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ABSTRACT

Since the vibration problem of plates with mixed
edge conditions is of academic and technological
importance, the need of knowing natural frequencies is
then required. This paper attempts to deal with an
accurate value for some higher frequencies expressed
in terms of frequency parameters of square plates
having mixed edges between the simple and clamped
supports. Two plate configurations are considered. The
first is of the clamped plate with varying corner simply
supported lengths; while the second is the simply
supported plate having an equal angle type of clamped
support placed at all corners. The analysis is made by
means of finite element code with a dense net of
element mesh. The first twenty frequencies and their
vibratory modes are presented, which could serve as a
benchmark for comparison with other methods.

Keywords : Dimensionless frequency parameter, Finite
element analysis, Higher natural frequencies, Mixed
edge conditions, Square plate.

1. INTRODUCTION
THEORY

Within the scope of classical plate theory, the
history of plate theory development was started by
Euler, who in 1766 formulated the first mathematical
approach to the membrane theory of plates [1]. By
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practicing uses, plates are basic components in
engineering design and application with widespread uses
in aircraft, ship, and building structures. Importantly, as
is well-known that plate structures are generally
recognized and proved to be useful models for many
complex structures, because the plate action behaviors
result in lighter structures and offer economical
advantages.

At the present time, there exists numerous
analyses both analytical and numerical methods for the
plates. However, a significant contribution and extensive
study in the area of plate bending analysis together with
its application have been comprehensively collected and
also summarized in a monograph by Timoshenko and
Woinowsky-Krieger [2]. In addition, plate vibrational
behaviors are also of great interest, especially the free
vibration characteristics (natural frequencies and their
associated vibratory shapes) [3], [4]. Since the analysis
of free vibration problems is of basic and applied
interest in several fields of science and technology [5,6],
therefore, an exhaustive summary of the published
literature on the free vibrations of various shaped plates
is available in Leissa [7], [8].

In order to analytically determine the solution of
partial differential equation of plates, exact analytical
solutions are the most desirable, but not always easily
attainable. This is due to the difficulties in trying to
obtain the solutions satisfied both the plate’s governing
equation and all of the boundary conditions exactly.
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Consequently, with these causes as mentioned
above, Leissa [9] has attempted to investigate and
present the comprehensive and obtainable accurate
analytical results for the different twenty-one cases of
free vibration problem of rectangular plates with various
aspect ratios and Poisson’s ratios. It is, however,
interesting and significant to note that exact
characteristic equations involving frequency
determinations can explicitly be given and expressed in
analytical closed-forms only for the six specific cases of
plate with two opposite simply supported edges. Thus,
enormous research works have been conducted and
treated numerically using a wide range of approximate
mathematical techniques.

Before considering further to deal with the
numerical treatment of the titled problems, the method
of analytical solution is reviewed and presented for the
plates being assumed to be isotropic, free from applied
external loads and of uniform thickness. The theoretical
equations that involved and governed with the behaviors
of free vibration problem of plate in the rectangular
coordinates together with the common boundary
condition equations of which being clamped, simply
supported, and free edges are mathematically explained
and given in the following equations below.

With limited to consideration of the problems of
undamped free flexural vibratory rectangular plate that
are basically eigenvalue problems of the mathematical
physics, the classical governing two-dimensional partial
differential equation of plate motion for the transverse
displacement (w) at any point (x,y) and perpendicular to
the plane of the plate can be written as [3]

2
DV4W+paat—\;v=0, 1)

where p is mass density per unit area of plate surface, t
is time, and D is flexural rigidity of the plate defined by

3
p-— @
12(1-v7)
in which E is Young’s modulus, h is thickness of plate, v

is Poisson’s ratio, and V*is the biharmonic differential
operator that given by

s o o

Vi Pty
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Since free vibrations are considered and assumed
to be a sinusoidal time response, therefore, the
transverse displacement for the plate motion is
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expressible as [3], [5]

w(x, y,t) =W (x, y)e'", (4)

| a |

* X
b

y
Fig. 1 Dimensions and coordinates of rectangular plate.
and
e'" = cos(wt) +isin(awt) (5)

where W is a function only of the position coordinates,

w is the circular frequency, and i = J-1.

