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ABSTRACT

The present paper deals with a comprehensive study
of frequency coefficients for natural free vibrations of
twenty-one square plates with different edge support
conditions. The ANSYS finite element computer program
is used for modeling and analyzing the plate vibration
problems with a dense net of 10000 elements in order to
determine the frequencies numerically. Results concern-
ing the frequency coefficients and their corresponding
mode shapes are given in the form of graph and table
for easy reference, which can be used as benchmarks
for other alternative methods.

Keywords : Square plate, Free vibration, Frequency
Analysis, Finite element method.

1. INTRODUCTION

Plates are fundamental components in structural engi-
neering design and application. They are proved to be useful
models for more complex structures. A significant con-
tribution and extensive study in the area of plate-bending
analysis together with its application have been collected
and also summarized in a fundamental monograph of
Timoshenko and Woinowsky-Krieger [1] that represented
a profound analysis of various plate-bending problems.
Additionally, their vibrational behavior is also of great
interest, especially the free vibration characteristics (natural
frequencies and their corresponding mode shapes). The
analysis of free vibration (eigenvalue) problems is of basic
and applied interest in several fields of science and tech-
nology. An exhaustive summary of the published literature

on the free vibrations of various shaped plates is available
in Leissa [2].

With the advent of very efficient high speed compu-
ters that allowed solution of a large number of algebraic
equations in a relatively short time, Cheung and Kong [3]
applied a finite strip method to the vibration problem of
rectangular plates with complicated boundary and internal
support conditions. Avalos et al. [4] proposed an approxi-
mate solution to the problem of free vibrations of annular
plates of stepped thickness by means of a superposition
of simple polynomial coordinates functions. A comparison
with frequency coefficients obtained using the finite element
code SAMCEF was also presented and good agreement
was shown to exist.

Bambill et al. [5] considered the effect of different coor-
dinate functions in vibrating rectangular plate with a free
edge. Three approaches, namely, the Rayleigh’s optimization
concept in cooperating with trigonometric functions, the
classical Rayleigh-Ritz method, and the finite element
method were used to determine frequency coefficients
numerically.

Laura et al. [6] dealt with the determination of the fun-
damental frequency of transverse vibration of orthotropic,
circular annular plates. Two independent methods were
applied: the optimized Rayleigh-Ritz and the efficient
finite element code named ALGOR. They concluded that
the finite element results were extremely accurate in view
of the high number of elements used and the analytical
results were in very good engineering agreement. Laura
et al. [7] used the SAMCEF finite element code to numeri-
cally analyze the vibrating circular plates of rectangular
orthotropy and carrying a concentrated mass at the plate
center. The mesh for the circular plate has 1513 elements
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and 7275 degrees of freedom. In addition, Laura et al. [8]
determined the fundamental frequency coefficients of
transverse vibrations of an annular plate with free edges
and two intermediate concentric circular supports. The
ALGOR finite element code was used to model the plate
having 5835 elements for one-quarter of the plate due to
symmetry of geometry.

Wei et al. [9] introduced the discrete singular convolution
algorithm for vibration analysis of rectangular plates with
mixed boundary conditions. A unified scheme was proposed
for the treatment of simply supported, clamped, and trans-
versely supported with nonuniform elastic rotational

restraint boundary conditions. An extensive work was
made by Ng et al. [10], who presented a comprehensive
comparison study between the discrete singular convo-
lution and the well-known global method of generalized
differential quadrature for vibration analysis of rectangular
plates. Xing and Liu [11] proposed the differential qua-
drature finite element method for the free vibration analysis
of thin plates with curvilinear domain. Various shaped
plates with different types of regular and irregular plan-
forms, namely, eccentric sectorial plate, elliptic plate,
triangular plate, pentagonal plate, symmetric trapezoidal
plate and rhombic plate were analyzed numerically.
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Fig. 1 Configuration of 21 square plates with different edge conditions.
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2. FINITE ELEMENT DETERMINATION

In the present investigation, twenty-one square plates
with combinations of simply supported (S), clamped (C),
and free (F) edges that demonstrated in Fig. 1 are numeri-
cally analyzed by means of the ANSYS finite element
program [12].

