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ABSTRACT 

Owing to the advent of high speed computers that 

permitted computing solutions of a large number of 

algebraic equations in a relatively short time, the paper 

utilizes the advantage of this performance to evaluate 

some accurate higher natural frequency parameters 

for vibratory simply supported square plates with 

partially clamped segments on the plate boundaries. 

Analysis is focused on two cases of the plate. The first 

is a simply supported plate having an equal angle-leg 

corner partially clamped and the second is a simply 

supported plate having some segments adjacent to a 

corner equally the lengths of partial simple support 

and clamped on the remainders. To carry out the 

frequencies accurately together with their associated 

modes of vibration, a dense net of representative finite 

element model is performed. The first twenty frequency 

parameters are then determined and presented in a 

tabular form for easy reference by other alternative 

methods. 
 

Keywords : Finite element model, Frequency 

parameter, Partial edge supports, Square plate. 
 

 

1. INTRODUCTION AND LITERATURE 

REVIEW 

The flat plate is a very common component in 

engineering practices and has been extensively used in 

civil, mechanical and aerospace structures [1], [2]. 

Based on the mathematical analytical approaches [3], 

because exact analytical solutions can exist only for 

rectangular plates having at least simply supported edge 

conditions placed at two opposite edges and either 

circular or annular plates supported by regular boundary 

conditions along the circumferential edges [4] – [8], 

very little amount of published research is, nevertheless, 

available about the bending, free vibration, and buckling 

problems of plates with mixed boundary conditions [9] – 

[13]. 

Utilization of the energy method together with the 

method of equivalent distributed loads corresponding to 

the edge moments, Ota and Hamada [14] dealt with the 

bending and vibration problems of a simply supported 

but partially clamped rectangular plate. In addition, an 

extension of the method was also made to analyze the 

fundamental vibrations for various cases of plate with 

mixed boundary conditions between simply supported 

and clamped edges [15]. 

An important research is that of Keer and Stahl 

[16] who applied the analytical method of finite Hankel 

integral transform techniques to analytically determine 

the fundamental frequency of rectangular plates with 

mixed edge conditions. The problems were formulated 

as dual series equations and reduced to finding the 

solution of homogeneous Fredholm integral equations of 

the second kind. 

The high precision triangular plate bending 

element has been used to numerically determine the 
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fundamental frequency of rectangular plates with mixed 

boundary conditions by Venkateswara Rao et al. [17]. 

The obtained results were in good agreement compared 

with Keer and Stahl [16], with a maximum difference of 

about 3.5%. 

Narita [18] applied a series-type method to the free 

vibration of an orthotropic rectangular plate with mixed 

boundary conditions in which the plate considered is 

elastically constrained produced by locating rotational 

springs along parts of the edge or clamped along a few 

parts of its edge and simply supported on the remainder. 

By the use of this method, a comprehensive study of the 

variations of the frequency parameters with the change 

of clamped portion was presented and given with four 

significant figures for the lowest six modes of vibration 

and only the fundamental frequencies have compared 

with the results obtained by Keer and Stahl [16] and 

Venkateswara Rao et al. [17]. 

Gorman [19] developed a comprehensive analytical 

method for analyzing free vibration of rectangular plates 

with discontinuities along the boundaries based on the 

superposition technique. Accurate numerical results for 

the fundamental frequency values of rectangular plate 

with varying the side ratios of the plate were presented. 

Cheng [20] has attempted to analytically evaluate 

the lower and upper limits of fundamental frequency of 

simply supported rectangular plates having partially 

clamped segments along the edges by the method of 

releasing boundary conditions and the Ritz method, 

respectively. The solution of the eigenvalue problems 

which is the plate vibratory displacement is expressible 

in the form of Fourier’s series type following the Levy 

approach. 

An approximate method for analyzing free 

vibration of rectangular Mindlin plates having mixed 

boundary conditions was proposed by Sakiyama and 

Matsuda [21] for the fundamental mode of vibration. 

