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ABSTRACT

The objective of the present paper is to present an
efficient theoretical method to solve the bending
problem of uniformly loaded square plate in which the
plate is point-column supported at all corners and
partially simply supported at all central portion edges.
The solution can first be set up by using the Lévy-
Nddai’s approach and the mixed boundary conditions
are then written in the form of dual-series equations.
By making use of the proper finite Hankel integral
transform, the dual-series equations can further finally
be reduced to an inhomogeneous Fredholm integral
equation of the second kind. Importantly, the highlight
of the problem is that the analytical formulation
explicitly considers the moment singularities existed at
the ends of partial simple supports.

Keywords: Dual-series equations, Fredholm integral
equation, Hankel integral transform, Mixed boundary
conditions, Singularities, Square plate.

1 INTRODUCTION

It seems that problems on the bending of thin plates
have been investigated for almost all combinations of
boundary edge conditions. Nevertheless, it is remarkable
that much less research has been conducted for studying
the static bending problem of plates supported by point
column supports, although it commonly encountered in
practice. However, some problems for free vibrations of
plates with point supports were found in literature.

Azimi [1], who employed the receptance method for
formulating the natural frequency and mode shape
equations of elastically and rigidly point-supported at an
arbitrary point in circular plates. LeClair [2] applied the

Green’s function to analytically derive the characteristic
equation and mode shapes for a circular plate with a free
edge and interior, simple supports where the effects of
elasticity at the support or a concentrated mass was
included in his investigation. Other vibration problems
of plates having a concentrated mass rather than a point
support were studied in [3]-[8]. Cortinez and Laura [9]
presented the approximate determination for forced
vibrations of a simply supported polygonal plate having
a concentric, rigid, circular inclusion.

In the case of plates subjected to static loads, Lee
and Ballesteros [10] proposed an approximate deflection
function in the form of polynomials for a uniformly
loaded rectangular plate supported at the corners. Their
obtained results showed that the error is largest in the
vicinity of the corners. Yu and Pan [11] derived the
general expressions for determining the deflections of a
uniformly loaded circular plate supported at several
points equally spaced along the circumference of a
concentric circle. Yuhong [12] applied the reciprocal
theorem to solve the bending problem of rectangular
plates with each edge arbitrary a point supported under
concentrated load acting at any point of the plate.

With the best knowledge of the authors, none has
considered the problem of square plate supported at the
corners and partially simply supported at the edges
found in technical journal, except for the seminar paper
that presented by Sompornjaroensuk and Dy [13]. Thus,
the principal concern of this paper is to analytically treat
and present the method of solution for solving the
problem of uniformly loaded square plate supported at
the corners by point column support. In addition, the
plate is also partially simply supported at all four middle
edges while the length of partial simple supports can be
varied symmetrically with respect to the center of the
plate as illustrated in Figure 1.
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It can clearly be seen that there are the mixed
boundary conditions around the plate edges, which are
of type simply supported and free. These conditions can
be formulated as dual-series equations and analytically
solved by using the Hankel integral transform method.
Thus, with this method, the final equation governing the
problem solution can be formulated in the form of an
inhomogeneous Fredholm-type integral equation of the
second kind. An important point to note here is that the
inverse-square-root moment singularities [14], [15] due
to the discontinuous supports have provided in the
analysis.

Before proceeding further to analyze the problem, it
is necessary to consider and review some literatures as
listed in the followings below.

A related problem was made by Dempsey et al. [16],
who analytically investigated the bending of uniformly
loaded square plate supported by unilateral supports.
The method of finite Fourier integral transforms was
used to solve the dual-series equations that led to a
Cauchy-type singular integral equation of the first kind.

The same problem as treated previously in [16] was
reanalyzed by Sompornjaroensuk and Kiattikomol [17]
and problem was analytically reduced to the form of an
inhomogeneous Fredholm integral equation by using the
finite Hankel integral transform techniques. Kongtong
and Sukawat [18] extended the identical method [17]
with considerable success to obtain the coupled integral
equations for uniformly loaded rectangular plates resting
on unilateral supports.