Substituting the transverse displacement of Eq.(4)
into plate’s differential equation of motion as given by
Eqg.(1) and eliminating out the time dependence together
with introducing a parameter k defined by

2
k=L2 6
D (6)

hence, the governing differential equation of the plate
can be cast in the form

(V) —k“)W =0. @

Considering a rectangular plate with dimensions of
length a and width b along the direction of x- and y-axes
as shown in Fig. 1, respectively, and supposing an edge
parallel to the y-axis to be clamped edge, the boundary
conditions are given by, independent of time t,

W =0, (8a)
%:0. (8a)

For a simply supported edge, the condition

equations can be expressed as
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W =0, (9a)
iX—ZVY+v§y—V¥ =0, (9b)

and for a free edge,

iX—ZVY+v§y—V¥ =0, (10a)
ﬂJr(Z—v)a—SWZ:O. (10b)
OX Oxoy

If the plate has two opposite edges simply
supported at x=0 and x=a, the general solutions to
Eq.(7) can be assumed to be a Fourier series form
following the Levy-type solution as [8] — [10]

W(xy) =YY, (y)sinax, (11)
and
a=mzla. (12)

It can immediately be seen that Eq.(11) is a series
solution involving the Fourier trigonometric functions of
sinax whereas Yn are functions of the variable y only.
Significantly, Eq.(11) exactly satisfies Eq.(7) and the
simply supported edge conditions of Egs.(9a) and (9b)
along x=0 and x=a.

Substitution of Eq.(11) into Eq.(7) yields

®© 4 2
3 IV 92 S | (o _kyy, (y) [sinax
mal dy dy

0. (13)

Noted that the quantities inside the bracket must be
identically zero for each value of m leading to

RGRPWLRA) Z;z( D@ -ky,m=0. a9

dy*

This shows that Eq. (14) is now an ordinary fourth-
order homogeneous differential equation with constant
coefficients.

The solution to Eq.(14) for Yn is well known in
mathematical point of views [11], [12] and its solution
form is, however, seriously depended upon whether the
third coefficient term of parenthesis gives the result to

be negative or positive values.
With the assumption of k® >, the solution Y, is
found to be

Y, = A, sinvk? —a’y+B, cosvk® —a’y
+C,, sinhvk? + @’y + D, cosh\k? +a?y,
where the arbitrary coefficients Am, Bm, Cm, and Dm can

be determined from the prescribed boundary conditions
along the edgesat y=0 and y=Db.

(15)

If k? is assumed to be less than o, the solution
Ym given in Eq.(15) has to be rewritten in the new form
as, with k? <a?,

Y, = A, sinh\a? —k?y+B, coshva? —k?y
+C, sinhvk? +a’y + D, coshvk* +a?y .

As is mentioned earlier [9] for the plates having
two opposite edges simply supported along x=0and
x=a, there are six cases of all possible combinations
among clamped, simply supported or free along two
remaining opposite edges. These lead to the existence of
exact characteristic equations for determination of
frequencies with their associated vibratory mode shapes.

Substituting Eq.(11) together with using Eqgs.(15)
or (16) into the two appropriate boundary conditions
along each edge of y=0 and y=Db in Eqgs.(8) through
(10) and interchanging the variables between x and y in
their expressions yields a characteristic determinant
equation of the fourth order for each m in corresponding
case of six different plates. After that expanding the
determinant and rearranging terms yields a complex
transcendental characteristic equation, which has already
presented in the previous works [8], [9].

In the problem fields of free vibration analysis, it
is, however, very useful to express the circular
frequency (w) in terms of dimensionless frequency
parameters (42). By introducing A = ka where a is a
dimension of plate length and using Eq.(6), the
frequency parameter can be taken as in the form

A% = a)az\/z.
D

2. PROBLEMS CONSIDERATION

From the observation on a search of open available
published literature is remarkable that the literature on
free vibration problems of plate is vast, and most of
them have considered the plates supported by regular or

(16)

A7)
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common boundary conditions along the plate edges.
Relatively few published research is available about the
vibrations of plate with mixed boundary conditions. By
“mixed boundary conditions” it is referred to situations
where there are discontinuities in the type of support
supplied to one or more of the plate edges.
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Fig. 2 Clamped square plate with varying equal angle-
leg corner simple supports.

Q
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Fig. 3 Simply supported square plate with varying equal
angle-leg corner clamped supports.

It is also noted that among all the possible shape of
plates of which are circular, triangular, trapezoidal, and
rectangular plates, etc., the rectangular plate is of the
greatest importance and interest in vibration analysis.

Since free vibration characteristics of the plate that
involved with frequencies and their corresponding mode
shapes are of important and most interests, free vibration
results are then certainly useful in which knowledge of
the natural frequencies can help the designer to avoid the
peak resonance.