Fig. 2 Mesh of square plate discretization.

SHELL181 element type of ANSYS Library [13] is
chosen to model the plate. This element is a four-node
element with six degrees of freedom at each node (trans-
lations in the X, y, and z directions, and rotations about
the x, y, and z-axis), and suitable for analyzing thin to
moderately-thick plates. In order to obtain the results
accurately, the plate discretization with a uniform mesh
of 10000 square elements is then used and shown in
Fig. 2. All calculations are performed for an isotropic plate
having the Poisson’s ratio taken as 0.3.

3. NUMERICAL RESULTS

After performing the analysis by ANSYS computer
program, results are given in terms of natural frequencies
(). They can conveniently be expressed in dimensionless
form of frequency coefficients as A* =2z fa’\/ph/D
where a, h, p and D are length dimension, plate thickness,
mass density per unit area of the plate, and plate’s flexural
rigidity, respectively. Thus, frequency coefficients are given
in Tables A1 to A6 for the first 20" mode of vibrations.

It is interesting to note that the first six modes of F-
F-F-F plate and the first mode of F-F-S-F plate as shown

in Tables Al and A2, respectively, are all zero values for
frequency coefficients. This is due to rigid body motions
of the plates. Figs. Al to A5 show the frequency coeffi-
cients versus the mode numbers of plate vibrations that
correspond with values given in Tables Al to A6.
Finally, Figs. A6 to 26 present the first ten modal
patterns for the free vibrations of plates under investigation.

4. CONCLUDING REMARKS

The free vibrations of square plates with different edge
conditions are numerically analyzed for finding frequency
coefficients. Using ANSYS finite element code, a dense
net of plate discretization is used to model the plates in
order to accurately determine the frequency coefficients.
Their numerical results are given for the first twenty
modes of plate vibrations. Additionally, the first ten vibra-
tion mode patterns are also graphically demonstrated.
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APPENDIX
Table Al Frequency coefficients for the first 20 modes of the plates (case 1-case 4).
Case 1: Case 2: Case 3: Case 4:
S-S-S-S c-c-c-C F-F-F-F S-S-C-S
Yo
Ir 77777 s i C F Ir 77777 s
Mode f ! f

i S S i C C F F i S C

| | |

: S ! C F | ]

____________ 7 A
1 19.739 35.985 0.000 23.647
2 49.347 73.391 0.000 51.674
3 49.347 73.391 0.000 58.646
4 78.957 108.214 0.000 86.134
5 98.693 131.576 0.000 100.268
6 98.693 132.199 0.000 113.226
7 128.301 164.994 13.463 133.787
8 128.301 164.994 19.596 140.840
9 167.779 210.510 24.270 168.954
10 167.779 210.510 34.788 187.429
11 177.648 220.025 34.788 188.106
12 197.385 242.130 61.090 201.717
13 197.385 243.135 61.090 215.288
14 246.723 296.306 63.655 255.458
15 246.723 296.306 69.241 257.529
16 256.607 308.875 77.154 262.512
17 256.607 309.142 105.409 281.316
18 286.196 340.557 105.409 289.744
19 286.196 340.557 117.101 309.388
20 315.806 371.315 122.439 329.545
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Table A2 Frequency coefficients for the first 20 modes of the plates (case 5-case 8).

Case 5: Case 6: Case 7: Case 8:
S-S-F-S C-C-S-C C-C-F-C F-F-S-F

I s C i C F i

Mode I i i

i S F c S C F F S

' | |

i S C : c F }
1 11.684 31.825 23.918 0.000
2 27.752 63.329 39.990 6.642
3 41,194 71.074 63.213 14.901
4 59.058 100.789 76.699 25.367
5 61.853 116.355 80.556 25.997
6 90.288 130.348 116.632 48.438
7 94.469 151.887 122.215 50.569
8 108.909 159.470 134.414 58.728
9 115.676 189.759 140.217 65.173
10 145.616 209.321 172.811 87.928
11 148.485 209.362 176.752 89.066
12 159.068 223.941 200.881 103.135
13 178.081 238.336 212.499 113.150
14 189.377 280.065 219.307 123.044
15 200.631 283.161 232.677 131.455
16 215.575 287.509 249.471 142.598
17 221.952 308.096 256.299 147.907
18 247.543 316.442 299.238 177.006
19 266.819 337.050 308.486 185.635
20 271.576 357.330 310.721 189.543

Table A3 Frequency coefficients for the first 20 modes of the plates (case 9-case 12).

