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ABSTRACT 

The aim of this paper is to analytically examine the 

nature of singularity fields that can be allowed to exist 

in two different problems of uniformly loaded square 

plate in which both plates have partial simple supports 

symmetrically placed at the central portion of all edges. 

In the first case, the corners of the plate are 

unconstrained and can be bent away upon loading, but 

not for the second case where each corner is anchored 

by a point column support to prevent a deflection 

vertically. Significantly, both problems can be analyzed 

and treated within the same formulation with slight 

modifications by means of the proper finite Hankel 

integral transforms. Additionally, some limiting cases 

of the plates are also able to be determined within the 

frame of these problem formulations. 
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1 INTRODUCTION 

Following the Kirchhoff’s assumptions for theory of 

thin elastic plates, when the plates having the right-angle 

corners such as the square and rectangular plates loaded 

laterally, the corners in general have a tendency to rise, 

and this is prevented by the concentrated reactions 

(called the corner forces) at the corners. Therefore, it is 

clear that these mentioned plates supported in some way 

along the edges will usually produce not only reactions 

distributed along the boundary but also concentrated 

reactions at the corners. The magnitudes of these corner 

forces are equal to the magnitudes of the twisting couple 

at the corresponding corners of the plate [1]. If the plate 

is not constrained bilaterally in the vicinity of the 

corners, then parts of the plate near and including the 

corners will be bent away from the supports upon 

loading. For instance, this situation leads to mixed 

boundary value problem of plates. 

Mathematically, the use of integral transforms has 

been applied with considerable success to solve many 

mixed boundary value problems of plates that involved 

with the problems of bending, vibration, and buckling. 

The methods usually lead to dual-series or dual integral 

equations. Stahl and Keer [2] analytically investigated 

the vibration and buckling of rectangular plates with an 

internal line support by means of the finite Hankel 

integral transforms. Further analyses were extended to 

treat the problems of rectangular plates with cracks [3] 

and rectangular plates with various mixed boundary 

conditions [4]. All problems were finally reduced to 

determining the solutions, which are the frequency 

parameters or the load factors, of the homogeneous 

Fredholm integral equations of the second kind. It is 

worth noting that the inverse-square-root moment 

singularities [5] have considered and also taken into 

account in their analyses. 

Additionally, the bending problems of uniformly 

loaded rectangular plates with a partial internal line 

support were solved [6, 7] by using the same method as 

presented previously [2-4]. 

Consider the problems involving advancing contact 

that are more complicated in the sense, Dundurs, 

Kiattikomol, and Keer [8] examined two closely related 

contact problems between rectangular plate and 



Y. Sompornjaroensuk et al.: SOME ASPECTS ON THE NATURE OF SINGULARITY FIELDS                 73 

 

unilateral sagged supports. The results showed that the 

extent of contact depends on the level of loading and the 

reactions are not proportional to the applied load [9]. 

Sompornjaroensuk and Kiattikomol [10], [11] further 

analytically investigated the advancing contact between 

the rectangular plates and an internal line sagged support 

by making use of finite Hankel integral transforms. 

Another contact problem of the opposite type, or one 

involving receding contact, which is the problem of 

laterally loaded quarter infinite plate with no anchoring 

at the corner was analytically solved by Keer and Mak 

[12] for finding the loss of contact between the plate and 

the supports. The method used is the Fourier integral 

transforms and problem considered can then be reduced 

to the coupled pair of singular integral equations. After 

that Dempsey et al. [13] used a finite Fourier integral 

transform method for analyzing the problem of 

uniformly loaded square plate. The governing equation 

was expressed as the Cauchy-type singular integral 

equation of the first kind together with constraint 

condition for zero corner forces. The mentioned problem 

has numerically and analytically treated by Salamon, 

Pawlak, and Mahmoud [14] using finite element method 

and Sompornjaroensuk and Kiattikoml [15] based on the 

finite Hankel integral transforms, respectively. 

 

2 MATHEMATICAL FORMULATION 

To simplify the analysis and formulation, the first 

case of the plates is shown in Fig. 1. 

 

 
 

Fig. 1 Square plate with partially simply supported 

along the middle edges. 

 

The lengths involved are scaled by the factor π/ā 

where the actual length of the square plate is ā, and e, c 

are the length of free edge and the half-length of partial 

simple support, respectively. 

Because of two-fold symmetry of the geometry and 

the lateral load, the deflection function (w) of the plate 

having uniform thickness (h) loaded by a uniformly 

distributed load (q) that satisfied with this case of the 

plate can then be taken in the form as [16] 
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where D is defined to be the plate’s bending rigidity [1], 

E and ν are thus the plate’s material properties, namely, 

the Young’s modulus and Poisson’s ratio, respectively, 

Wc is the deflection of the corner that required in order 

to insure the region of the plate corners to be free to 

movement, and Am, Bm, Cm, and Dm are the unknown 

constants. 