Of particular interest in the present paper is mainly
focused on and limited to the case of both rectangular
and square plates having mixed boundary conditions.
Although there have been some vibration analyses of
such plates documented in the published literature, but
the authors have found no publications that consider the
determination of higher frequencies of the plates. One of
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the reasons that may be caused by the difficulties in
formulating and deriving the characteristic equation of
problem satisfied all boundary conditions as well as the
governing differential equation exactly.

However, vibration problems of rectangular plates
with mixed edge conditions have been analyzed by some
investigators with the use of various solution techniques
to overcome the technical and mathematical difficulties.
Therefore, analyses have been carried out by means of
analytical methods, namely, the energy method [13] —
[15], Fourier series-type method [16], [17], conjugate
series equations method [18], integral equation method
[19] — [21], superposition method [22], [23], Rayleigh
quotient method [24], and the Ritz method [25] — [27].

With the advent of very efficient high performance
of computer speed that allowed solving the solutions of
a large number of algebraic equations, among a number
of numerical methods found in the literature, such as
finite element method [28], [29], finite strip method
[30], finite strip element method [31], differential
quadrature method [32], [33], quadrature element
method [34], [35], the methods based on discrete
singular convolution [36] — [38], and recently the
method of Hencky bar-net model [39], the finite element
method is a convenient approach and is one of the
powerful numerical methods to analyze the complex
problems or the domain irregularities.

Based on the finite element method [40,41]
together with the use of appropriate consistent and
conforming plate bending elements, the governing
partial differential equation presented in Eq.(7) can be
arranged in a form of matrix equation to determine the
natural frequencies (w) and their associated vibratory
mode shapes {W?} of the plate as

{[K1- o’ [MIHW}={0}, (18)

where [K] and [M] are the matrices of global stiffness
and consistent mass for the system, respectively.

The aim of this paper is to numerically determine
and provide some accurate values of higher frequency
parameter for free vibratory square plates with mixed
edge conditions by making use of an available well-
known finite element code [42], [43], which have been
successfully analyzed the free vibration of square plates
with twenty-one different common boundary conditions
along the plate edges [44], and more recently the free
vibration of circular plates with mixed edge conditions
[45]. Two different kinds of square plate configuration
are then considered as demonstrated in Figs. 2 and 3 in
accordance with the cases of clamped plate with varying
corner simply supported lengths and simply supported
plate having an equal angle type of clamped support
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length that can be varied at all corners, respectively. It is
notable as illustrated in Figs. 2 and 3 that the parameter
o has the values ranging from 0.0 to 0.5.

3. NUMERICAL RESULTS AND DISCUSSION

For analyzing the plate vibration problems at hand,
the ANSYS finite element program [42] is implemented
to model the plates by making use of quadrilateral shape
of SHELL181 element type [43] as demonstrated in Fig.
4. This element has four corner nodes with six degrees
of freedom (three translations along and three rotations
about the x, y, and z-axis) specified at each node, which
is suitable for analyzing problems of thin to moderately-
thick plates. Additionally, it has also well-suited for the
analysis of both linear and nonlinear problems.

In order to achieve the numerical results accurately
for the frequency parameters, the finite element model
of both plates (Figs. 2 and 3) is discretized identically
using a large element number of uniformly meshed with
10000 square elements (resulted from a 100100 mesh
used in the complete plate) for the problems considered
as shown in Fig. 5. Fig. 5 Elements mesh of square plate model.
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Fig. 6 A fully clamped square plate.

X

Fig. 4 Quadrilateral SHELL181 element [43].

Fig. 7 A fully simply supported square plate.
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Before solving the equation as presented in Eq.(18)
to determine the required frequencies that corresponded
to each mode of vibrations, the proposed criterion to be
used in applying significant boundary points (the points
having two different boundary support types) due to the
plate having mixed boundary support conditions can be
described that higher constraint condition than another is
selected to represent the boundary conditions at those
transition points. For example, one considers the square
plate that illustrated in Fig. 2, condition equations for
clamped support are then used at all transition points of
discontinuity in the finite element support model as well
as the plate shown in Fig. 3.

Results for the first twenty frequency parameters
(A% of square plates having mixed boundary conditions
are prepared and tabulated in Tables 1 and 2 for the

ENGINEERING TRANSACTIONS, VOL. 23, NO.2 (49) JUL-DEC 2020.

value of Poisson’s ratio taken to be 0.3.

