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ABSTRACT 

The objective of the present paper is to present an 

efficient theoretical method to solve the bending 

problem of uniformly loaded square plate in which the 

plate is point-column supported at all corners and 

partially simply supported at all central portion edges. 

The solution can first be set up by using the Lévy-

Nádai’s approach and the mixed boundary conditions 

are then written in the form of dual-series equations. 

By making use of the proper finite Hankel integral 

transform, the dual-series equations can further finally 

be reduced to an inhomogeneous Fredholm integral 

equation of the second kind. Importantly, the highlight 

of the problem is that the analytical formulation 

explicitly considers the moment singularities existed at 

the ends of partial simple supports. 
 

Keywords: Dual-series equations, Fredholm integral 

equation, Hankel integral transform, Mixed boundary 

conditions, Singularities, Square plate. 
 

 

1 INTRODUCTION 

It seems that problems on the bending of thin plates 

have been investigated for almost all combinations of 

boundary edge conditions. Nevertheless, it is remarkable 

that much less research has been conducted for studying 

the static bending problem of plates supported by point 

column supports, although it commonly encountered in 

practice. However, some problems for free vibrations of 

plates with point supports were found in literature. 

Azimi [1], who employed the receptance method for 

formulating the natural frequency and mode shape 

equations of elastically and rigidly point-supported at an 

arbitrary point in circular plates. LeClair [2] applied the 

Green’s function to analytically derive the characteristic 

equation and mode shapes for a circular plate with a free 

edge and interior, simple supports where the effects of 

elasticity at the support or a concentrated mass was 

included in his investigation. Other vibration problems 

of plates having a concentrated mass rather than a point 

support were studied in [3]-[8]. Cortinez and Laura [9] 

presented the approximate determination for forced 

vibrations of a simply supported polygonal plate having 

a concentric, rigid, circular inclusion. 

In the case of plates subjected to static loads, Lee 

and Ballesteros [10] proposed an approximate deflection 

function in the form of polynomials for a uniformly 

loaded rectangular plate supported at the corners. Their 

obtained results showed that the error is largest in the 

vicinity of the corners. Yu and Pan [11] derived the 

general expressions for determining the deflections of a 

uniformly loaded circular plate supported at several 

points equally spaced along the circumference of a 

concentric circle. Yuhong [12] applied the reciprocal 

theorem to solve the bending problem of rectangular 

plates with each edge arbitrary a point supported under 

concentrated load acting at any point of the plate. 

With the best knowledge of the authors, none has 

considered the problem of square plate supported at the 

corners and partially simply supported at the edges 

found in technical journal, except for the seminar paper 

that presented by Sompornjaroensuk and Dy [13]. Thus, 

the principal concern of this paper is to analytically treat 

and present the method of solution for solving the 

problem of uniformly loaded square plate supported at 

the corners by point column support. In addition, the 

plate is also partially simply supported at all four middle 

edges while the length of partial simple supports can be 

varied symmetrically with respect to the center of the 

plate as illustrated in Figure 1. 
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It can clearly be seen that there are the mixed 

boundary conditions around the plate edges, which are 

of type simply supported and free. These conditions can 

be formulated as dual-series equations and analytically 

solved by using the Hankel integral transform method.  

Thus, with this method, the final equation governing the 

problem solution can be formulated in the form of an 

inhomogeneous Fredholm-type integral equation of the 

second kind. An important point to note here is that the 

inverse-square-root moment singularities [14], [15] due 

to the discontinuous supports have provided in the 

analysis. 

Before proceeding further to analyze the problem, it 

is necessary to consider and review some literatures as 

listed in the followings below. 

A related problem was made by Dempsey et al. [16], 

who analytically investigated the bending of uniformly 

loaded square plate supported by unilateral supports. 

The method of finite Fourier integral transforms was 

used to solve the dual-series equations that led to a 

Cauchy-type singular integral equation of the first kind. 