Considering the numerical analyses, Salamon et al.
[19] modeled the unilateral supports with discrete elastic
springs by means of finite element method. Another
numerical method was done by Hu and Hartley [20],
who used a direct boundary element method to model
the problem. However, it can be observed in two latter
numerical methods [19], [20] that they do not consider
the singular behavior at the transition points between the
plate and the supports.

Another problem was treated by Sompornjaroensuk
[21] and Kongtong, Sompornjaroensuk and Sukawat
[22] for the bending of uniformly loaded square plate
supported by partial simple supports at all four middle
edges. Furthermore, some numerical results have shown
in Sompornjaroensuk and Dy [23]. It can be noted that
since the length of partial simple supports is very small,
the problem becomes the plate supported by finite
narrow strip columns at all middle edges [24].

However, it is interesting to note that the problems as
presented in [16]-[18] and [21]-[24], an inverse-square-
root shear singularity is introduced at the ends of partial
supports in order to insure the corners of the plate to be
lifted up during bending. In the present problem under
consideration, all corners of the plate are anchored by

point column supports; therefore, an inverse-square-root
moment singularity is proper at those ends of partial
simple supports.

2 PLATE’S DIFFERENTIAL EQUATION

Consider the plate that demonstrated in Figure 1, the
geometry of the plate has scaled by the factor z/a where
a is the actual length of square plate.
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Fig. 1 Corner-supported square plate with partially
simply supported edges.

Hence, the following relation can be used to obtain
the actual coordinates (X, ¥) and dimensions (¢, €),

(X, V,E,e‘):(gj(x, y.c.e). 1)

Within the framework of theory of thin elastic plates
[25], the deflection function w(x,y) can be determined by
solving the governing partial differential equation,

4

V*w(x,y) = qa : 2
(x¥)=—- @
with the biharmonic operator given by
4 4 4
vage 6_4 z%Jra_A, (3)
OX oxoy® oy
and the bending rigidity of the plate defined as
Eh®
(4)

D=———
12(1-v2)
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where ¢ is a uniform load, h is the thickness of the plate
and E, v are the Young’s modulus and Poisson’s ratio,
respectively.

The deflection function in Eq.(2) can be taken in the
form of the Lévy-Nadai’s solution. Therefore, the total
deflection is the sum of the complementary solution
w(x,y) and particular solution wpy(x,y),

W(X, Y) =W, (X, ¥) +W,(X,Y), )
where
wc(x,y):% S {[A, cosh(my) + B,mysinh(my)

+C,, sinh(my)+D,my cosh(my)]sin(mx)
+[ A, cosh(mx) + B, mxsinh(mx)

+C,, sinh(mx) + D, mx cosh(mx) ]

xsin(my)}, (6)
and

_Q_ 4
W= 2 I o

3 BOUNDARY CONDITIONS

Due to the two-fold symmetry in deflection function,
the unknown constants of integration; namely, A, Bpn,
Cn and Dy can be determined from the boundary
conditions as follows:

oW T T
—=0:y==—;0<x<—, 8
& y=7 5 8)
V,=0: :Z;nggz, 9
, =0y =3 : (©)
M, =0 y=0;03xg§, (10)
ow  O°w T
W=—=—=0:y=0; e <=, 11
x o 7 <X=3 (11)
Vy:O: y=0; 0<x<e, (12)

in which the bending moment My and the Kirchhoff’s
shearing force V, are, respectively, defined by [25],

PART I 13

w,=-0[ 2] (2 2] 13
% ox

and

N dw o dw

v, = D(Ej (ay 2 ay}' (14)

4 DUAL-SERIES EQUATIONS

Application of the regular boundary conditions that
presented in Eq.(8), Eq.(9), and Eq.(10) and together
with utilizing Eq.(13) and Eq.(14) leads to the following
relations:

A’n__+2D n'coth 3, (15)
B, =-D, coth 3, (16)
4vn’ tanh '
c. =—W7”5—msﬂ— D,[ 27+ B (tanh B—coth B)],
17)
with
1
= 18
- (18)
and
mz
=, 19
B ; (19)

