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ABSTRACT

Owing to the advent of high speed computers that
permitted computing solutions of a large number of
algebraic equations in a relatively short time, the paper
utilizes the advantage of this performance to evaluate
some accurate higher natural frequency parameters
for vibratory simply supported square plates with
partially clamped segments on the plate boundaries.
Analysis is focused on two cases of the plate. The first
is a simply supported plate having an equal angle-leg
corner partially clamped and the second is a simply
supported plate having some segments adjacent to a
corner equally the lengths of partial simple support
and clamped on the remainders. To carry out the
frequencies accurately together with their associated
modes of vibration, a dense net of representative finite
element model is performed. The first twenty frequency
parameters are then determined and presented in a
tabular form for easy reference by other alternative
methods.

Keywords Finite element model, Frequency
parameter, Partial edge supports, Square plate.

1. INTRODUCTION
REVIEW

The flat plate is a very common component in
engineering practices and has been extensively used in
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civil, mechanical and aerospace structures [1], [2].
Based on the mathematical analytical approaches [3],
because exact analytical solutions can exist only for
rectangular plates having at least simply supported edge
conditions placed at two opposite edges and either
circular or annular plates supported by regular boundary
conditions along the circumferential edges [4] — [8],
very little amount of published research is, nevertheless,
available about the bending, free vibration, and buckling
problems of plates with mixed boundary conditions [9] —
[13].

Utilization of the energy method together with the
method of equivalent distributed loads corresponding to
the edge moments, Ota and Hamada [14] dealt with the
bending and vibration problems of a simply supported
but partially clamped rectangular plate. In addition, an
extension of the method was also made to analyze the
fundamental vibrations for various cases of plate with
mixed boundary conditions between simply supported
and clamped edges [15].

An important research is that of Keer and Stahl
[16] who applied the analytical method of finite Hankel
integral transform techniques to analytically determine
the fundamental frequency of rectangular plates with
mixed edge conditions. The problems were formulated
as dual series equations and reduced to finding the
solution of homogeneous Fredholm integral equations of
the second kind.

The high precision triangular plate bending
element has been used to numerically determine the
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fundamental frequency of rectangular plates with mixed
boundary conditions by Venkateswara Rao et al. [17].
The obtained results were in good agreement compared
with Keer and Stahl [16], with a maximum difference of
about 3.5%.

Narita [18] applied a series-type method to the free
vibration of an orthotropic rectangular plate with mixed
boundary conditions in which the plate considered is
elastically constrained produced by locating rotational
springs along parts of the edge or clamped along a few
parts of its edge and simply supported on the remainder.
By the use of this method, a comprehensive study of the
variations of the frequency parameters with the change
of clamped portion was presented and given with four
significant figures for the lowest six modes of vibration
and only the fundamental frequencies have compared
with the results obtained by Keer and Stahl [16] and
Venkateswara Rao et al. [17].

Gorman [19] developed a comprehensive analytical
method for analyzing free vibration of rectangular plates
with discontinuities along the boundaries based on the
superposition technique. Accurate numerical results for
the fundamental frequency values of rectangular plate
with varying the side ratios of the plate were presented.

Cheng [20] has attempted to analytically evaluate
the lower and upper limits of fundamental frequency of
simply supported rectangular plates having partially
clamped segments along the edges by the method of
releasing boundary conditions and the Ritz method,
respectively. The solution of the eigenvalue problems
which is the plate vibratory displacement is expressible
in the form of Fourier’s series type following the Levy
approach.

An approximate method for analyzing free
vibration of rectangular Mindlin plates having mixed
boundary conditions was proposed by Sakiyama and
Matsuda [21] for the fundamental mode of vibration.
The solutions of the partial differential equations were
obtainable in discrete form by transforming the
differential equations into integral equations together
with  applying numerical integration techniques.
Numerical results for variation of fundamental
frequency parameters of rectangular plates with fixed
length ratio of mixed boundaries were carried out and
presented. For a specific case of square plates, the
obtained results were also compared with analytical
solution results given by Keer and Stahl [16].