The same problem as treated previously in [16] was 

reanalyzed by Sompornjaroensuk and Kiattikomol [17] 

and problem was analytically reduced to the form of an 

inhomogeneous Fredholm integral equation by using the 

finite Hankel integral transform techniques. Kongtong 

and Sukawat [18] extended the identical method [17] 

with considerable success to obtain the coupled integral 

equations for uniformly loaded rectangular plates resting 

on unilateral supports. 

Considering the numerical analyses, Salamon et al. 

[19] modeled the unilateral supports with discrete elastic 

springs by means of finite element method. Another 

numerical method was done by Hu and Hartley [20], 

who used a direct boundary element method to model 

the problem. However, it can be observed in two latter 

numerical methods [19], [20] that they do not consider 

the singular behavior at the transition points between the 

plate and the supports. 

Another problem was treated by Sompornjaroensuk 

[21] and Kongtong, Sompornjaroensuk and Sukawat 

[22] for the bending of uniformly loaded square plate 

supported by partial simple supports at all four middle 

edges. Furthermore, some numerical results have shown 

in Sompornjaroensuk and Dy [23]. It can be noted that 

since the length of partial simple supports is very small, 

the problem becomes the plate supported by finite 

narrow strip columns at all middle edges [24]. 

However, it is interesting to note that the problems as 

presented in [16]-[18] and [21]-[24], an inverse-square-

root shear singularity is introduced at the ends of partial 

supports in order to insure the corners of the plate to be 

lifted up during bending. In the present problem under 

consideration, all corners of the plate are anchored by 

point column supports; therefore, an inverse-square-root 

moment singularity is proper at those ends of partial 

simple supports. 

 
2 PLATE’S DIFFERENTIAL EQUATION 

Consider the plate that demonstrated in Figure 1, the 

geometry of the plate has scaled by the factor π/ā where 

ā is the actual length of square plate. 

 

 
 

Fig. 1 Corner-supported square plate with partially 

simply supported edges. 

 

Hence, the following relation can be used to obtain 

the actual coordinates ( , )x y and dimensions ( , ),c e  

 

   , , , , , ,
a

x y c e x y c e


 
  
 

. (1) 

 

Within the framework of theory of thin elastic plates 

[25], the deflection function w(x,y) can be determined by 

solving the governing partial differential equation, 
 

4
4

4
( , )

qa
w x y

D
  , (2) 

 

with the biharmonic operator given by 
 

4 4 4
4

4 2 2 4
2

x x y y

  
   

   
, (3) 

 

and the bending rigidity of the plate defined as 
 

3

212(1 )

Eh
D





, (4) 
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where q is a uniform load, h is the thickness of the plate 

and E, ν are the Young’s modulus and Poisson’s ratio, 

respectively. 

The deflection function in Eq.(2) can be taken in the 

form of the Lévy-Nádai’s solution. Therefore, the total 

deflection is the sum of the complementary solution 

wc(x,y) and particular solution wp(x,y),  

 

( , ) ( , ) ( , )c pw x y w x y w x y  , (5) 

 

where 

 


4

1,3,5,...

( , ) cosh( ) sinh( )
2

c m m

m

qa
w x y A my B my my

D





   

 sinh( ) cosh( ) sin( )m mC my D my my mx   

 
 cosh( ) sinh( )m mA mx B mx mx   

 
sinh( ) cosh( )m mC mx D mx mx   

 
sin( )my , (6) 

 

and 

 

 
4

5 5
1,3,5,...