The solutions of the partial differential equations were 

obtainable in discrete form by transforming the 

differential equations into integral equations together 

with applying numerical integration techniques. 

Numerical results for variation of fundamental 

frequency parameters of rectangular plates with fixed 

length ratio of mixed boundaries were carried out and 

presented. For a specific case of square plates, the 

obtained results were also compared with analytical 

solution results given by Keer and Stahl [16]. 

Another approximate numerical method was made 

by Leung and Au [22] who numerically developed the 

spline functions that can be expressed in terms of 

physical coordinates at the boundary resulting in the 

required shape functions in finite element method. 

Seven different cases of rectangular plate with mixed 

boundary conditions have analyzed for the lowest three 

frequency parameters. 

Lee and Lim [23] applied a simple numerical 

method that based on the Rayleigh principle for 

predicting the natural frequencies of a simply supported 

rectangular plate having an edge or two opposite edges 

partially clamped. Results were carried out and 

presented for isotropic and orthotropic plates, and were 

also in good agreement with other available analytical 

results. 

The substructure method that involved partitioning 

of the entire plate domain into appropriate elements to 

approximate the displacement function of each element 

by a set of admissible orthogonal polynomials was used 

to analyze the free vibration of a rectangular plate with 

discontinuous boundary conditions by Liew et al. [24]. 

By minimizing the total energy of the system of the 

plate resulting Rayleigh quotient with respect to the 

unknown coefficients leads to the governing eigenvalue 

equation for the entire plate. The computed lowest four 

frequency parameters for three cases of considered plate 

having mixed boundary conditions between the simply 

supported and clamped supports were numerically given 

and compared favorably with other previously published 

values. 

Laura and Gutierrez [25] dealt with the application 

of the differential quadrature technique to numerically 

determine the fundamental frequency of free vibration of 

rectangular thin elastic plates in the case of non-uniform 

boundary conditions and mixed boundary conditions. 

Two cases of square plate with discontinuously varying 

edge conditions were considered and their fundamental 

frequency parameters were given and also compared 

with available published literature. 

Cheung and Kong [26] developed and described a 

new finite strip element method to investigate the free 

vibration of four different plates with mixed boundary 

conditions. The lowest three dimensionless frequency 

parameters were provided and also compared with other 

finite strip and spline strip methods. 

A highly accurate and rapidly converging hybrid 

approach for the quadrature element method solution of 

rectangular plate free vibration problems was proposed 

by Striz et al. [27]. Two cases of square plate with 

mixed edge conditions between simply supported and 

clamped were investigated for determining the first five 

natural frequency parameters and validated with both 

analytical and numerical methods. 

Singhal and Gorman [28] described an analytical 

procedure based on the method of superposition [29] for 

obtaining the free vibration frequencies and their mode 

shapes of partially clamped cantilevered rectangular thin 

plates with and without rigid point supports. In order to 

verify their proposed analytical procedure, comparison 

of computed and experimental results for the first six 
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frequencies of rectangular plates with varying three side 

ratios of length to width of the plate were demonstrated. 

The method of generalized differential quadrature 

has been used by Shu and Wang [30] to the treatment of 

mixed and nonuniform boundary conditions for the free 

vibration analysis of rectangular plates. The advantage 

of the proposed approach can be stated that it overcomes 

the drawbacks of conventional approaches such as the δ-

technique in treating the boundary conditions. The first 

five frequency parameters for two different square plates 

having mixed boundary conditions were carried out with 

different meshes used in their analyses. 

Liu and Liew [31] considered and analyzed the free 

vibration problem of thick rectangular plates with mixed 

boundary conditions that based on the first-order theory 

of shear deformable plate by the use of differential 

quadrature element method. Six different cases of square 

plate with mixed edge conditions were investigated for 

obtaining the lowest eight frequency parameters. 

