 

6. CONCLUDSIONS 

 

In this study, the Adomian modified decomposition 

method (AMDM) is implemented to do vibration analysis 

of thin plates with various common and elastic edge 

supports.  The innovative method demonstrates plenty of 

benefits as seen with rapid convergence, small 

computational expensiveness and stability in calculation 

as well as accuracy.  The fundamental and higher 
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frequencies, including their corresponding mode shapes, 

for several types of boundary conditions are determined 

easily.  Numerical results have revealed that translational 

and rotational spring constants have great impact on 

both natural frequencies and mode shapes. Increasing the 

values of the spring constants usually causes substantial 

changes in frequencies and mode shapes.  Additionally, 

boundary conditions and aspect ratios also have great 

influence on frequencies and mode shapes of plates 

 

 
Fig.  4 Fundamental Frequencies of ESES Plates with 

Variable Translational and Rotational Spring Constants 

 

. 
 

 
 

Fig.  5 Fundamental Frequencies of ESES Plates with 

Different Spring Constants and Aspect 
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