4
( , ) sin( ) sin( )

2
p

m

qa
w x y mx my

D m





  . (7) 

 
3 BOUNDARY CONDITIONS 

Due to the two-fold symmetry in deflection function, 

the unknown constants of integration; namely, Am, Bm, 

Cm and Dm can be determined from the boundary 

conditions as follows: 

 

0
w

y





: 

2
y


 ; 0

2
x


  , (8) 

 

0yV  : 
2

y


 ; 0
2

x


  , (9) 

 

0yM  : 0y  ; 0
2

x


  , (10) 

 

2

2
0

w w
w

x x

 
  
 

: 0y  ; 
2

e x


  , (11) 

 

0yV  : 0y  ; 0 x e  , (12) 

 

in which the bending moment My and the Kirchhoff’s 

shearing force Vy are, respectively, defined by [25], 

 
2 2 2

2 2y

w w
M D

a y x




   
    

    
, (13) 

 

and 
 

3 3 3

3 2
(2 )y

w w
V D

a y x y




   
     

     
. (14) 

 
4 DUAL-SERIES EQUATIONS 

Application of the regular boundary conditions that 

presented in Eq.(8), Eq.(9), and Eq.(10) and together 

with utilizing Eq.(13) and Eq.(14) leads to the following 

relations: 

 

5 5

4
2 cothm mA D

m


 




  , (15) 

 

cothm mB D   , (16) 

 

 
5 5

4 tanh
2 tanh cothm mC D

m

 
   




       , 

 (17) 
 

with 

 

1

1



 


, (18) 

 

and 
 

2

m
  . (19) 

 

The mixed boundary conditions given in Eq.(11) and 

Eq.(12) can be written as the dual-series equations, 

which are: 
 

2

1,3,5,...

sin( ) 0m

m

m P mx




 ; 0
2

x


  , (20) 

 

 3 (1)

1,3,5,...

(1 )sin( )m m

m

m P F mx




  

 

3 (2) sinh( ) 2 cosh( )m mm P F mx mx   

 
(3) cosh( ) sinh( )mF mx mx mx mx     

(4) (5) (6)

1,3,5,...

sin( ) sinh( )m m m

m

F mx F F mx




    
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(5) (7)cosh( ) cosh( )m mF mx F mx mx   

 

(4) sinh( )mF mx mx   ; 0 x e  , (21) 

 

where 
 

5 5

2
cothm mP D

m



  , (22) 

 

(1)

2

(3 )sinh cosh (1 )
1

(3 )cosh
mF

    

 

  
 


, (23) 

 
(2) 2(2 tanh sech )mF      , (24) 

 
(3) tanhmF   , (25) 

 

2

(4)

5 2

2 (3 ) tanh (1 ) sech )

(3 )
mF

m

    

 

    


, (26) 

 

(5)

5 2

4

(3 )
mF

m 



, (27) 

 

2

(6)

5 2

2 2 tanh (1 ) sech

(3 )
mF

m

   

 

   


, (28) 

 

(7)

5 2

2 tanh
mF

m

 


 , (29) 

 

(8)

5 2

2
mF

m




 , (30) 

 

and 
 

1

3










. (31) 

 

5 FINITE HANKEL INTEGRAL TRANSFORM 

It can be seen that the problem is now reduced to 

finding one unknown function Pm in the dual-series 

equations where this function can be determined by 

assuming the proper finite Hankel integral transforms. 

Since the present problem seems likely to the 

previous problem [17], [21]-[23] except that the corners 

of the plate are now anchored in this paper and then, the 

dual-series equations can be reduced to the form of 

integral equation of Fredholm-type. However, it has 

been revealed previously that the proper form of Pm 

satisfying Eq.(20) and also exhibiting the inverse-

square-root moment singularities [14], [15] at the points 

of discontinuous supports is taken in the following form 

[21], [22] 
 

2

1 1

0

( ) ( ) ( )

e

mm P EJ me t t J mt dt   ; 1,3,5,...m  , (32) 

 

where t is a dummy variable, ϕ(t) is an introduced 

unknown auxiliary function in the Hankel integral 

transforms, Jn(u) is the Bessel function of the first kind 

and order n with argument u [26], [27], and the constant 

Ẽ can be determined from the zero deflection condition 

(w = 0) as presented in Eq.(11) at only one point, i.e., 

w(π/2,0). 