The mixed boundary conditions given in Eq.(11) and
Eq.(12) can be written as the dual-series equations,
which are:

> m?P,sin(mx)=0; 0<x<=, (20)

m=135,... 2

i {m°P, (1+ F{)sin(mx)

m=13,5,...
+m*R, [ F{? sinh(mx) — 217 cosh(mx)

+F®mx cosh(mx) —zmx sinh(mx)]}

> [F®sin(mx)+F® + F sinh(mx)

m=135,...
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~F® cosh(mx) + F”mx cosh(mx)

—Fm(‘”mxsinh(mx)] r0<x<e, (21)
where
2
Pm = W + Dm COthﬁ y (22)
FO - (3+v)smhﬂcosh,62—(l—v)ﬂ_1, 23)
(3+v)cosh® g
F® =p(2tanh B+ Bsech’ ), (24)
® _
F.” =ntanh g, (25)
2
Fo 2[(3-v)tanh - (15— :) pBsech’p3) | | 26)
B+v)z’m
4
6 _ , 27
" B+v)r'm? @)
2
Fo 2[2tanhﬂ+(1—;/)zﬂsech ] | 28)
B+v)z’m
2ntanh
FO = —"ﬂsmz £ (29)
2n
F® = , 30
" 'm? (30)
and
n= 1-v (31)
3+v

5 FINITE HANKEL INTEGRAL TRANSFORM

It can be seen that the problem is now reduced to
finding one unknown function Py in the dual-series
equations where this function can be determined by
assuming the proper finite Hankel integral transforms.

Since the present problem seems likely to the
previous problem [17], [21]-[23] except that the corners
of the plate are now anchored in this paper and then, the
dual-series equations can be reduced to the form of
integral equation of Fredholm-type. However, it has
been revealed previously that the proper form of Py,
satisfying EQ.(20) and also exhibiting the inverse-
square-root moment singularities [14], [15] at the points

of discontinuous supports is taken in the following form
[21], [22]

m’P, = EJl(me)+jt¢(t)J1(mt)dt ;m=135.., (32

where t is a dummy variable, ¢(t) is an introduced
unknown auxiliary function in the Hankel integral
transforms, J,(u) is the Bessel function of the first kind
and order n with argument u [26], [27], and the constant
E can be determined from the zero deflection condition
(w = 0) as presented in Eq.(11) at only one point, i.e.,
w(z/2,0).

Hence, integrating Eq.(20) twice with respect to x
and substituting Py, from Eq.(32) with setting x = #/2
results in, after interchanging the order of summation
and integration,

jt¢(t) 3 I (M=) dt

E - _ 0 1:1,3,5““ = (33)
> m?)(me)(-1) 2
m=13,5....
With the use of identity given below [28]-[30],

> m2J,(mt)sin(mx) = Zt:x>t; x+t<z, (34)
m=1,35,... 8
and setting x = z/2 yields

0 (m-1) T

DD mA(m) ="t <> (35)
m=135 2

In view of Eq.(35), the previous Eq.(33) becomes

E-_ ! %qﬁ(t)dt . (36)

Substituting £ into Eq.(32) results in
mZPm =jt¢(t){J1(mt)—£Jl(me)}dt ;m=1305,.. (37)
0

It is easy to verify that function Py, satisfies Eq.(20).
Substituting P,, into Eq.(20) and considering the identity
[28]-[30],

i J,(mt)sin(mx) = xH (t—x)

m=1,3,5,...

X+t< o,

2 X)) )
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where H(-) is the Heaviside unit step function [31], leads
to the following equation

.e[t(é(t){ X|_: (t _zxz/z - )itHz(e _2X)1/2 }dt

° 2t(t° = x°) 2e°(e" —x%)

—0- i

—O,e<x32. (39)

Since x is always larger than t and e, the Heaviside
functions in EQ.(39) are all zero. Thus, Eq.(39) is
automatically satisfied.