The formulation of problem can be treated only in 

the region bounded by the upper left quadrant of the 

plate due to the condition of symmetry. Application of 

the mixed boundary conditions leads to the dual-series 

equations as follows: 



74              ENGINEERING TRANSACTIONS, VOL. 19, NO.2 (41) JULY-DEC 2016. 

1,3,5,...

cos( ) 0m

m

mP mx




 ; 
2

e x


  , (9) 

 

 3 (1) 3 (2)

1,3,5,...

(1 )sin( ) sinh( )m m m m

m

m P F mx m P F mx




    

 
(3)2 cosh( ) cosh( ) sinh( )mmx F mx mx mx mx       

(4) (5) (6)

1,3,5,...

sin( ) sinh( )m m m

m

F mx F F mx




    

 
(5) (7)cosh( ) cosh( )m mF mx F mx mx   

 

(8) sinh( )mF mx mx   ; 0 x e  , (10) 

 

where 
 

5 5

2
cothm mP D

m



  , (11) 

 

(1)

2

(3 )sinh cosh (1 )
1

(3 )cosh
mF

    

 

  
 


, (12) 

 

 (2) 22 tanh sechmF      , (13) 

 

(3) tanhmF   ,  (14) 

 

2

(4)

2 5

2 (3 ) tanh (1 ) sech

(3 )
mF

m

    

 

    



, (15) 

 

(5)

2 5

4

(3 )
mF

m 



,  (16) 

 

2

(6)

2 5

2 2 tanh (1 ) sech

(3 )
mF

m

   

 

   



, (17) 

 

(7)

2 5

2 tanh
mF

m

 


 ,  (18) 

 

(8)

2 5

2
mF

m




 ,  (19) 

 

and 
 

1

3










.  (20) 

 

Further details concerning the derivation of Eqs.(1) 

to (20) have provided previously in Kongtong et al. [16]. 

 

3 SINGULARITY IN THE SHEAR FIELD 

It can generally be noted from the aforementioned 

works [8], [10]-[13], [15] that at the ends of partial 

simple supports, the singularity should be expected in 

the order of an inverse-square-root type in the shearing 

forces. With this purpose, the required form of an 

unknown function Pm is taken as [16], based on the 

finite Hankel integral transforms, 
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where t is a dummy variable, φ(t) is the unknown 

function introduced in the method of Hankel integral 

transforms, and J1(u) is the Bessel function of the first 

kind and first order of argument u [17], [18]. 

Substitution of Eq.(21) into the second dual-series 

equations of Eq.(10) and using the identity presented in 

Kontong et al. [16: Eq.(50)], yields 
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It is clearly seen that the first term on the right side 

of Eq.(22) indicates an inverse-square-root singularity in 

the shear (Vy) existed at the end of simple support (x = e 

+ ε, y = 0 and ε → 0). 

Subsequently, the deflection of the plate corner (Wc) 

as introduced in Eq.(1) can be determined analytically 

and expressed as, 
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It is interesting to note here that the corners of the 

plate have a tendency to rise up during bending because 

of the minus sign presented in Eq.(23). 

 

4 SINGULARITY IN THE MOMENT FIELD 

Consider the second case of the plates as shown in 

Fig. 2, the plate is partially simply supported on each 

edge similar to the first case analyzed and has an 

additional point support at all corners. 

An inverse-square-root shear singularity in the 

vicinity of the transition points from a simple support to 

a free edge as presented in the previous case is not 

allowed in the current case and it should be changed to 

be an inverse-square-root moment singularity [5], which 

is proper at those transition points [2]-[4], [6], [7], [19]. 
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Fig. 2 Square plate with partially simply supported 

along the middle edges and point column supported at 

all corners. 

 

To confirm the statement above, the function Pm as 

given in Eq.(21) must be replaced by 
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Substituting Eq.(24) in Eq.(10) and using the identity 

that previously shown in Eq.(40) of [16], Eq.(22) then 

becomes 
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This clearly reveals that the singularity is of O(ε
 -3/2

) 

in the shear field, or of O(ε
 -1/2

) in the moment field, 

since Pm is assumed in the proper form of Eq.(24). The 

next is to determine the quantity of the corner deflection 

(Wc), which can be obtained in the same manner with the 

previous case and then, leads to the result as 

 

0cW  .  (27) 

 

This can be implied immediately and concluded that 

the deflection at the plate corners is unable to lift up 

freely due to the existence of a point column support at 

the corners of the plate, which is automatically satisfied 

with the problem under consideration exactly. 