Another approximate numerical method was made
by Leung and Au [22] who numerically developed the
spline functions that can be expressed in terms of
physical coordinates at the boundary resulting in the
required shape functions in finite element method.
Seven different cases of rectangular plate with mixed
boundary conditions have analyzed for the lowest three
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frequency parameters.

Lee and Lim [23] applied a simple numerical
method that based on the Rayleigh principle for
predicting the natural frequencies of a simply supported
rectangular plate having an edge or two opposite edges
partially clamped. Results were carried out and
presented for isotropic and orthotropic plates, and were
also in good agreement with other available analytical
results.

The substructure method that involved partitioning
of the entire plate domain into appropriate elements to
approximate the displacement function of each element
by a set of admissible orthogonal polynomials was used
to analyze the free vibration of a rectangular plate with
discontinuous boundary conditions by Liew et al. [24].
By minimizing the total energy of the system of the
plate resulting Rayleigh quotient with respect to the
unknown coefficients leads to the governing eigenvalue
equation for the entire plate. The computed lowest four
frequency parameters for three cases of considered plate
having mixed boundary conditions between the simply
supported and clamped supports were numerically given
and compared favorably with other previously published
values.

Laura and Gutierrez [25] dealt with the application
of the differential quadrature technique to numerically
determine the fundamental frequency of free vibration of
rectangular thin elastic plates in the case of non-uniform
boundary conditions and mixed boundary conditions.
Two cases of square plate with discontinuously varying
edge conditions were considered and their fundamental
frequency parameters were given and also compared
with available published literature.

Cheung and Kong [26] developed and described a
new finite strip element method to investigate the free
vibration of four different plates with mixed boundary
conditions. The lowest three dimensionless frequency
parameters were provided and also compared with other
finite strip and spline strip methods.

A highly accurate and rapidly converging hybrid
approach for the quadrature element method solution of
rectangular plate free vibration problems was proposed
by Striz et al. [27]. Two cases of square plate with
mixed edge conditions between simply supported and
clamped were investigated for determining the first five
natural frequency parameters and validated with both
analytical and numerical methods.

Singhal and Gorman [28] described an analytical
procedure based on the method of superposition [29] for
obtaining the free vibration frequencies and their mode
shapes of partially clamped cantilevered rectangular thin
plates with and without rigid point supports. In order to
verify their proposed analytical procedure, comparison
of computed and experimental results for the first six
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frequencies of rectangular plates with varying three side
ratios of length to width of the plate were demonstrated.

The method of generalized differential quadrature
has been used by Shu and Wang [30] to the treatment of
mixed and nonuniform boundary conditions for the free
vibration analysis of rectangular plates. The advantage
of the proposed approach can be stated that it overcomes
the drawbacks of conventional approaches such as the §-
technique in treating the boundary conditions. The first
five frequency parameters for two different square plates
having mixed boundary conditions were carried out with
different meshes used in their analyses.

Liu and Liew [31] considered and analyzed the free
vibration problem of thick rectangular plates with mixed
boundary conditions that based on the first-order theory
of shear deformable plate by the use of differential
quadrature element method. Six different cases of square
plate with mixed edge conditions were investigated for
obtaining the lowest eight frequency parameters.

Wei et al. [32] numerically computed and dealt
with some new results for square plates with
combinations of the mixed and nonuniform edges by
making use of the discrete singular convolution
approach. The lowest five natural frequencies were
given in tabular form and also validated with existing
results in the literature.

A procedure of finite strip element method
combined with a spring system was proposed and
employed by Huang and Thambiratnam [33] to
numerically treat the free vibration of rectangular plates.
The spring system can be used to model point supports,
line supports, locally distributed supports and also
complex boundary conditions. Results of the first three
natural frequencies for three cases of square plate having
mixed boundary conditions between simply supported
and clamped edges were carried out and compared well
with other available results found in the published
literature.