As can be seen in Tables 1 and 2 that there are two
limiting cases existed for a = 0.0 and 0.5. Since « equals
0.0, the plates as shown in Figs. 2 and 3 become the
fully clamped (Fig. 6) and fully simply supported (Fig.
7) square plates, respectively. In the case of a is taken to
be 0.5, they are changed to be of fully simply supported
and fully clamped square plates in accordance with Figs.
7 and 6, respectively.

It is interesting to notice from the obtainable results
presented in Tables 1 and 2 that there are many repeated
values of frequency parameters in each parameter o for
the adjacent modes. These characteristics are due to the
existence of degeneracy of frequencies for general plates
having symmetric vibrations [6] — [10].

Table 1 Frequencies (4?) for clamped square plates with varying equal angle-leg corner simple supports.

a
e 00 0.1 0.2 03 0.4 05
1 | 35985| 35985 | 35.905| 35005| 31.851 | 19.739
2 | 73391 | 73.389 | 72.953 | 69.694 | 62507 | 49.347
3 | 73.391| 73.389 | 72.953 | 69.694 | 62507 | 49.347
4 | 108.214 | 108.187 | 106.237 | 96.251 | 83.929 | 78.957
5 | 131.576 | 131.576 | 129.841 | 118.697 | 107.150 | 98.693
6 | 132.199 | 132.167 | 131.566 | 130.953 | 125.472 | 98.693
7 | 164.994 | 164.906 | 160.140 | 144.054 | 134.322 | 128.301
8 | 164.994 | 164.906 | 160.140 | 144.054 | 134.322 | 128.301
9 | 210510 | 210.469 | 208.316 | 192.664 | 189.984 | 167.779
10 | 210.510 | 210.469 | 208.316 | 202.162 | 189.984 | 167.779
11 | 220.025 | 219.758 | 209.669 | 202.162 | 190.612 | 177.648
12 | 242.130 | 242.130 | 226.997 | 202.343 | 197.495 | 197.385
13 | 243.135 | 242.704 | 241.904 | 235.240 | 211.802 | 197.385
14 | 296.306 | 295.752 | 278.117 | 262.881 | 261.262 | 246.723
15 | 296.306 | 295.752 | 278.117 | 262.881 | 261.262 | 246.723
16 | 308.875 | 308.875 | 301.760 | 292.922 | 273.032 | 256.607
17 | 309.142 | 308.937 | 308.486 | 298.889 | 287.591 | 256.607
18 | 340.557 | 340.126 | 331.370 | 315.909 | 294.214 | 286.196
10 | 340.557 | 340.126 | 331.370 | 315.909 | 294.214 | 286.196
20 | 371.315 | 370.146 | 346.011 | 337.542 | 329.586 | 315.806
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Table 2 Frequencies (42) for simply supported square plates with varying equal angle-leg corner clamped supports.

a
e 00 0.1 0.2 03 0.4 05
1 | 19.739 | 20.698 | 23.527 | 28.137 | 33.432 | 350985
2 | 49347 | 50.842 | 54.984 | 61.546 | 69.464 | 73.391
3 | 49.347 | 50.842 | 54.984 | 61.546 | 69.464 | 73.391
4 | 78957 | 82.632 | 92.025 | 102.661 | 107.758 | 108.214
5 | 98.693 | 98.712 | 99.564 | 105.158 | 120.019 | 131576
6 | 98.693 | 101.861 | 109.254 | 118.701 | 128.309 | 132.199
7 | 128.301 | 133.023 | 143.015 | 153.545 | 161.639 | 164.994
8 | 128.301 | 133.023 | 143.015 | 153.545 | 161.639 | 164.994
9 | 167.779 | 169.502 | 175.146 | 185.380 | 199.685 | 210.510
10 | 167.779 | 169.502 | 175.146 | 185.380 | 199.685 | 210.510
11 | 177.648 | 185.232 | 199.362 | 204.229 | 209.401 | 220.025
12 | 197.385 | 197.523 | 202.118 | 220.598 | 239.642 | 242.130
13 | 197.385 | 207.921 | 228.028 | 241.307 | 243.118 | 243.135
14 | 246.723 | 254.961 | 260.913 | 273.526 | 286.950 | 296.306
15 | 246.723 | 254.961 | 265.658 | 275.649 | 286.950 | 296.306
16 | 256.607 | 256.750 | 266.720 | 276.065 | 291.175 | 308.875
17 | 256.607 | 259.477 | 266.720 | 276.065 | 295.047 | 309.142
18 | 286.196 | 292.736 | 311.198 | 329.097 | 338.567 | 340.557
19 | 286.196 | 292.736 | 311.198 | 329.097 | 338.567 | 340.557
20 | 315.806 | 327.224 | 338.338 | 343.499 | 367.018 | 371.315

Additionally, an another observation can also be
seen in both tables for the adjacent modes of vibration
that there are some repeated frequency parameters for all
values of parameter a varied such as the adjacent modes
of 2-3, 7-8, 14-15, and 18-19 shown in Table 1, and the
adjacent modes of 2-3, 7-8, 9-10, and 18-19 in Table 2.