Wei et al. [32] numerically computed and dealt 

with some new results for square plates with 

combinations of the mixed and nonuniform edges by 

making use of the discrete singular convolution 

approach. The lowest five natural frequencies were 

given in tabular form and also validated with existing 

results in the literature. 

A procedure of finite strip element method 

combined with a spring system was proposed and 

employed by Huang and Thambiratnam [33] to 

numerically treat the free vibration of rectangular plates. 

The spring system can be used to model point supports, 

line supports, locally distributed supports and also 

complex boundary conditions. Results of the first three 

natural frequencies for three cases of square plate having 

mixed boundary conditions between simply supported 

and clamped edges were carried out and compared well 

with other available results found in the published 

literature. 

Su and Xiang [34] analyzed the free vibration and 

buckling problems of rectangular plates with mixed edge 

support conditions based on a non-discrete approach that 

is a domain decomposition method. With this method, 

the entire plate is decomposed into multiple rectangular 

subdomains along the change of discontinuous support 

conditions. Compared to other domain decomposition 

technique, it can be stated that a set of non-discretized 

interconnecting boundaries is established to maintain the 

completeness of the entire plate domain in which the 

convergence rate and the accuracy of the results in the 

plate analysis can be improved well. The lowest six 

accurate frequency parameters were given for the eight 

cases of square plates with mixed boundary conditions. 

A comprehensive comparison study of free 

vibration analysis between the discrete singular 

convolution and the global generalized differential 

quadrature methods was presented by Ng et al.[35]. Five 

rectangular plates of mixed supporting edges over a 

range of aspect ratios and non-dimensional spring 

coefficients have considered and their first five 

frequency parameters were computed. Numerical 

experiments have showed that the results of the discrete 

singular convolution with employing the Lagrange 

kernels agree well with the existing literature, whereas 

the results obtained by generalized differential 

quadrature are generally more accurate. However, for 

higher order frequencies, it is interesting to note that the 

discrete singular convolution method produces more 

accurate results than those of generalized differential 

quadrature. 

For three-dimensional free vibration analysis, Zhou 

et al. [36] considered two kinds of rectangular plates 

with mixed boundary conditions, based on the small 

strain linear elasticity theory. The Ritz method was 

employed successfully to derive the governing 

eigenvalue equation by minimizing the energy 

functional of the plate. The first six dimensionless 

frequency parameters of square plates were carried out 

in correspondence with both antisymmetric and 

symmetric modes in the thickness direction. 

Xiang et al. [37] developed a new approach called 

the DSC-Ritz element method that based on the concept 

of finite element method together with the 

implementation of discrete singular convolution as a 

trial function in the Ritz method, to analyze the free 

vibration of moderately thick plates following the 

Mindlin first-order shear deformation plate theory. Ten 

cases of rectangular plate with various edge support 

discontinuities were treated numerically to obtain the 

lowest eight frequencies. 

Problem of symmetrical free vibration of 

rectangular plate with discontinuous simple supports 

was considered and formulated by Chaiyat and 

Sompornjaroensuk [38]. The obtained dual series 

equations that resulted from the mixed boundary 

conditions were derived and reduced to homogeneous 

integral equation of Fredholm-type using the method of 

finite Hankel integral transforms similar to that work of 

Keer and Stahl [16]. 

Zhang et al. [39] proposed the development of the 

Hencky bar-net model (HBM) to analyze free vibration 

of rectangular plates with mixed boundary conditions 

and point supports. It is describable that the model is a 

two-dimensional discrete net system composed of rigid 

segments connected by frictionless hinges and rotational 

springs, which is able to handle any boundary conditions 

of plates including mixed boundary conditions and also 

internal point supports. The first three natural frequency 

parameters were determined for three different cases of 
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the plates having mixed boundary conditions with and 

without an interior point support. 

Recently, the authors [40] have numerically 

analyzed free vibration of square plates with 

symmetrically mixed boundary edges between simple 

and clamped supports using the reliable finite element 

program [41,42]. The higher frequencies and their 

corresponded mode shapes of plate vibrations were 

presented. In addition, the free vibrations of circular 

plates with partially clamped or partially simply 

supported along circumferential edge were already 

treated to determine the first thirty accurate frequency 

parameters [43]. 