Su and Xiang [34] analyzed the free vibration and
buckling problems of rectangular plates with mixed edge
support conditions based on a non-discrete approach that
is a domain decomposition method. With this method,
the entire plate is decomposed into multiple rectangular
subdomains along the change of discontinuous support
conditions. Compared to other domain decomposition
technique, it can be stated that a set of non-discretized
interconnecting boundaries is established to maintain the
completeness of the entire plate domain in which the
convergence rate and the accuracy of the results in the
plate analysis can be improved well. The lowest six
accurate frequency parameters were given for the eight
cases of square plates with mixed boundary conditions.

A comprehensive comparison study of free
vibration analysis between the discrete singular

convolution and the global generalized differential
quadrature methods was presented by Ng et al.[35]. Five
rectangular plates of mixed supporting edges over a
range of aspect ratios and non-dimensional spring
coefficients have considered and their first five
frequency parameters were computed. Numerical
experiments have showed that the results of the discrete
singular convolution with employing the Lagrange
kernels agree well with the existing literature, whereas
the results obtained by generalized differential
quadrature are generally more accurate. However, for
higher order frequencies, it is interesting to note that the
discrete singular convolution method produces more
accurate results than those of generalized differential
quadrature.

For three-dimensional free vibration analysis, Zhou
et al. [36] considered two kinds of rectangular plates
with mixed boundary conditions, based on the small
strain linear elasticity theory. The Ritz method was
employed successfully to derive the governing
eigenvalue equation by minimizing the energy
functional of the plate. The first six dimensionless
frequency parameters of square plates were carried out
in correspondence with both antisymmetric and
symmetric modes in the thickness direction.

Xiang et al. [37] developed a new approach called
the DSC-Ritz element method that based on the concept
of finite element method together with the
implementation of discrete singular convolution as a
trial function in the Ritz method, to analyze the free
vibration of moderately thick plates following the
Mindlin first-order shear deformation plate theory. Ten
cases of rectangular plate with various edge support
discontinuities were treated numerically to obtain the
lowest eight frequencies.

Problem of symmetrical free vibration of
rectangular plate with discontinuous simple supports
was considered and formulated by Chaiyat and
Sompornjaroensuk [38]. The obtained dual series
equations that resulted from the mixed boundary
conditions were derived and reduced to homogeneous
integral equation of Fredholm-type using the method of
finite Hankel integral transforms similar to that work of
Keer and Stahl [16].

Zhang et al. [39] proposed the development of the
Hencky bar-net model (HBM) to analyze free vibration
of rectangular plates with mixed boundary conditions
and point supports. It is describable that the model is a
two-dimensional discrete net system composed of rigid
segments connected by frictionless hinges and rotational
springs, which is able to handle any boundary conditions
of plates including mixed boundary conditions and also
internal point supports. The first three natural frequency
parameters were determined for three different cases of
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the plates having mixed boundary conditions with and
without an interior point support.

Recently, the authors [40] have numerically
analyzed free vibration of square plates with
symmetrically mixed boundary edges between simple
and clamped supports using the reliable finite element
program [41,42]. The higher frequencies and their
corresponded mode shapes of plate vibrations were
presented. In addition, the free vibrations of circular
plates with partially clamped or partially simply
supported along circumferential edge were already
treated to determine the first thirty accurate frequency
parameters [43].

The primary purpose of this paper is to numerically
deal with the reasonably accurate results for higher free
vibration frequencies, expressed in terms of frequency
parameters, of simply supported but partially clamped
square plates by means of an available ANSYS finite
element code [41,42] with a dense net of element model.
Some interested observations of the obtainable results
are addressed and discussed in details. Furthermore, the
associated modes of plate vibrations are also graphically
provided.

2. PROBLEM STATEMENT

Two different cases of square plate configuration
are then illustrated in Figs. 1 and 2, which have never
been considered in the past technical literature.

One begins by considering the plate as shown in
Fig. 1. This plate has an equal angle-leg partially
clamped segment placed at one corner where the
remaining parts of the plate edges are all simply
supported.