 

5 DISCUSSION AND CONCLUSION 

As is presented and explained in the detailed analysis 

shown in Section 3, it has generally disclosed that for 

the specific case of a square plate supported by simple 

supports with certainly specified support lengths (see 

Fig. 1), the nature of singularity is shown to be the order 

of an inverse-square-root type in the shear. Nevertheless, 

within the authors’ opinion, the problem is not seemed 

to be a natural receding contact between a plate and the 

unilateral supports as analytically treated in Dempsey et 

al. [13] and Sompornjaroensuk and Kiattikomol [15] 

because of no presence of zero corner force constraint 

condition. This is one of important points to discuss in 

the following details. 

Consider a uniformly loaded square plate supported 

by the unilateral supports as demonstrated in Fig. 3, the 

plate configuration seems to be the same with the plate 

shown in Fig. 1. 

 

 
 

Fig. 3 Square plate with unilaterally supported edges. 

 

The difference is that the length of the supports is a 

certain length for the previous case, but not for the 

present in which e
*
 is the loss of contact between a 

square plate and the unilateral supports, sometimes 

called the noncontact length. However, a significant 

additional constraint condition must be provided, for the 

zero corner forces in this problem [15], which is 

 

2

0

( ) ( )

e

e T er r er dr B  ,  (28) 

 

where 



76              ENGINEERING TRANSACTIONS, VOL. 19, NO.2 (41) JULY-DEC 2016. 

2

1

1,3,5,...

( ) (1 ) tanh sech ( )
m

T er J mer    




     , 

(29) 

and 
 

2

3 5.
1,3,5,...

tanh sech
2

m

B
m

  







 
  

 
 . (30) 

 

It is notable that the presence of corner forces cannot 

be allowed in the plate having unilaterally supported 

edges [12], [13], [15], because it is forced by the 

condition that given in Eq.(28). 

Thus, the problem considered herein is one of the 

receding contact problems and the loss of contact is not 

depended on the level of loading but strongly depended 

on the Poisson’s ratio of the plate. Refer to the results 

that presented in Sompornjaroensuk and Kiattikomol 

[15], the loss of contact was continually decreased upon 

the increasing of the Poisson’s ratio [9]. 

In views of Section 4, it has clearly shown that the 

singularity must be the order of an inverse-square-root 

type in the moment field and the deflection of the 

corners is zero. This means that the term Wc presented in 

Eq.(1) is automatically vanished for this case of the 

plate. 

However, since the length of free edges in both cases 

of the plates illustrated in Figs. 1 and 2 equals zero (e = 

0), the nonzero term of Wc for the first case of the plate 

(Fig. 1) is vanished automatically. This can immediately 

be observed in Eq.(23) with setting e = 0 for the upper 

limit of integration, yields 
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In the case of e = 0, both plates have become an 

identical problem of simply supported square plate as 

demonstrated in Fig. 4. There is no singularity existed in 

either the shear or the moment. The deflection solution 

can thus be easily determined for the limiting case. 

By considering Eqs.(21) and (24) for the plates 

shown in Figs. 1 and 2, respectively, with setting e = 0, 

they are 
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for the plate in Fig. 2. 

 

 
 

Fig. 4 Square plate with simply supported edges. 

 

It is notable that the first term in the right-hand side 

of Eq.(33) is resulted from the substitution of Eq.(25) for

E . 

Further consideration of Eq.(11) leads to 
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and also the unknown constants presented in Eqs.(5) to 

(7) are rewritten as follows: 
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Application of the constants given in Eqs.(34) to (37) 

into Eq.(4), the plate deflection function of Eq.(1) can be 

obtained in closed-form of the Levy-type solution [1] in 

correspondence with the simply supported square plate 

as shown in Fig. 4. 

When the free edge lengths are equal to /2 (e = 

/2), solution of both plates cannot be determined within 

the method of finite Hankel integral transforms [6], [7], 

[19], [20]. Moreover, this case of e = /2 is corres-

ponding to the plates having point column support 
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placed at all middle edges. The problems are thus 

singular due to concentrated reaction forces, which are 

not intentionally interested here for the plates under 

consideration. 

Nevertheless, if the length e approaches /2 such as e 

= 0.495 or 2c = /100, then the solution for both plates 

(Figs. 1 and 2) can still be obtained as the limiting cases 

that illustrated in Figs. 5 and 6. 

 

 

 

Fig. 5 Square plate with narrow strip column supported 

at the middle edges. 

 

 

 

Fig. 6 Square plate with narrow strip column supported 

at the middle edges and point column supported at all 

corners. 

 

It is remarkable that since the length of partial simple 

supports in both cases of the plate is set to be /100, 

these supports can be considered to be the narrow strip 

columns placed at the middle edges. 

In the conclusion, this paper theoretically presents 

the bending problem of uniformly loaded square plates 

having different types of singularity, which can be 

allowed to exist in the mathematical senses. The method 

of analysis is thus based on the finite Hankel integral 

transform techniques. 

Some observations and discussions for each case of 

the plates have given and clearly explained in detailed 

content of the paper. In the authors’ opinion, these are, 

however, complete within the scope of investigation. 
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