Hence, integrating Eq.(20) twice with respect to x 

and substituting Pm from Eq.(32) with setting x = π/2 

results in, after interchanging the order of summation 

and integration,  
 

( 1)

2 2
1

1,3,5,...0

( 1)

2 2
1

1,3,5,...

( ) ( )( 1)

( )( 1)

e m

m

m

m

t t m J mt dt

E

m J me















 






. (33) 

 

With the use of identity given below [28]-[30], 
 

2

1

1,3,5,...

( )sin( )
8m

m J mt mx t






 : x t ; x t   , (34) 

 

and setting x = π/2 yields 

 
( 1)

22
1

1,3,5,...

( 1) ( )
8

m

m

m J mt t







  ; 
2

t


 . (35) 

 

In view of Eq.(35), the previous Eq.(33) becomes 

 
2

0

( )

e
t

E t dt
e
  . (36) 

 

Substituting Ẽ into Eq.(32) results in 
 

2

1 1

0

( ) ( ) ( )

e

m

t
m P t t J mt J me dt

e


 
  

 
 ; 1,3,5,...m   (37) 

 

It is easy to verify that function Pm satisfies Eq.(20). 

Substituting Pm into Eq.(20) and considering the identity 

[28]-[30], 
 

1 2 2 1/ 2
1,3,5,...

( )
( )sin( )

2 ( )m

xH t x
J mt mx

t t x









 ; x t   , (38) 
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where H(·) is the Heaviside unit step function [31], leads 

to the following equation 
 

2 2 1/ 2 2 2 2 1/ 2

0

( ) ( )
( )

2 ( ) 2 ( )

e
xH t x xtH e x

t t dt
t t x e e x


  

   
  

0 ; 
2

e x


  . (39) 

 

Since x is always larger than t and e, the Heaviside 

functions in Eq.(39) are all zero. Thus, Eq.(39) is 

automatically satisfied. 

Similarly, the remaining zero slope condition (∂w/∂x 

= 0) that presented in Eq.(11) is also automatically 

satisfied by integrating Eq.(20) once with respect to x 

and using the identity as given by, 
 

1

1 2 2 1/ 2
1,3,5,...

( )
( )cos( )

2 ( )m

H t x
m J mt mx

t t x










 ; x t   , 

 (40) 
 

which is derived from a direct integration of Eq.(38) 

between the limits of 0 and x. 

According to the work of Williams [14], the correct 

singularity at the point of discontinuity is of O(ε
-1/2

) in 

the moments or of O(ε
-3/2

) in the shears where ε is an 

infinitesimal distance measured from the singular point. 

Verification is easily made by consideration of Eq.(21) 

in the following form 
 

3 2

1,3,5,...

( / 2,0) 2 cos( )y m

m

d
V e x qa m P mx

dx
 






    


  

 

3 (1)

1,3,5,...

sin( )m m

m

m P F mx




   

 

3 (2)

1,3,5,...

sinh( ) ...m m

m

m P F mx




     

 

(4)

1,3,5,...

sin( ) ...m

m

F mx





    


  

 ; 0 x e  . (41) 

 

Substitution of Pm defined by Eq.(32) into the first 

term on the right side of Eq.(41) and using the identity 

as given by [28]-[30], 
 

1 2 2 1/ 2
1,3,5,...

1 ( )
( )cos( )

2 2 ( )m

xH x t
J mt mx

t t x t






 


  

 

1

0

( ) cosh( )

exp( ) 1

I ts xs
ds

s




 ; x t   ,  

 (42) 
 

where In(u) is the modified Bessel function of the first 

kind and order n with argument u [26], [27], Eq.(41) 

becomes 

3 3/2 1/2( ,0) (2 ) ( ) ...
2

y

e
V e qaE e O         (43) 

 

It is obvious that the singularity is in the order of 

O(ε
-3/2

) in shearing force. This indicates that there is an 

inverse-square-root singularity in moment [14], [15].  