Fig. 1 Simply supported square plate with an equal
angle-leg corner partially clamped.
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Fig. 2 Simply supported square plate with an equal
angle-leg corner partially simply supported.
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Fig. 3 A square plate with all edges simply supported
(S-S-S-S plate).
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Fig. 4 A square plate with two adjacent edges clamped
and two adjacent edges simply supported (C-S-S-C
plate).

On an another plate as demonstrated in Fig. 2, is
that corner support of the plate as given in Fig. 1 has to
be replaced by partial simple supports and the remaining
parts of two adjacent edges to the corner are partially
clamped. Other two remaining edges are fully simply
supported along the plate edges.

In both cases of the plate considered (Figs. 2 and
3), the parameter « is changeable starting from zero to
unity in order to define the length of partial supports.
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If the values of o are taken to be zero and unity for
the plate illustrated in Fig. 1, two limiting cases exist for
the plates as shown in Figs. 3 and 4, respectively. On the
other hand of the plate presented by Fig. 2, two limiting
cases become the plates as shown in Figs. 4 and 3 in
correspondence with a-values taken as zero and unity,
respectively.

It can also be noted that the letters S and C as seen
in both Figs. 3 and 4 are symbolically designated to be
the conditions of simple and clamped supports,
respectively.

The free vibration analysis can be made in the
same manner of authors’ previous work [40] by making
use of the efficient finite element code [41].

In order to model the plates that based on the finite
element procedure [44,45], the quadrilateral shaped of
SHELL181 element type [42] as shown in Fig. 5 and
also together with the representative refinement of finite
element discretization for the entire plate as depicted in
Fig. 6 are then used for this purpose.

Az

X

Fig. 5 ANSYS SHELL181 element [42].

The final important step is to identify the boundary
conditions of problem modelling properly. In earlier
works [40,43], the first author has provided the detailed
descriptions of representing the points of discontinuous
support in which higher constraint support condition
than another at the points of discontinuity is chosen to
represent the boundary conditions at those points.

3. PRESENTATION OF RESULTS

After performing the analysis by ANSYS computer
program, the obtainable results are given in terms of
natural frequencies (f) of the plates. It is, however, very
convenient to express them in dimensionless form of
frequency parameters (12) as

At=2 faz\/Z, 1
n 5 1)

Fig. 6 Mesh of 100x100 elements in square plate model.

and the plate’s flexural rigidity (D) defined by

3
p-_E" @)
12(1-v?)

where a is the plate length, p is mass density per
unit area of the plate surface, h is the plate thickness,
and the plate’s material properties E and v are Young’s
modulus and Poisson’s ratio, respectively.

The first twenty frequency parameters (1%) for
square plates shown in Figs. 1 and 2 with varying of
parameter « are numerically tabulated and listed in
Tables 1 and 2, respectively. All the presented values are
given only for the Poisson’s ratio taken to be 0.3.

It is obviously seen in Table 1 for the parameters «
taken to be 0.0 and 1.0 that the plates are corresponded
to the cases of fully simply supported square plate (Fig.
3) and a square plate as shown in Fig. 4, respectively.
Their modal patterns for the first twenty modes of two
associated vibratory plates are graphically presented in
Figs. 7 and 8.

As shown in Figs. 9 to 12, they are demonstrated
for the first twenty modal patterns of square plates as
shown in Fig. 1 with varying parameters a as 0.2, 0.4,
0.6, and 0.8, respectively.
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Similarly, Figs. 13 to 16 have prepared and
provided for the modal patterns of the plate shown in
Fig. 2 with variation of o’s to the corresponded plates
with varying of the length of partial simple supports.

4. DISCUSSION

Let us to first consider all the obtainable results of
frequency parameters (42) for « taken to be 0.0 as given
in Table 1 that corresponded to the simply supported
square plate shown in Fig. 3 (S-S-S-S plate), it is clearly
found to have many repeated values of the frequency
parameter for neighbouring modes of free vibration.
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These characteristics can then certainly be
described by the existence of degeneracy frequency
possibilities that found in general plates having
symmetric vibrations [7,10,29] along the centrelines of
the plate with respect to the x- and y-axes. These
vibration characteristics do not appear to the plate
having o taken to be 1.0 (Fig. 4) and also other plates
with mixed edge conditions (a # 0).