Similarly, the remaining zero slope condition (ow/0x
= 0) that presented in Eq.(11) is also automatically
satisfied by integrating Eq.(20) once with respect to x
and using the identity as given by,

H((t-x)

)1/2 !

> m™J,(mt)cos(mx) =50 )"

m=1,3,5,...

X+t<,
(40)

which is derived from a direct integration of EQ.(38)
between the limits of 0 and x.

According to the work of Williams [14], the correct
singularity at the point of discontinuity is of O(¢*?) in
the moments or of O(¢?) in the shears where ¢ is an
infinitesimal distance measured from the singular point.
Verification is easily made by consideration of Eq.(21)
in the following form

0

V,(e<x<7/2,0)=-27"qa {—— z m?P_ cos(mx)

=13

+ m3Pm F ¥ sin(mx)

m

m°P, [ F® sinh(mx) —.. |

[ @ sin(mx)+...}}

<e. (41)

+
DMs 5D ¢Ms

N &
><fﬁ

; 0

Substitution of P, defined by Eq.(32) into the first
term on the right side of Eq.(41) and using the identity
as given by [28]-[30],

> 1 XH (x—t
> Ji(mt)cos(mx) = __2(—22/2
m=1,35,... 2t 2t(x _t )

+T I, (ts) cosh(xs)

ds;x+t<rz,
o exp(zs)+1

(42)

PART I 15

where 1,(u) is the modified Bessel function of the first
kind and order n with argument u [26], [27], Eq.(41)
becomes

V,(e+¢,0) = 7°qakE g (2e6) ' +0(s) ™M + (43)

It is obvious that the singularity is in the order of
O(£*?) in shearing force. This indicates that there is an
inverse-square-root singularity in moment [14], [15].

6 ABEL’S INTEGRAL EQUATION

Having shown that P, as given in either Eq.(32) or
Eq.(37) automatically satisfies all conditions shown in
Eqg.(11) and there is an inverse-square-root singularity in
moment, it remains to reduce Eq.(21) to the form of an
integral equation.

Integrating EQ.(21) once with respect to x and
substituting Py, given by Eq.(37), after changing the
order of integration and summation leads to

jt¢(t) (1+ F w){\] (mt)—— J (me)}cos(mx)dt
[to i [Jl(mt) —%Jl(me)}{(ﬁi” —F)

xcosh(mx) + F¥mxsinh(mx) — 77sinh(mx)

—pmxcosh(mx)}dt =— > F (x);0<x<e, (44)
m=13,5,...
where
F,(x) =—m~F{* cos(mx) + E®x+m™*(F{ - F{")
xcosh(mx) + F{”xsinh(mx) + m*(F® - F®)
xsinh(mx) — F®x cosh(mx) . (45)

In view of Eq.(42), Eq.(44) can be cast in the form of
Abel’s integral equation as

dt—h(x); 0<x<e,

I 0 5)

X

in which

h(x) = ejqﬁ(er){l—
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2erT cosh(xs)[I,(ser)—rl (se)] ds}dr
exp(zs)+1

0

+2e2.1[r¢(er) i [Fnﬂl’cos(mx)

m=135,...
—(F® —F®)cosh(mx) — FPmxsinh(mx)
+nmx cosh(mx) +nsinh(mx)]

x[J,(mer) —rJ,(me)]dr

+2 Y F (x); 0<x<e.

m=1,3,5,...

(47)

Note that the change of variable t = er is introduced
in EqQ.(47). Moreover, it can be remarked that Eq.(44)
should include an arbitrary constant of integration
resulting from the integration of Eq.(21) with respect to
X. Nevertheless, it has no effect on the solution process
of solving the Abel’s integral equation and thus, the
constant is excluded [32].