The primary purpose of this paper is to numerically 

deal with the reasonably accurate results for higher free 

vibration frequencies, expressed in terms of frequency 

parameters, of simply supported but partially clamped 

square plates by means of an available ANSYS finite 

element code [41,42] with a dense net of element model. 

Some interested observations of the obtainable results 

are addressed and discussed in details. Furthermore, the 

associated modes of plate vibrations are also graphically 

provided. 

 

2. PROBLEM STATEMENT 

Two different cases of square plate configuration 

are then illustrated in Figs. 1 and 2, which have never 

been considered in the past technical literature. 

One begins by considering the plate as shown in 

Fig. 1. This plate has an equal angle-leg partially 

clamped segment placed at one corner where the 

remaining parts of the plate edges are all simply 

supported. 

 

 
 

Fig. 1 Simply supported square plate with an equal 

angle-leg corner partially clamped. 

 

 

Fig. 2 Simply supported square plate with an equal 

angle-leg corner partially simply supported. 

 

 

Fig. 3 A square plate with all edges simply supported 

(S-S-S-S plate). 

 

 

Fig. 4 A square plate with two adjacent edges clamped 

and two adjacent edges simply supported (C-S-S-C 

plate). 

 

On an another plate as demonstrated in Fig. 2, is 

that corner support of the plate as given in Fig. 1 has to 

be replaced by partial simple supports and the remaining 

parts of two adjacent edges to the corner are partially 

clamped. Other two remaining edges are fully simply 

supported along the plate edges. 

In both cases of the plate considered (Figs. 2 and 

3), the parameter α is changeable starting from zero to 

unity in order to define the length of partial supports. 
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If the values of α are taken to be zero and unity for 

the plate illustrated in Fig. 1, two limiting cases exist for 

the plates as shown in Figs. 3 and 4, respectively. On the 

other hand of the plate presented by Fig. 2, two limiting 

cases become the plates as shown in Figs. 4 and 3 in 

correspondence with α-values taken as zero and unity, 

respectively. 

It can also be noted that the letters S and C as seen 

in both Figs. 3 and 4 are symbolically designated to be 

the conditions of simple and clamped supports, 

respectively. 

The free vibration analysis can be made in the 

same manner of authors’ previous work [40] by making 

use of the efficient finite element code [41]. 

In order to model the plates that based on the finite 

element procedure [44,45], the quadrilateral shaped of 

SHELL181 element type [42] as shown in Fig. 5 and 

also together with the representative refinement of finite 

element discretization for the entire plate as depicted in 

Fig. 6 are then used for this purpose. 

 

Fig. 5 ANSYS SHELL181 element [42]. 

 

The final important step is to identify the boundary 

conditions of problem modelling properly. In earlier 

works [40,43], the first author has provided the detailed 

descriptions of representing the points of discontinuous 

support in which higher constraint support condition 

than another at the points of discontinuity is chosen to 

represent the boundary conditions at those points. 

 

3. PRESENTATION OF RESULTS 

After performing the analysis by ANSYS computer 

program, the obtainable results are given in terms of 

natural frequencies (f) of the plates. It is, however, very 

convenient to express them in dimensionless form of 

frequency parameters (λ2) as 

 

2 22 fa
D
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Fig. 6 Mesh of 100×100 elements in square plate model. 

 

and the plate’s flexural rigidity (D) defined by 
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where a is the plate length, ρ is mass density per 

unit area of the plate surface, h is the plate thickness, 

and the plate’s material properties E and ν are Young’s 

modulus and Poisson’s ratio, respectively. 

The first twenty frequency parameters (λ2) for 

square plates shown in Figs. 1 and 2 with varying of 

parameter α are numerically tabulated and listed in 

Tables 1 and 2, respectively. All the presented values are 

given only for the Poisson’s ratio taken to be 0.3. 