Therefore, the repeated frequency parameters that
seen in Table 2 for o taken as 1.0 are corresponded to
the vibration behaviors of simply supported square plate
(Fig. 3), which can be explained in the same manner of
results given in Table 1 for « = 0.

Table 1 Frequencies (42) for simply supported square plate with an equal angle-leg corner partially clamped.

a
st =—gm 0.2 0.4 06 0.8 1.0
1 | 19.739 | 20.643 | 22.981 | 25644 | 26.936 | 27.053
2 | 49347 | 49379 | 50507 | 55.096 | 59.889 | 60.539
3 | 49347 | 51.941 | 56.964 | 60.313 | 60.783 | 60.785
4 | 78957 | 81772 | 84583 | 85.840 | 91.723 | 92.835
5 | 98.693| 98907 | 103.120 | 109.959 | 113.677 | 114.554
6 | 98.693 | 101.341 | 106.313 | 111.392 | 114522 | 114.700
7 | 128.301 | 128529 | 131.744 | 133.582 | 142.034 | 145.776
8 | 128.301 | 135.741 | 141.019 | 143.746 | 146.037 | 146.076
9 | 167.779 | 168.365 | 173.637 | 180.281 | 187.054 | 188.452
10 | 167.779 | 169.349 | 174533 | 182.686 | 188.340 | 188.545
11 | 177.648 | 182.180 | 183.572 | 190.489 | 194.110 | 198.098
12 | 197.385 | 198.537 | 208.275 | 211.351 | 215.309 | 219.205
13 | 197.385 | 206.204 | 211.535 | 211.823 | 218.897 | 219.430
14 | 246.723 | 247.215 | 248.158 | 255.069 | 261.200 | 270.653
15 | 246.723 | 253.428 | 260.523 | 265.752 | 270.756 | 270.961
16 | 256.607 | 257.694 | 264.624 | 273.319 | 280.434 | 282.136
17 | 256.607 | 262.287 | 265.014 | 276.415 | 281.890 | 282.198
18 | 286.196 | 288.944 | 299.873 | 301.822 | 307.809 | 312.607
19 | 286.196 | 293.435 | 302.498 | 303.934 | 311.603 | 312.792
20 | 315.806 | 320.584 | 323.188 | 327.843 | 334.630 | 342.833
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Table 2 Frequencies (1?) for simply supported square plate with an equal angle-leg corner partially simply
supported and clamped on the remaining parts.

a
el 02 04 0.6 0.8 1.0
1 | 27.053 | 27.047 | 26549 | 24.035 | 20.963 | 19.739
2 | 60539 | 60537 | 56.688 | 50.561 | 49.373 | 49.347
3 | 60.785| 60.670 | 60.475 | 58.775 | 52900 | 49.347
4 | 92.835| 92525 | 86.454 | 84.380 | 82363 | 78.957
5 | 114.554 | 114.308 | 109.147 | 104.144 | 98.868 | 98.693
6 | 114.700 | 114.552 | 113.605 | 107.365 | 102.692 | 98.693
7 | 145.776 | 144.353 | 133.899 | 132.528 | 128.527 | 128.301
8 | 146.076 | 145.774 | 144554 | 140.504 | 137.193 | 128.301
O | 188.452 | 187.497 | 179.389 | 174.101 | 168.211 | 167.779
10 | 188545 | 188.440 | 184.007 | 177.148 | 171.183 | 167.779
11 | 198.098 | 196.000 | 192.674 | 183.449 | 181.956 | 177.648
12 | 219.205 | 216.203 | 211.228 | 209.157 | 198.588 | 197.385
13 | 219.430 | 219.164 | 212.643 | 210.982 | 208.275 | 197.385
14 | 270.653 | 263.148 | 254.495 | 248.602 | 247.277 | 246.723
15 | 270.961 | 270.612 | 264.563 | 261.938 | 255.335 | 246.723
16| 282.136 | 281.205 | 276.005 | 263.620 | 259.211 | 256.607
17 | 282.198 | 282.075 | 278.732 | 267.741 | 260.093 | 256.607
18 | 312.607 | 307.604 | 301.698 | 299.463 | 289.067 | 286.196
10 | 312.792 | 312.423 | 303.482 | 302539 | 296.224 | 286.196
20 | 342.833 | 336.200 | 330.009 | 323.639 | 320.092 | 315.806

