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ABSTRACT 

Since the vibration problem of plates with mixed 

edge conditions is of academic and technological 

importance, the need of knowing natural frequencies is 

then required. This paper attempts to deal with an 

accurate value for some higher frequencies expressed 

in terms of frequency parameters of square plates 

having mixed edges between the simple and clamped 

supports. Two plate configurations are considered. The 

first is of the clamped plate with varying corner simply 

supported lengths; while the second is the simply 

supported plate having an equal angle type of clamped 

support placed at all corners. The analysis is made by 

means of finite element code with a dense net of 

element mesh. The first twenty frequencies and their 

vibratory modes are presented, which could serve as a 

benchmark for comparison with other methods. 
 

Keywords : Dimensionless frequency parameter, Finite 

element analysis, Higher natural frequencies, Mixed 

edge conditions, Square plate. 
 

 

1. INTRODUCTION AND UNDERLYING 

THEORY 

Within the scope of classical plate theory, the 

history of plate theory development was started by 

Euler, who in 1766 formulated the first mathematical 

approach to the membrane theory of plates [1]. By 

practicing uses, plates are basic components in 

engineering design and application with widespread uses 

in aircraft, ship, and building structures. Importantly, as 

is well-known that plate structures are generally 

recognized and proved to be useful models for many 

complex structures, because the plate action behaviors 

result in lighter structures and offer economical 

advantages. 

At the present time, there exists numerous 

analyses both analytical and numerical methods for the 

plates. However, a significant contribution and extensive 

study in the area of plate bending analysis together with 

its application have been comprehensively collected and 

also summarized in a monograph by Timoshenko and 

Woinowsky-Krieger [2]. In addition, plate vibrational 

behaviors are also of great interest, especially the free 

vibration characteristics (natural frequencies and their 

associated vibratory shapes) [3], [4]. Since the analysis 

of free vibration problems is of basic and applied 

interest in several fields of science and technology [5,6], 

therefore, an exhaustive summary of the published 

literature on the free vibrations of various shaped plates 

is available in Leissa [7], [8]. 

In order to analytically determine the solution of 

partial differential equation of plates, exact analytical 

solutions are the most desirable, but not always easily 

attainable. This is due to the difficulties in trying to 

obtain the solutions satisfied both the plate’s governing 

equation and all of the boundary conditions exactly.  
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Consequently, with these causes as mentioned 

above, Leissa [9] has attempted to investigate and 

present the comprehensive and obtainable accurate 

analytical results for the different twenty-one cases of 

free vibration problem of rectangular plates with various 

aspect ratios and Poisson’s ratios. It is, however, 

interesting and significant to note that exact 

characteristic equations involving frequency 

determinations can explicitly be given and expressed in 

analytical closed-forms only for the six specific cases of 

plate with two opposite simply supported edges. Thus, 

enormous research works have been conducted and 

treated numerically using a wide range of approximate 

mathematical techniques. 

Before considering further to deal with the 

numerical treatment of the titled problems, the method 

of analytical solution is reviewed and presented for the 

plates being assumed to be isotropic, free from applied 

external loads and of uniform thickness. The theoretical 

equations that involved and governed with the behaviors 

of free vibration problem of plate in the rectangular 

coordinates together with the common boundary 

condition equations of which being clamped, simply 

supported, and free edges are mathematically explained 

and given in the following equations below. 

With limited to consideration of the problems of 

undamped free flexural vibratory rectangular plate that 

are basically eigenvalue problems of the mathematical 

physics, the classical governing two-dimensional partial 

differential equation of plate motion for the transverse 

displacement (w) at any point (x,y) and perpendicular to 

the plane of the plate can be written as [3] 
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where ρ is mass density per unit area of plate surface, t 

is time, and D is flexural rigidity of the plate defined by 
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in which E is Young’s modulus, h is thickness of plate, ν 

is Poisson’s ratio, and 4 is the biharmonic differential 

operator that given by 
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Since free vibrations are considered and assumed 

to be a sinusoidal time response, therefore, the 

transverse displacement for the plate motion is 

expressible as [3], [5] 
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Fig. 1 Dimensions and coordinates of rectangular plate. 