It is obviously seen in Table 1 for the parameters α 

taken to be 0.0 and 1.0 that the plates are corresponded 

to the cases of fully simply supported square plate (Fig. 

3) and a square plate as shown in Fig. 4, respectively. 

Their modal patterns for the first twenty modes of two 

associated vibratory plates are graphically presented in 

Figs. 7 and 8. 

As shown in Figs. 9 to 12, they are demonstrated 

for the first twenty modal patterns of square plates as 

shown in Fig. 1 with varying parameters α as 0.2, 0.4, 

0.6, and 0.8, respectively. 
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Similarly, Figs. 13 to 16 have prepared and 

provided for the modal patterns of the plate shown in 

Fig. 2 with variation of α’s to the corresponded plates 

with varying of the length of partial simple supports. 

 

4. DISCUSSION 

Let us to first consider all the obtainable results of 

frequency parameters (λ2) for α taken to be 0.0 as given 

in Table 1 that corresponded to the simply supported 

square plate shown in Fig. 3 (S-S-S-S plate), it is clearly 

found to have many repeated values of the frequency 

parameter for neighbouring modes of free vibration.  

 

These characteristics can then certainly be 

described by the existence of degeneracy frequency 

possibilities that found in general plates having 

symmetric vibrations [7,10,29] along the centrelines of 

the plate with respect to the x- and y-axes. These 

vibration characteristics do not appear to the plate 

having α taken to be 1.0 (Fig. 4) and also other plates 

with mixed edge conditions (α ≠ 0). 

Therefore, the repeated frequency parameters that 

seen in Table 2 for α taken as 1.0 are corresponded to 

the vibration behaviors of simply supported square plate 

(Fig. 3), which can be explained in the same manner of 

results given in Table 1 for α = 0. 

 

Table 1 Frequencies (λ2) for simply supported square plate with an equal angle-leg corner partially clamped. 

Mode 
α 

0.0 0.2 0.4 0.6 0.8 1.0 

1 19.739 20.643 22.981 25.644 26.936 27.053 

2 49.347 49.379 50.507 55.096 59.889 60.539 

3 49.347 51.941 56.964 60.313 60.783 60.785 

4 78.957 81.772 84.583 85.840 91.723 92.835 

5 98.693 98.907 103.120 109.959 113.677 114.554 

6 98.693 101.341 106.313 111.392 114.522 114.700 

7 128.301 128.529 131.744 133.582 142.034 145.776 

8 128.301 135.741 141.019 143.746 146.037 146.076 

9 167.779 168.365 173.637 180.281 187.054 188.452 

10 167.779 169.349 174.533 182.686 188.340 188.545 

11 177.648 182.180 183.572 190.489 194.110 198.098 

12 197.385 198.537 208.275 211.351 215.309 219.205 

13 197.385 206.204 211.535 211.823 218.897 219.430 

14 246.723 247.215 248.158 255.069 261.200 270.653 

15 246.723 253.428 260.523 265.752 270.756 270.961 

16 256.607 257.694 264.624 273.319 280.434 282.136 

17 256.607 262.287 265.014 276.415 281.890 282.198 

18 286.196 288.944 299.873 301.822 307.809 312.607 

19 286.196 293.435 302.498 303.934 311.603 312.792 

20 315.806 320.584 323.188 327.843 334.630 342.833 
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Table 2 Frequencies (λ2) for simply supported square plate with an equal angle-leg corner partially simply 

supported and clamped on the remaining parts. 