Mode 1

e

Mode 16

Mode 17

Mode 18

Mode 20

Fig. 7 Modal patterns for square plate with all edges simply supported.
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Mode 16 Mode 17 Mode 18 Mode 19
Fig. 8 Modal patterns for square plate with two adjacent edges clamped and two adjacent edges simply supported.

~

Mode 16 Mode 17 Mode 18 Mode 19 Mode 20

Fig. 9 Modal patterns for simply supported square plate with an equal angle-leg corner partially clamped (« = 0.2).



SOMPORNJAROENSUK et al.: NUMERICAL DETERMINATION FOR HIGHER 167

Mode 16 Mode 19 Mode 20
Fig. 10 Modal patterns for simply supported square plate with an equal angle-leg corner partially clamped (o = 0.4).

Mode 16 Mode 17 Mode 18 Mode 19

Fig. 11 Modal patterns for simply supported square plate with an equal angle-leg corner partially clamped (o = 0.6).
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Mode 16 Mode 17 Mode 18 Mode 19 Mode 20
Fig. 12 Modal patterns for simply supported square plate with an equal angle-leg corner partially clamped (o = 0.8).

Mode 16 Mode 17 Mode 18 Mode 19 Mode 20

Fig. 13 Modal patterns for simply supported square plate with an equal angle-leg corner partially simply supported
(e =0.2).
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Mode 16 Mode 17 Mode 19 Mode 20

Fig. 14 Modal patterns for simply supported square plate with an equal angle-leg corner partially simply supported
(e =0.4).

Mode 10

Mode 14

Mode 16 Mode 17 Mode 19 Mode 20

Fig. 15 Modal patterns for simply supported square plate with an equal angle-leg corner partially simply supported
(o =0.6).
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Mode 16 Mode 17

Mode 18
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Mode 19

Mode 20

Fig. 16 Modal patterns for simply supported square plate with an equal angle-leg corner partially simply supported

(e =10.8).

It is remarkable that all numerical results carried
out in present work have no considering the
characteristic of stress singularities occurred at the
points of boundary discontinuities [46], [47].
Significantly, these local stresses actually tend to
infinity in the vicinity of the ends of discontinuous
supports.

Furthermore, stress singularities are very important
to practical engineering design process that may cause a
local change in plate’s stiffness due to some existence of
damages near those end points of supports, and may also
alter the dynamic characteristics of the plate. Thus, the
necessities of considering the singularity in solutions
have been studied and confirmed by Chen and Pickett
[48], Leissa et al. [49], and Leissa [50].

Since the order of stress singularities in problem of
plates with mixed edge conditions is in the same order
with the problem of cracked plates, then Huang and his
colleagues have analyzed the free vibration and buckling
problems of plates with cracks using the methods based
on the Ritz approach [51] — [54], which included the
correct singularity order at the roots of the crack.

For other numerical methods such as the boundary
element and finite element methods can, respectively, be
found in Sun and Wei [55] and Ayatollahi et al. [56]. It
is interesting to notice that the Ritz method is very

suitable for analyzing the present problems because the
geometry of plate under consideration is simple, so that
the area integration required in the Ritz method is easy
to set up. This method will then be considered for future
research.

5. CONCLUSION

In summary, to the authors’ knowledge, the results
shown that provided the higher frequency parameters of
square plates with two edges mixed boundary supports
adjacent to one corner of the plates are the first ones
available in the published literature. They are, however,
prepared in the tabular form for easy reference, which
could serve as the benchmark values for other future
researches in plate vibrations involving mixed boundary
conditions.
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