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ABSTRACT 

A directional microstrip coupler utilizing the 
stepped impedance coupled lines to equalize the even- 
and odd-mode phase velocities for directivity 
enhancement is investigated. The stepped impedance 
coupler features simple analysis, design, and 
implementation, with small area requirement, no use 
of lumped reactive components, and no via holes. 
Experimental results demonstrate a performance 
improvement in terms of the directivity by as large as 
48.6 dB over the conventional coupler. 
 
Keywords: Directional coupler, directivity, stepped 
impedance 
 
 
1. INTRODUCTION 

It is known that the conventional microstrip 
directional coupler suffers from poor directivity. This is 
primarily attributed to unequal even- and odd-mode 
phase velocities resulting from the inhomogeneous 
dielectric of microstrip structures. The directivity 
performance becomes exacerbated for a coupler with 
less coupling level and higher permittivity substrate. To 
enhance the performance, numerous techniques have 
been introduced to equalize the modal phase velocities. 
These include the coupler structures using ‘wiggly’ lines 
in [1], coupled spurlines in [2], dielectric overlay in [3], 
re-entrant coupling in [4], and metallic cylinders in [5]. 
Although these structures are effective in improving the 
directivity, their designs and optimizations relied heavily 
on iterative full-wave simulations from the beginning of 
the design phase. More-over, the structures in [3], [4], 
[5] are quite complex and require extra processing steps 
for implementation. Due to its relative simplicity and 
high directivity, the method of series/ shunt reactive 
loading, either of capacitive or inductive types [6] – [8], 
has gained more widespread use. In [8], it is demon-

strated that the coupler structure, which made use of 
shorted-end stubs through via holes for the shunt 
inductors, is more suitable for weak coupling levels at 
high frequencies. 

An alternative structure for directivity enhancement 
in the directional coupler is developed in this paper. In 
particular, the stepped impedance transmission line 
technique is incor-porated directly into the coupler 
structure so as to equalize the modal phase velocities. 
The stepped impedance coupler offers simple analysis, 
design and realization. In addition, it occupies small 
area, and requires no use of lumped reactive compo-
nents and via holes, which can be difficult to account for 
at 
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Fig. 1 Schematic diagram of the stepped impedance 
coupler. 

very high operating frequencies. Detailed analysis is 
outlined, followed by a design approach. An 
experimental stepped im-pedance coupler operating at 
925 MHz, for use in a domestic UHF RFID system, is 
provided to verify its practical viability. 
 
2. STEPPED IMPEDANCE PARALLEL 

COUPLER  

Fig. 1(a) shows the schematic of the stepped 
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impedance coupler. It is essentially formed by a cascade 
of three coupled line sections 1, 2, and 3. Sections 1 and 
3 are identical. Their even- and odd-mode characteristic 
impedances are at Z0e1 and Z0o1, and the electrical 
lengths at e1 and o1, respectively. For section 2, the 
modal characteristic impedances are at Z0e2 and Z0o2, and 
the electrical lengths at 2e2 and 2o2. Note that the step 
impedance ratio in each mode is defined by Ke,o = 
Z0e1,o1/Z0e2,o2. For a conventional coupler with a uniform 
coupled line, we have Ke = Ko = 1. 

It is shown in [9] that the first parallel resonance 
frequency of a stepped impedance transmission line 
resonator can be shifted via adjustment of the stepped 
impedance ratio. In essence, this indicates that the phase 
velocity of the wave propagating along the stepped 
impedance transmission line is modified. Based upon 
this principle, the incorporation of the stepped 
impedance structure into coupled microstrip lines to 
form the stepped impedance couplers enables us to align 
the even- and odd-mode phase velocities by appropriate 
selections of the modal stepped impedance ratios Ke,o 
[10]. As a result, a high directivity microstrip coupler 
can be achieved. 
The stepped impedance coupler can be analyzed by 
invoking the even- and odd-mode analysis similar to that 
of the inductive loaded structure in [8]. By applying the 
even- and odd-mode analysis between port 1 and port 3 
of Fig. 1, the coupler is simplified to a set of two 
identical two-port networks in Fig. 2(a). From these 
networks, another even- and odd-mode analysis is then 
applied between port 1 and 2, and between port 3 and 4, 
with node C as the point of symmetry. This yields the 
equivalent networks of the resulting four modes as 

shown in Fig. 2(b)(e). Since the networks are 
essentially a cascade of two transmission line sections 
with open or shorted end, the input impedances of each 
mode can be derived based on the ABCD matrix of a 
transmission line section. By setting 

1 1/e N   , 

     1 1 1 1o e N , 
2e   

2/  , and 
2o   

2 2e    

2  , it can be shown that 

       

       


 


1 2 1 2

01
1 2 1 2

cos( / ) cos( / ) sin( / ) sin( / )

cos( / ) sin( / ) sin( / ) cos( / )

e
ee e

e

N K N
Z jZ

K N N

                 (1a) 

       

       


 