Mode 
α 

0.0 0.2 0.4 0.6 0.8 1.0 

1 27.053 27.047 26.549 24.035 20.963 19.739 

2 60.539 60.537 56.688 50.561 49.373 49.347 

3 60.785 60.670 60.475 58.775 52.900 49.347 

4 92.835 92.525 86.454 84.389 82.363 78.957 

5 114.554 114.308 109.147 104.144 98.868 98.693 

6 114.700 114.552 113.605 107.365 102.692 98.693 

7 145.776 144.353 133.899 132.528 128.527 128.301 

8 146.076 145.774 144.554 140.504 137.193 128.301 

9 188.452 187.497 179.389 174.101 168.211 167.779 

10 188.545 188.440 184.007 177.148 171.183 167.779 

11 198.098 196.009 192.674 183.449 181.956 177.648 

12 219.205 216.293 211.228 209.157 198.588 197.385 

13 219.430 219.164 212.643 210.982 208.275 197.385 

14 270.653 263.148 254.495 248.692 247.277 246.723 

15 270.961 270.612 264.563 261.938 255.335 246.723 

16 282.136 281.295 276.005 263.620 259.211 256.607 

17 282.198 282.075 278.732 267.741 260.093 256.607 

18 312.607 307.604 301.698 299.463 289.067 286.196 

19 312.792 312.423 303.482 302.539 296.224 286.196 

20 342.833 336.209 330.099 323.639 320.092 315.806 
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Fig. 7 Modal patterns for square plate with all edges simply supported. 
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Fig. 8 Modal patterns for square plate with two adjacent edges clamped and two adjacent edges simply supported. 
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Fig. 9 Modal patterns for simply supported square plate with an equal angle-leg corner partially clamped (α = 0.2). 
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Fig. 10 Modal patterns for simply supported square plate with an equal angle-leg corner partially clamped (α = 0.4). 
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Fig. 11 Modal patterns for simply supported square plate with an equal angle-leg corner partially clamped (α = 0.6). 
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Fig. 12 Modal patterns for simply supported square plate with an equal angle-leg corner partially clamped (α = 0.8). 
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Fig. 13 Modal patterns for simply supported square plate with an equal angle-leg corner partially simply supported 

(α = 0.2). 
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Fig. 14 Modal patterns for simply supported square plate with an equal angle-leg corner partially simply supported 

(α = 0.4). 
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Fig. 15 Modal patterns for simply supported square plate with an equal angle-leg corner partially simply supported 

(α = 0.6). 
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Fig. 16 Modal patterns for simply supported square plate with an equal angle-leg corner partially simply supported 

(α = 0.8). 

 

It is remarkable that all numerical results carried 

out in present work have no considering the 

characteristic of stress singularities occurred at the 

points of boundary discontinuities [46], [47]. 

Significantly, these local stresses actually tend to 

infinity in the vicinity of the ends of discontinuous 

supports. 

Furthermore, stress singularities are very important 

to practical engineering design process that may cause a 

local change in plate’s stiffness due to some existence of 

damages near those end points of supports, and may also 

alter the dynamic characteristics of the plate. Thus, the 

necessities of considering the singularity in solutions 

have been studied and confirmed by Chen and Pickett 

[48], Leissa et al. [49], and Leissa [50]. 

Since the order of stress singularities in problem of 

plates with mixed edge conditions is in the same order 

with the problem of cracked plates, then Huang and his 

colleagues have analyzed the free vibration and buckling 

problems of plates with cracks using the methods based 

on the Ritz approach [51] – [54], which included the 

correct singularity order at the roots of the crack. 

For other numerical methods such as the boundary 

element and finite element methods can, respectively, be 

found in Sun and Wei [55] and Ayatollahi et al. [56]. It 

is interesting to notice that the Ritz method is very 

suitable for analyzing the present problems because the 

geometry of plate under consideration is simple, so that 

the area integration required in the Ritz method is easy 

to set up. This method will then be considered for future 

research. 

 

5. CONCLUSION 

In summary, to the authors’ knowledge, the results 

shown that provided the higher frequency parameters of 

square plates with two edges mixed boundary supports 

adjacent to one corner of the plates are the first ones 

available in the published literature. They are, however, 

prepared in the tabular form for easy reference, which 

could serve as the benchmark values for other future 

researches in plate vibrations involving mixed boundary 

conditions. 
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