The solution of Eq.(46) can be taken in the form as

ij h(x)
dt ° ’tZ _ X2

7 FREDHOLM INTEGRAL EQUATION

Substituting Eq.(47) into EQ.(48) and using the
identities given below that already derived with the aid
of identities found in Gradshteyn and Ryzhik [33],

o) = dx; O<t<e. (48)

RN

7 dt I \/t__x (49)
- j COS(”‘X) dx = —mJ,(mt), (50)
- j S'”h(mx) dx = m[ + Ll(mt)] (51)
i jt j%dx mtl (mt) | (52)
" j COSh(mX) dx = ml, (mt) (53)

2d J-xcosh(mx)d 2

+mt mt) ,
Py R e Lo (mt)

(54)

and then, the final result can be manipulated as in the
following equation, which is an inhomogeneous Fredholm
integral equation,

®(p)+[K(p.N@(dr=f(p); 0<p<1,  (55)
with
®(p) = ¢(ep); V(1) =gler), (56)

and

K(p,r) =2€r i [-4nm [z —pmL, (mep)

m=1,3,5,...
—nm’epl,(Mmep)+mF "I, (mep)

+m(F? = F )1, (mep) +m’FPepl,(mep) |

x[J,(mer) —rJ, (me)]-2e*r

XT S|1(59P)[|1(ser) — rll(SE)] ds, (57)

exp(zs)+1

f(p)=2 3 [Fi3,(mep)+ (P - )1, (mep)

m=135,...

+mF Veply(mep) +(F,” - F7) L (mep)

-mFPepl,(mep)], (58)

where L,(u) is the modified Struve function of order n
with argument u [26].

8 DISCUSSION AND CONCLUSION

It is immediately seen that the analytical solution of
Eq.(55) is very difficult to obtain due to the complexity
of the kernel and inhomogeneous part of integral
equation as shown in Eq.(57) and Eq.(58), respectively.

However, the unknown auxiliary function ®(p) can
be determined using the standard numerical method
[34], which has been described previously [29].

Mathematically, since the length of free edges equals
zero (e = 0), the problem becomes a limiting case of
simply supported square plate as shown in Figure 2 and
there is no existence of singularity in the problem. This
can be seen in the function P, that involved with
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singularity of the solution.
By considering Eq.(37) and setting e = 0, yields

mep — e.[ot¢(t)[\]l(mt)—%Jl(me)}dt ~0;m=135,...,

(59)

and further consideration of Eq.(22) and also Eg.(15) to
Eq.(17), leads to the relations:

D, = —%tanhﬂ, (60)
z°m
4
= , 61
& m’ (61)
2
B = e 2
C,= %(2 tanh 8 — fsech’® ) . (63)
z°m

Applying Eq.(60) to Eq.(63) in Eq.(6), the deflection
function can thus be obtained in closed-form of the
Lévy-Nadai’s solution [25] as

=4

wix ) =L 3 L o[- cosn(my)]+ (2tanh g

5
T Dm:1,3,5 m

—psech? B)sinh(my) +my sinh(my)

—my tanh S cosh(my) }sin(mx)
+{2[1—cosh(mx)]+ (2tanh 8 — Bsech®3)
xsinh(mx) + mxsinh(mx) — mx tanh /3

xcosh(mx)}sin(my) ]; 0<x,y<z. (64)

However, the deflection function as presented in
Eq.(64) can be written in the new compact form, when
the x-axis is relocated in the middle line as shown in
Figure 3 [25],

49" & 1 Stanh g +2
— il el ol
® z 5{ 2cosh B

xcosh(zﬂy)Jr By

T zcosh g

(2]

xsin(mx) :0<x<7w; — sys%. (65)

Ny

If the free edge lengths are equal to #/2 (e = #/2), the
solution cannot be determined within the present method
[171, [23], [24], [28]-[30]. Noted, however, that this case
is corresponded with the problem of point-corner
supported square plate having a point column support
placed at all middle edges.
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Fig. 3 Simply supported square plate with the x-axis
placed along the middle.
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For a limiting case of e that approaches /2 such as e
= 0.495x, the solution can still be determined as the
limiting case as shown in Figure 4.

In closing, it can strongly be concluded that the finite
Hankel integral transform method is considerable with
success to analytically solve the problem mentioned
herein, which has never been found in the past scientific
or technical journals up to date.

l-—;z/Z—»l

; -

/2

l

—

J;

Fig. 4 Corner-supported square plate with narrow strip
column supported at the middle edges.
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