 

and  

 

e cos( ) sin( )i t t i t    ,  (5) 

 

where W is a function only of the position coordinates, 

ω is the circular frequency, and 1i   . 

Substituting the transverse displacement of Eq.(4) 

into plate’s differential equation of motion as given by 

Eq.(1) and eliminating out the time dependence together 

with introducing a parameter k defined by 

 
2

4k
D


 ,  (6) 

 

hence, the governing differential equation of the plate 

can be cast in the form 

 
4 4( ) 0k W   .  (7) 

 

Considering a rectangular plate with dimensions of 

length a and width b along the direction of x- and y-axes 

as shown in Fig. 1, respectively, and supposing an edge 

parallel to the y-axis to be clamped edge, the boundary 

conditions are given by, independent of time t, 

 

0W  ,  (8a) 
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For a simply supported edge, the condition 

equations can be expressed as 
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and for a free edge, 
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If the plate has two opposite edges simply 

supported at 0x   and x a , the general solutions to 

Eq.(7) can be assumed to be a Fourier series form 

following the Levy-type solution as [8] – [10] 
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and 
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It can immediately be seen that Eq.(11) is a series 

solution involving the Fourier trigonometric functions of 

sinαx whereas Ym are functions of the variable y only. 

Significantly, Eq.(11) exactly satisfies Eq.(7) and the 

simply supported edge conditions of Eqs.(9a) and (9b) 

along 0x   and x a . 

Substitution of Eq.(11) into Eq.(7) yields 
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Noted that the quantities inside the bracket must be 

identically zero for each value of m leading to 
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This shows that Eq. (14) is now an ordinary fourth-

order homogeneous differential equation with constant 

coefficients. 

The solution to Eq.(14) for Ym is well known in 

mathematical point of views [11], [12] and its solution 

form is, however, seriously depended upon whether the 

third coefficient term of parenthesis gives the result to 

be negative or positive values. 

With the assumption of 2 2k  , the solution Ym is 

found to be 

 

2 2 2 2sin cosm m mY A k y B k y      

 2 2 2 2sinh coshm mC k y D k y     , (15) 

 

where the arbitrary coefficients Am, Bm, Cm, and Dm can 

be determined from the prescribed boundary conditions 

along the edges at 0y   and y b . 

If 2k  is assumed to be less than 2 , the solution 

Ym given in Eq.(15) has to be rewritten in the new form 

as, with 2 2k  , 

 

2 2 2 2sinh coshm m mY A k y B k y      

 2 2 2 2sinh coshm mC k y D k y     . (16) 

 

As is mentioned earlier [9] for the plates having 

two opposite edges simply supported along 0x  and 

x a , there are six cases of all possible combinations 

among clamped, simply supported or free along two 

remaining opposite edges. These lead to the existence of 

exact characteristic equations for determination of 

frequencies with their associated vibratory mode shapes. 

Substituting Eq.(11) together with using Eqs.(15) 

or (16) into the two appropriate boundary conditions 

along each edge of 0y   and y b  in Eqs.(8) through 

(10) and interchanging the variables between x and y in 

their expressions yields a characteristic determinant 

equation of the fourth order for each m in corresponding 

case of six different plates. After that expanding the 

determinant and rearranging terms yields a complex 

transcendental characteristic equation, which has already 

presented in the previous works [8], [9]. 

In the problem fields of free vibration analysis, it 

is, however, very useful to express the circular 

frequency (ω) in terms of dimensionless frequency 

parameters (λ2). By introducing λ = ka where a is a 

dimension of plate length and using Eq.(6), the 

frequency parameter can be taken as in the form 

 

2 2a
D


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2. PROBLEMS CONSIDERATION 

From the observation on a search of open available 

published literature is remarkable that the literature on 

free vibration problems of plate is vast, and most of 

them have considered the plates supported by regular or 
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common boundary conditions along the plate edges. 

Relatively few published research is available about the 

vibrations of plate with mixed boundary conditions. By 

“mixed boundary conditions” it is referred to situations 

where there are discontinuities in the type of support 

supplied to one or more of the plate edges. 