 

6 ABEL’S INTEGRAL EQUATION 

Having shown that Pm as given in either Eq.(32) or 

Eq.(37) automatically satisfies all conditions shown in 

Eq.(11) and there is an inverse-square-root singularity in 

moment, it remains to reduce Eq.(21) to the form of an 

integral equation. 

Integrating Eq.(21) once with respect to x and 

substituting Pm given by Eq.(37), after changing the 

order of integration and summation leads to 
 

(1)

1 1

1,3,5,...0

( ) (1 ) ( ) ( ) cos( )

e

m

m

t
t t F J mt J me mx dt

e






 
  

 
  

(2) (3)

1 1

1,3,5,...0

( ) ( ) ( ) {( )

e

m m

m

t
t t J mt J me F F

e






 
   

 
  

(3)cosh( ) sinh( ) sinh( )mmx F mx mx mx    

1,3,5,...

cosh( )} ( )m

m

mx mx dt F x




    ; 0 x e  , (44) 

 

where 

 
1 (4) (5) 1 (6) (7)( ) cos( ) ( )m m m m mF x m F mx F x m F F       

 
(7) 1 (8) (5)cosh( ) sinh( ) ( )m m mmx F x mx m F F     

 
(8)sinh( ) cosh( )mmx F x mx  . (45) 

 

In view of Eq.(42), Eq.(44) can be cast in the form of 

Abel’s integral equation as 
 

2 2
0

( )
( )

x
x t

dt h x
x t





 ; 0 x e  , (46) 

 

in which 
 


1

2

0

( ) ( ) 1h x e er r   
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 
1 1

0

cosh( ) ( ) ( )
2

exp( ) 1

xs I ser rI se
er ds dr

s

 


  

 

1

2 (1)

1,3,5,...0

2 ( ) cos( )m

m

e r er F mx




   

 
(2) (3) (3)( )cosh( ) sinh( )m m mF F mx F mx mx    

 cosh( ) sinh( )mx mx mx    

 
 1 1( ) ( )J mer rJ me dr   

 1,3,5,...

2 ( )m

m

F x




  ; 0 x e  . (47) 

 

Note that the change of variable t = er is introduced 

in Eq.(47). Moreover, it can be remarked that Eq.(44) 

should include an arbitrary constant of integration 

resulting from the integration of Eq.(21) with respect to 

x. Nevertheless, it has no effect on the solution process 

of solving the Abel’s integral equation and thus, the 

constant is excluded [32]. 

The solution of Eq.(46) can be taken in the form as 

  

2 2
0

2 ( )
( )

t
d h x

t dx
dt t x







 ; 0 t e  . (48) 

 

7 FREDHOLM INTEGRAL EQUATION 

Substituting Eq.(47) into Eq.(48) and using the 

identities given below that already derived with the aid 

of identities found in Gradshteyn and Ryzhik [33], 

 

2 2
0

2 1
0

t
d

dx
dt t x




 , (49) 

 

1
2 2

0

2 cos( )
( )

t
d mx

dx mJ mt
dt t x

 


 , (50) 

 

1
2 2

0

2 sinh( ) 2
( )

t
d mx

dx m L mt
dt t x 

 
  

 
 , (51) 

 

0
2 2

0

2 sinh( )
( )

t
d x mx

dx mtI mt
dt t x




 , (52) 

 

1
2 2

0

2 cosh( )
( )

t
d mx

dx mI mt
dt t x




 , (53) 

 

0
2 2

0

2 cosh( ) 2
( )

t
d x mx

dx mtL mt
dt t x 

 


 , (54) 

 

and then, the final result can be manipulated as in the 

following equation, which is an inhomogeneous Fredholm 

integral equation, 
 

1

0

( ) ( , ) ( ) ( )K r r dr f      ; 0 1  , (55) 

 

with 

 

( ) ( )e    ; ( ) ( )r er  , (56) 

 

and 
 

2

1

1,3,5,...