Case 9: Case 10: Case 11: Case 12:
F-F-C-F S-C-C-S S-F-F-S C-S-C-S

F :r _____ s :r _____ s | | 1 s ]

Mode | |
F C i ] c i ) F c C
| |
F i C i F S

1 3.471 27.053 3.366 28.950
2 8.504 60.539 17.313 54.742
3 21.283 60.785 19.291 69.325
4 27.194 92.835 38.202 94,584
5 30.945 114.554 51.030 102.214
6 54.163 114.700 53.483 129.091
7 61.250 145.776 72.947 140.201
8 64.133 146.076 74.614 154.770
9 70.947 188.452 104.710 170.342
10 92.894 188.545 107.228 199.802
11 97.039 198.098 112.518 206.696
12 119.047 219.205 126.790 208.378
13 124.204 219.430 128.730 234.563
14 128.771 270.653 167.307 258.596
15 139.428 270.961 168.771 265.178
16 149.859 282.136 178.204 279.634
17 157.696 282.198 181.210 293.742
18 196.977 312.607 200.182 307.297
19 199.720 312.792 202.224 333.933
20 199.806 342.833 225.992 344514
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Table A4 Frequency coefficients for the first 20 modes of the plates (case 13-case 16).

Case 13: Case 14: Case 15: Case 16:
S-F-S-F C-F-F-C C-F-C-F F-S-S-C

| F | C F C !

Mode i i i

'S S | C F C C F S |

| | |

| I |

. F F F s ]
1 9.631 6.918 22.164 16.790
2 16.131 23.897 26.399 31.109
3 36.715 26.581 43.580 51.391
4 38.944 47.636 61.166 64.012
5 46.732 62.698 67.158 67.531
6 70.722 65.526 79.797 101.097
7 75.270 85.674 87.567 105.501
8 87.981 88.320 120.085 117.195
9 96.030 121.327 124.416 122.646
10 110.991 124.034 126.685 153.689
11 122.014 128.420 136.869 157.376
12 133.686 144.392 149.270 179.260
13 156.740 146.471 180.176 190.530
14 164.647 186.390 188.077 197.034
15 164.766 188.944 198.709 210.531
16 169.489 199.716 205.548 226.156
17 191.834 202.919 214.509 232.636
18 212.069 222.280 229.539 272.704
19 224.680 224,721 244,652 282.895
20 236.204 248.425 256.012 283.859

Table A5 Frequency coefficients for the first 20 modes of the plates (case 17-case 20).

Case 17: Case 18: Case 19: Case 20:
F-S-C-S F-C-C-S F-C-S-C C-F-F-S
""" s ] s c } s T
Mode i
F C F C F S C F
) c c i F

1 12.686 17.535 23.368 5.350
2 33.059 36.016 35.565 19.072
3 41.700 51.805 62.866 24.666
4 63.005 71.064 66.752 43.074
5 72.389 74.316 77.361 52.703
6 90.606 105.774 108.846 63.750
7 103.143 109.340 119.018 77.470
8 111.885 125.353 121.977 83.644
9 131.418 132.784 137.761 106.303
10 152.748 164.049 159.712 120.337
11 159.289 167.235 170.444 122.629
12 162.345 179.459 191.864 130.813
13 180.410 199.177 200.704 142.709
14 210.244 211.289 217.339 174.826
15 212.622 222.096 221.583 179.336
16 221.501 238.213 230.913 181.868
17 241.084 245.021 251.050 200.672
18 247.707 272.847 284.863 203.973
19 268.726 292.676 292.225 221.317
20 281.931 296.490 299.115 237.414
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Table A6 Frequency coefficients for the first 20 modes of the plate of case 21.