 
Fig. 2 Clamped square plate with varying equal angle-

leg corner simple supports. 

 

 
Fig. 3 Simply supported square plate with varying equal 

angle-leg corner clamped supports. 

 

It is also noted that among all the possible shape of 

plates of which are circular, triangular, trapezoidal, and 

rectangular plates, etc., the rectangular plate is of the 

greatest importance and interest in vibration analysis. 

Since free vibration characteristics of the plate that 

involved with frequencies and their corresponding mode 

shapes are of important and most interests, free vibration 

results are then certainly useful in which knowledge of 

the natural frequencies can help the designer to avoid the 

peak resonance. 

Of particular interest in the present paper is mainly 

focused on and limited to the case of both rectangular 

and square plates having mixed boundary conditions. 

Although there have been some vibration analyses of 

such plates documented in the published literature, but 

the authors have found no publications that consider the 

determination of higher frequencies of the plates. One of 

the reasons that may be caused by the difficulties in 

formulating and deriving the characteristic equation of 

problem satisfied all boundary conditions as well as the 

governing differential equation exactly. 

However, vibration problems of rectangular plates 

with mixed edge conditions have been analyzed by some 

investigators with the use of various solution techniques 

to overcome the technical and mathematical difficulties. 

Therefore, analyses have been carried out by means of 

analytical methods, namely, the energy method [13] – 

[15], Fourier series-type method [16], [17], conjugate 

series equations method [18], integral equation method 

[19] – [21], superposition method [22], [23], Rayleigh 

quotient method [24], and the Ritz method [25] – [27]. 

With the advent of very efficient high performance 

of computer speed that allowed solving the solutions of 

a large number of algebraic equations, among a number 

of numerical methods found in the literature, such as 

finite element method [28], [29], finite strip method 

[30], finite strip element method [31], differential 

quadrature method [32], [33], quadrature element 

method [34], [35], the methods based on discrete 

singular convolution [36] – [38], and recently the 

method of Hencky bar-net model [39], the finite element 

method is a convenient approach and is one of the 

powerful numerical methods to analyze the complex 

problems or the domain irregularities. 

Based on the finite element method [40,41] 

together with the use of appropriate consistent and 

conforming plate bending elements, the governing 

partial differential equation presented in Eq.(7) can be 

arranged in a form of matrix equation to determine the 

natural frequencies (ω) and their associated vibratory 

mode shapes {W} of the plate as 

 
2{[ ] [ ]}{ } {0}K M W  ,  (18) 

 

where [K] and [M] are the matrices of global stiffness 

and consistent mass for the system, respectively. 

The aim of this paper is to numerically determine 

and provide some accurate values of higher frequency 

parameter for free vibratory square plates with mixed 

edge conditions by making use of an available well-

known finite element code [42], [43], which have been 

successfully analyzed the free vibration of square plates 

with twenty-one different common boundary conditions 

along the plate edges [44], and more recently the free 

vibration of circular plates with mixed edge conditions 

[45]. Two different kinds of square plate configuration 

are then considered as demonstrated in Figs. 2 and 3 in 

accordance with the cases of clamped plate with varying 

corner simply supported lengths and simply supported 

plate having an equal angle type of clamped support 
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length that can be varied at all corners, respectively. It is 

notable as illustrated in Figs. 2 and 3 that the parameter 

α has the values ranging from 0.0 to 0.5. 

 

3. NUMERICAL RESULTS AND DISCUSSION 

For analyzing the plate vibration problems at hand, 

the ANSYS finite element program [42] is implemented 

to model the plates by making use of quadrilateral shape 

of SHELL181 element type [43] as demonstrated in Fig. 

4. This element has four corner nodes with six degrees 

of freedom (three translations along and three rotations 

about the x, y, and z-axis) specified at each node, which 

is suitable for analyzing problems of thin to moderately-

thick plates. Additionally, it has also well-suited for the 

analysis of both linear and nonlinear problems. 

In order to achieve the numerical results accurately 

for the frequency parameters, the finite element model 

of both plates (Figs. 2 and 3) is discretized identically 

using a large element number of uniformly meshed with 

10000 square elements (resulted from a 100×100 mesh 

used in the complete plate) for the problems considered 

as shown in Fig. 5. 