( , ) 2 4 / ( )
m

K r e r m mL me    




    

 
2 (1)

0 1( ) ( )mm e L me mF J me      

 
(2) (3) 2 (3)

1 0( ) ( ) ( )m m mm F F I me m F e I me        

 
  2

1 1( ) ( ) 2J mer rJ me e r    

 

 1 1 1

0

( ) ( ) ( )

exp( ) 1

sI se I ser rI se
ds

s





 


 , (57) 

 

(4) (6) (7)

1 1

1,3,5,...

( ) 2 ( ) ( ) ( )m m m

m

f F J me F F I me  




    

 
(7) (8) (5)

0 1( ) ( ) ( )m m mmF e I me F F L me      

 

(8)

0 ( )mmF e L me    , (58) 

 

where Ln(u) is the modified Struve function of order n 

with argument u [26]. 

 

8 DISCUSSION AND CONCLUSION 

It is immediately seen that the analytical solution of 

Eq.(55) is very difficult to obtain due to the complexity 

of the kernel and inhomogeneous part of integral 

equation as shown in Eq.(57) and Eq.(58), respectively. 

However, the unknown auxiliary function Φ(ρ) can 

be determined using the standard numerical method 

[34], which has been described previously [29]. 

Mathematically, since the length of free edges equals 

zero (e = 0), the problem becomes a limiting case of 

simply supported square plate as shown in Figure 2 and 

there is no existence of singularity in the problem. This 

can be seen in the function Pm that involved with 
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singularity of the solution. 

By considering Eq.(37) and setting e = 0, yields 
 

0

2

1 1

0

( ) ( ) ( ) 0

e

m

t
m P t t J mt J me dt

e



 

   
 

 ; 1,3,5,...m  , 

 (59) 

 

and further consideration of Eq.(22) and also Eq.(15) to 

Eq.(17), leads to the relations: 

 

5 5

2
tanhmD

m



  , (60) 

 

5 5

4
mA

m
  , (61) 

 

5 5

2
mB

m
 , (62) 

 

2

5 5

2
(2 tanh sech )mC

m
  


  . (63) 

 

Applying Eq.(60) to Eq.(63) in Eq.(6), the deflection 

function can thus be obtained in closed-form of the 

Lévy-Nádai’s solution [25] as 

 


4

5 5
1,3,5,...

1
( , ) 2[1 cosh( )] (2 tanh

m

qa
w x y my

D m








    

 
2sech )sinh( ) sinh( )my my my    

 tanh cosh( ) sin( )my my mx  

 
 22[1 cosh( )] (2 tanh sech )mx        

 
sinh( ) sinh( ) tanhmx mx mx mx     

 
cosh( ) sin( )mx my  ; 0 ,x y   . (64) 

 

However, the deflection function as presented in 

Eq.(64) can be written in the new compact form, when 

the x-axis is relocated in the middle line as shown in 

Figure 3 [25], 

 
4

5 5
1,3,5,...

4 1 tanh 2
( , ) 1

2coshm

qa
w x y

D m

 

 





 
 


  

 

2 2
cosh sinh

cosh

y y y  

   

   
    

   
 

 sin( )mx : 0 x   ; 
2 2

y
 

   . (65) 

 

If the free edge lengths are equal to π/2 (e = π/2), the 

solution cannot be determined within the present method 

[17], [23], [24], [28]-[30]. Noted, however, that this case 

is corresponded with the problem of point-corner 

supported square plate having a point column support 

placed at all middle edges. 

 

 
 

Fig. 2 Simply supported square plate. 

 

 
 

Fig. 3 Simply supported square plate with the x-axis 

placed along the middle. 
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For a limiting case of e that approaches π/2 such as e 

= 0.495π, the solution can still be determined as the 

limiting case as shown in Figure 4. 

In closing, it can strongly be concluded that the finite 

Hankel integral transform method is considerable with 

success to analytically solve the problem mentioned 

herein, which has never been found in the past scientific 

or technical journals up to date. 

 
 

Fig. 4 Corner-supported square plate with narrow strip 

column supported at the middle edges. 
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