Case 21: S-F-C-F

Mode Mode Mode Mode
1 15.191 6 77.308 11 134.857 16 184.511
2 20.579 7 78.508 12 135.249 17 209.998
3 39.723 8 103.416 13 174.486 18 213.196
4 49.445 9 110.695 14 175.745 19 234.153
5 56.267 10 117.218 15 177.109 20 251.398

400

100

h

10

Mode Number

Fig. Al Frequency coefficients for the plates of case 1 to case 4.
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Fig. A2 Frequency coefficients for the plates of case 5 to case 8.
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Fig. A3 Frequency coefficients for the plates of case 9 to case 12.
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Fig. A4 Frequency coefficients for the plates of case 13 to case 16.
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Fig. A5 Frequency coefficients for the plates of case 17 to case 21.
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Mode 6 Mode 7 Mode 8 Mode 9 Mode 10

Fig. A6 First 10 vibration mode contours for square plate of case 1: S-S-S-S.

Mode 1

Mode 6 Mode 7 Mode 8 Mode 9 Mode 10

Fig. A7 First 10 vibration mode contours for square plate of case 2: C-C-C-C.

Mode 10

Fig. A8 First 10 vibration mode contours for square plate of case 3: F-F-F-F.
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Mode 6 Mode 7 Mode 10

Fig. A9 First 10 vibration mode contours for square plate of case 4: S-S-C-S.

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

Mode 6 Mode 7 Mode 8 Mode 9 Mode 10

Fig. A10 First 10 vibration mode contours for square plate of case 5: S-S-F-S.

Mode 6 Mode 7 Mode 8 Mode 9 Mode 10

Fig. A11 First 10 vibration mode contours for square plate of case 6: C-C-S-C.
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Mode 10

Fig. A12 First 10 vibration mode contours for square plate of case 7: C-C-F-C.

Mode 10

Fig. A13 First 10 vibration mode contours for square plate of case 8: F-F-S-F.

Mode 10

Fig. A14 First 10 vibration mode contours for square plate of case 9: F-F-C-F.
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Mode 6 Mode 7 Mode 8 Mode 9 Mode 10

Fig. A15 First 10 vibration mode contours for square plate of case 10: S-C-C-S.

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5
Mode 6 Mode 7 Mode 8 Mode 9 Mode 10

Fig. A16 First 10 vibration mode contours for square plate of case 11: S-F-F-S.

-
Mode 6 Mode 7 Mode 8 Mode 9 Mode 10

Fig. A17 First 10 vibration mode contours for square plate of case 12: C-S-C-S.
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Mode 6 Mode 7 Mode 8 Mode 9 Mode 1

Fig. A18 First 10 vibration mode contours for square plate of case 13: S-F-S-F.

. g . . .

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5
Mode 6 Mode 7 Mode 8 Mode 9 Mode 10

Fig. A19 First 10 vibration mode contours for square plate of case 14: C-F-F-C.

Mode 1 Mode 2 Mode 3

Mode 5

Mode 6 Mode 7 Mode 8 Mode 9 Mode 10

Fig. A20 First 10 vibration mode contours for square plate of case 15: C-F-C-F.
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Mode 10

Fig. A21 First 10 vibration mode contours for square plate of case 16: F-S-S-C.

Mode 1

Mode 10

Mode 6

Fig. A22 First 10 vibration mode contours for square plate of case 17: F-S-C-S.

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

Mode 6 Mode 7 Mode 8 Mode 9 Mode 10

Fig. A23 First 10 vibration mode contours for square plate of case 18: F-C-C-S.
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Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

Mode 6 Mode 7 Mode 8 Mode 9 Mode 10

Fig. A24 First 10 vibration mode contours for square plate of case 19: F-C-S-C.

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5
Mode 6 Mode 7 Mode 8 Mode 9 Mode 10

Fig. A25 First 10 vibration mode contours for square plate of case 20: C-F-F-S.

Mode 10 |

Mode 6 Mode 9

Fig. A26 First 10 vibration mode contours for square plate of case 21: S-F-C-F.