 

 

 

Fig. 4 Quadrilateral SHELL181 element [43]. 

 

 

 

Fig. 5 Elements mesh of square plate model. 

 

 

 

Fig. 6 A fully clamped square plate. 

 

 

Fig. 7 A fully simply supported square plate. 
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Before solving the equation as presented in Eq.(18) 

to determine the required frequencies that corresponded 

to each mode of vibrations, the proposed criterion to be 

used in applying significant boundary points (the points 

having two different boundary support types) due to the 

plate having mixed boundary support conditions can be 

described that higher constraint condition than another is 

selected to represent the boundary conditions at those 

transition points. For example, one considers the square 

plate that illustrated in Fig. 2, condition equations for 

clamped support are then used at all transition points of 

discontinuity in the finite element support model as well 

as the plate shown in Fig. 3. 

Results for the first twenty frequency parameters 

(λ2) of square plates having mixed boundary conditions 

are prepared and tabulated in Tables 1 and 2 for the 

value of Poisson’s ratio taken to be 0.3. 

As can be seen in Tables 1 and 2 that there are two 

limiting cases existed for α = 0.0 and 0.5. Since α equals 

0.0, the plates as shown in Figs. 2 and 3 become the 

fully clamped (Fig. 6) and fully simply supported (Fig. 

7) square plates, respectively. In the case of α is taken to 

be 0.5, they are changed to be of fully simply supported 

and fully clamped square plates in accordance with Figs. 

7 and 6, respectively. 

It is interesting to notice from the obtainable results 

presented in Tables 1 and 2 that there are many repeated 

values of frequency parameters in each parameter α for 

the adjacent modes. These characteristics are due to the 

existence of degeneracy of frequencies for general plates 

having symmetric vibrations [6] – [10]. 

 

Table 1 Frequencies (λ2) for clamped square plates with varying equal angle-leg corner simple supports. 

Mode 
α 

0.0 0.1 0.2 0.3 0.4 0.5 

1 35.985 35.985 35.905 35.005 31.851 19.739 

2 73.391 73.389 72.953 69.694 62.507 49.347 

3 73.391 73.389 72.953 69.694 62.507 49.347 

4 108.214 108.187 106.237 96.251 83.929 78.957 

5 131.576 131.576 129.841 118.697 107.150 98.693 

6 132.199 132.167 131.566 130.953 125.472 98.693 

7 164.994 164.906 160.140 144.054 134.322 128.301 

8 164.994 164.906 160.140 144.054 134.322 128.301 

9 210.510 210.469 208.316 192.664 189.984 167.779 

10 210.510 210.469 208.316 202.162 189.984 167.779 

11 220.025 219.758 209.669 202.162 190.612 177.648 

12 242.130 242.130 226.997 202.343 197.495 197.385 

13 243.135 242.704 241.904 235.240 211.802 197.385 

14 296.306 295.752 278.117 262.881 261.262 246.723 

15 296.306 295.752 278.117 262.881 261.262 246.723 

16 308.875 308.875 301.760 292.922 273.032 256.607 

17 309.142 308.937 308.486 298.889 287.591 256.607 

18 340.557 340.126 331.370 315.909 294.214 286.196 

19 340.557 340.126 331.370 315.909 294.214 286.196 

20 371.315 370.146 346.011 337.542 329.586 315.806 
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Table 2 Frequencies (λ2) for simply supported square plates with varying equal angle-leg corner clamped supports. 