To the authors’ opinion, however, these vibration
characteristics cannot be concluded exactly using the
same reason as described previously that caused by the
occurrence of degeneracy frequency possibilities. If the
changes in parameter o are small enough, the adjacent
modes of the plate vibrations may not be resulted in
obtaining the repeated frequencies for all values of
parameter « changed. This is observable primarily from
two adjacent modes of 9 and 10 for o = 0.3 as shown in
Table 1.

Figs. 8 and 9 demonstrate the modal patterns for
the plate vibrations that corresponded to the cases of
fully clamped and fully simply supported edges of
square plates, respectively.

For the modal vibration patterns of clamped square
plates with varying corner simply supported lengths,
they are presented in Figs. 10 to 13. In the case of
simply supported square plates with varying equal angle-

leg corner clamped supports, the vibratory modal patterns
are prepared and given in Figs. 14 to 17.

4. CONCLUSION AND RECOMMENDATION

As it has been mentioned earlier in Section 2, the
authors have found no publications on free vibration
analysis for determining higher frequencies of the plates
with mixed boundary conditions. Thus, to the best
knowledge of the authors, the present results that
provided the higher frequency parameters of square
plates with symmetrically mixed between the simply
supported and clamped edges have yet never been
presented and reported in the scattering scientific or
technical published literatures. The obtained results are
numerically given in the table form for easy reference,
which could be served as a benchmark for comparison
by other future works.

However, it is worth noting that there is no study
on higher frequencies determination for other shapes of
free vibratory plates with mixed edge conditions and the
problem of plates with cracks [46] — [52] up to the
present time. Therefore, additional works by the authors
on these follow-on problems are forthcoming.
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Mode 16 Mode 17 Mode 18 Mode 19 Mode 20
Fig. 8 Modal patterns for fully clamped square plate.

Mode 9 Mode 10

[ &

Mode 16 Mode 17 Mode 18 Mode 19 Mode 20
Fig. 9 Modal patterns for fully simply supported square plate.
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Mode 11

Mode 16 Mode 17 Mode 18 Mode 19 Mode 20
Fig. 10 Modal patterns for clamped square plate with varying equal angle-leg corner simple supports (o = 0.1).

Mode 9 Mode 10

Mode 14 Mode 15

Mode 16 Mode 17 Mode 18 Mode 19 Mode 20
Fig. 11 Modal patterns for clamped square plate with varying equal angle-leg corner simple supports (a = 0.2).



154 ENGINEERING TRANSACTIONS, VOL. 23, NO.2 (49) JUL-DEC 2020.

.

Mode 16 Mode 17 Mode 18 Mode 19 Mode 20

Fig. 12 Modal patterns for clamped square plate with varying equal angle-leg corner simple supports (o = 0.3).

Mode 16 Mode 17 Mode 18 Mode 19 Mode 20
Fig. 13 Modal patterns for clamped square plate with varying equal angle-leg corner simple supports (o = 0.4).
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Mode 10
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0 | @

)

\°

Mode 16 Mode 17 Mode 18 Mode 19 Mode 20
Fig. 14 Modal patterns for simply supported square plate with varying equal angle-leg corner clamped supports (. = 0.1).

S
-

Mode 9

Mode 10

Mode 14 Mode 15

Mode 16 Mode 17 Mode 18 Mode 19 Mode 20
Fig. 15 Modal patterns for simply supported square plate with varying equal angle-leg corner clamped supports (o = 0.2).
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Mode 2 Mode 3

N - \
Mode 16 Mode 17 Mode 18

Mode 19 Mode 20

Fig. 16 Modal patterns for simply supported square plate with varying equal angle-leg corner clamped supports (o = 0.3).

.
D

Mode 3

~

Mode 16 Mode 17 Mode 18 Mode 19 Mode 20
Fig. 17 Modal patterns for simply supported square plate with varying equal angle-leg corner clamped supports (o = 0.4).
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