1 2 1 2

01
1 2 1 2

cos( / ) sin( / ) sin( / )cos( / )

cos( / )cos( / ) sin( / ) sin( / )

e
eo e

e

N K N
Z jZ

K N N

                 (1b) 

       

       


 


1 2 1 2

01
1 2 1 2

cos( )cos( ) sin( )sin( )

cos( )sin( ) sin( )cos( )

o
oe o

o

N K N
Z jZ

K N N

  (1c) 

       

       


 


1 2 1 2

01
1 2 1 2

cos( ) sin( ) sin( )cos( )

cos( )cos( ) sin( )sin( )

o
oo o

o

N K N
Z jZ

K N N

  (1d) 

0 1 0 1( )e oZ Z

1 1( )e o 

0 2 0 2( )e oZ Z

2 2( )e o 

 

(a) 

0 1 1,e eZ  0 2 2,e eZ 

eeZ

0 1 1,e eZ  0 2 2,e eZ 

eoZ  

0 1 1,o oZ  0 2 2,o oZ 

oeZ

0 1 1,o oZ  0 2 2,o oZ 

ooZ  

Fig.2 (a) Even- and Odd-mode equivalent circuits for 
analysis of the stepped impedance coupler, (b) even 
mode (ports 1 and 3) followed by even mode (ports 1 
and 2), (c) even mode (ports 1 and 3) followed by odd 
mode (ports 1 and 2), (d) odd mode (ports 1 and 3) 
followed by even mode (ports 1 and 2), and (e) odd 
mode (ports 1 and 3) followed by odd mode (ports 1 and 
2). 

where Z0 is the system impedance. Note from the 
equations that, by defining the effective electrical length 

of a coupled line as eff
e o   , we have 

    1 1 1
eff

e o N  for the coupled line section 1 (and 

3), where     2 2 2
eff

e o
 for the coupled line section 

2. Thus, N represents the ratio between the effective 

electrical lengths, i.e., 
1 2/
eff effN   . Also in the 

equations, 1 and 2 are the ratios between the odd- and 
even-mode electrical lengths for sections 1 (or 3) and 

section 2, respectively. It is typical that 1 ≠ 2 because 
the physical dimensions are different. Under the 
conditions of an isolation null (or S41 = 0), and a perfect 
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0.855, 2 = 0.922. This yielded the modal impedances at 
Z0e1 = 48.0 , Z0o1 = 22.0 ,  Z0e2 = 92.21 , and Z0o2 = 
72.26 , with the simulated directivity at about 39.8 dB, 
and the coupling level at 12.8 dB. To obtain the desired 
coupling level closer to 12 dB, we chose to adjust only 
the effective electrical length  for simplicity, and 
repeated the same design flow. The design was 
completed within five cycles, where 1,2 are finally equal 
to 1=  0.855, 2 = 0.926, and the designed parameters 
are as follows: N = 3,  = 0.89/16, Z0e1 = 48.0 , Z0o1 
= 22.0 , Z0e2 = 103.76 , and Z0o2 = 84.98 , with the 
directivity of more than 40 dB. After slight adjustments 
to compensate for the discontinuities at the junctions 
with the help of a full-wave simulation, the final 
dimensions of the stepped impedance coupler are as 
summarized in Fig. 3(a). For the conventional coupler 
with the same coupling level and operating frequency, 
the designed parameters are Z0e = 63.67  and Z0o = 
39.26 , with the line’s width of w = 1.32 mm, the line 
spacing s of  0.83 mm, and the total length of l = 31.9 
mm. 

Fig. 3(b) shows the photographs of the stepped 
impedance coupler and the conventional counterpart. 
The measurement was performed using an Agilent 
N5230A Vector Network Analyzer with the Short-
Open-Load-Through (SOLT) calibra-tion module. The 
measured S-parameters of the stepped impedance 
coupler are given in Fig. 4(a) where it can be deduced 
that the coupling and isolation levels at 925 MHz are at 
12.78 dB and 48.9 dB, respectively. The return loss is 
more than 30.8 dB. Also, the maximum isolation at 67.4 
dB is located at 959 MHz. As indicated by the figure, 
the measurement is in good agreement with simulation. 
Fig. 4(b) shows the simulated and measured responses 
of the directivities and coupling levels for both the 
couplers. It can be seen that the stepped impedance 
structure exhibits a higher directivity by more than 30 
dB at the operating frequency, and the maximum 
improvement can be as large as 48.6 dB. 

 
4. CONCLUSION  

The directional coupler structure which relies upon 
the use of the stepped impedance coupled lines for high 
directivity has been developed. The coupler has been 
analyzed, and a simple design approach has been 
provided, which is mainly based on the derived 
equations with intervention of full-wave simulation only 
at the final design phase. Demonstration was given via 
an experimental designed coupler, where a maximum 
improvement of more than 48.6 dB in the directivity 

performance over the conventional counterpart was 
achieved. 

 

(a) 

 

Fig.4 (a) Simulated and measured frequency responses, 
and (b) comparisons of directivities and coupling levels. 
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