Mode 
α 

0.0 0.1 0.2 0.3 0.4 0.5 

1 19.739 20.698 23.527 28.137 33.432 35.985 

2 49.347 50.842 54.984 61.546 69.464 73.391 

3 49.347 50.842 54.984 61.546 69.464 73.391 

4 78.957 82.632 92.025 102.661 107.758 108.214 

5 98.693 98.712 99.564 105.158 120.019 131.576 

6 98.693 101.861 109.254 118.701 128.309 132.199 

7 128.301 133.023 143.015 153.545 161.639 164.994 

8 128.301 133.023 143.015 153.545 161.639 164.994 

9 167.779 169.502 175.146 185.380 199.685 210.510 

10 167.779 169.502 175.146 185.380 199.685 210.510 

11 177.648 185.232 199.362 204.229 209.401 220.025 

12 197.385 197.523 202.118 220.598 239.642 242.130 

13 197.385 207.921 228.028 241.307 243.118 243.135 

14 246.723 254.961 260.913 273.526 286.950 296.306 

15 246.723 254.961 265.658 275.649 286.950 296.306 

16 256.607 256.750 266.720 276.065 291.175 308.875 

17 256.607 259.477 266.720 276.065 295.047 309.142 

18 286.196 292.736 311.198 329.097 338.567 340.557 

19 286.196 292.736 311.198 329.097 338.567 340.557 

20 315.806 327.224 338.338 343.499 367.018 371.315 

 

Additionally, an another observation can also be 

seen in both tables for the adjacent modes of vibration 

that there are some repeated frequency parameters for all 

values of parameter α varied such as the adjacent modes 

of 2-3, 7-8, 14-15, and 18-19 shown in Table 1, and the 

adjacent modes of 2-3, 7-8, 9-10, and 18-19 in Table 2. 

To the authors’ opinion, however, these vibration 

characteristics cannot be concluded exactly using the 

same reason as described previously that caused by the 

occurrence of degeneracy frequency possibilities. If the 

changes in parameter α are small enough, the adjacent 

modes of the plate vibrations may not be resulted in 

obtaining the repeated frequencies for all values of 

parameter α changed. This is observable primarily from 

two adjacent modes of 9 and 10 for α = 0.3 as shown in 

Table 1. 

Figs. 8 and 9 demonstrate the modal patterns for 

the plate vibrations that corresponded to the cases of 

fully clamped and fully simply supported edges of 

square plates, respectively. 

For the modal vibration patterns of clamped square 

plates with varying corner simply supported lengths, 

they are presented in Figs. 10 to 13. In the case of 

simply supported square plates with varying equal angle-

leg corner clamped supports, the vibratory modal patterns 

are prepared and given in Figs. 14 to 17. 

 

4. CONCLUSION AND RECOMMENDATION 

As it has been mentioned earlier in Section 2, the 

authors have found no publications on free vibration 

analysis for determining higher frequencies of the plates 

with mixed boundary conditions. Thus, to the best 

knowledge of the authors, the present results that 

provided the higher frequency parameters of square 

plates with symmetrically mixed between the simply 

supported and clamped edges have yet never been 

presented and reported in the scattering scientific or 

technical published literatures. The obtained results are 

numerically given in the table form for easy reference, 

which could be served as a benchmark for comparison 

by other future works. 

However, it is worth noting that there is no study 

on higher frequencies determination for other shapes of 

free vibratory plates with mixed edge conditions and the 

problem of plates with cracks [46] – [52] up to the 

present time. Therefore, additional works by the authors 

on these follow-on problems are forthcoming. 
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Fig. 8 Modal patterns for fully clamped square plate. 
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Fig. 9 Modal patterns for fully simply supported square plate. 
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Fig. 10 Modal patterns for clamped square plate with varying equal angle-leg corner simple supports (α = 0.1). 
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Fig. 11 Modal patterns for clamped square plate with varying equal angle-leg corner simple supports (α = 0.2). 
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Fig. 12 Modal patterns for clamped square plate with varying equal angle-leg corner simple supports (α = 0.3). 
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Fig. 13 Modal patterns for clamped square plate with varying equal angle-leg corner simple supports (α = 0.4). 
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Fig. 14 Modal patterns for simply supported square plate with varying equal angle-leg corner clamped supports (α = 0.1). 
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Fig. 15 Modal patterns for simply supported square plate with varying equal angle-leg corner clamped supports (α = 0.2). 
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Fig. 16 Modal patterns for simply supported square plate with varying equal angle-leg corner clamped supports (α = 0.3). 
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Fig. 17 Modal patterns for simply supported square plate with varying equal angle-leg corner clamped supports (α = 0.4). 
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