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ABSTRACT 

This study presents an approximate numerical finite 
element solution for the higher natural frequencies of 
circular plates having three different classical boundary 
support conditions namely, clamped, simply supported, 
and free edges. The first eighty frequency coefficients 
are reported and tabulated in the form of table for easy 
reference, which can be used as benchmark for other 
alternative methods. In addition, the modal patterns 
are also graphically demonstrated for showing vibration 
behaviors. 
 
Keywords : Circular plate, Free vibration, Natural 
frequency, Finite element method. 
 
 
1. INTRODUCTION 

The flat plate is a very common structural component 
in engineering applications, particularly in civil, mechanical 
and aerospace structures. Much attention was received 
to investigate the bending [1] and vibration [2], [3] of 
the plates. Although theoretical analysis is valuable for 
providing basic understanding, in general, it is not 
always easily attainable. This is due to the difficulty lied 
in the requirements to satisfy both, the governing partial 
differential equation and boundary conditions exactly. 

In the exact vibration analysis of a uniform circular 
plate, polar coordinates are conveniently used to obtain 
separable solutions to the partial differential equation of 
motion. Significantly, the exact vibration mode shape is 
found to be expressed as a series of products of Bessel 

and modified Bessel functions [3], [4]. This yields an 
infinite number of solutions in frequency equation. Thus, 
numerical calculation is the principal drawback in this 
analysis. Nevertheless, Rajalingham et al.[5] studied the 
vibrations of clamped uniform elliptical plate in 
modified polar coordinates with the exact modes of an 
analogous circular plate as the shape functions in the 
Rayleigh-Ritz method. 

For the engineering applications, an alternative numeri-
cal method is one of the most important approaches for 
obtaining full solutions for theoretical analysis and engi-
neering design. Hence, a variety of numerical methods 
have been developed and used for the vibration analysis 
of circular plates. Olson and Lindberg [6] developed finite 
plate-bending elements in polar coordinates for solving 
several static and dynamic problems of plates. Numerical 
results indicated the good engineering accuracy to be 
expected with the presented method. 

Laura et al.[7] presented two independent solution 
methods: the optimized Rayleigh-Ritz method and the 
standard finite element ALGOR code, for determining 
fundamental frequency of orthotropic annular plates 
having non-uniform thickness and a free inner edge. 
SAMCEF finite element code was applied to investigate 
the clamped and simply supported circular plates carrying 
a central, concentrated mass [8]. The mesh of 1513 ele-
ments with 7275 degrees of freedom was used to generate 
the model of the plates. Laura et al.[9] dealt with the 
determination of the fundamental frequency coefficients 
for vibrating annular plate with free edges and two inter-
mediate concentric circular supports. The optimized 
Rayleigh-Ritz method and a finite element algorithmic 
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procedure based on the ALGOR code were used. Singh 
[10] proposed a polynomial version of the finite element 
method for the free vibration analysis of circular and 
elliptical plates. Natural frequencies were calculated for 
the plates having clamped and simply supported boundary 
conditions. 
 
2. FINITE ELEMENT DETERMINATION 

For the problems at hand, the clamped, simply sup-
ported and free circular plates with uniform thickness h 
and radius a that depicted in Figs.1 to 3, respectively, are 

considered. An approximate solution for the frequency 
coefficients can be carried out numerically by making 
use of the standard finite element code ANSYS [11]. All 
calculations are performed for a Poisson’s ratio taken as 
0.3. 

Numerical experiments are run using the net shown 
in Fig.4 employing quadrilateral shape of SHELL181 
element type [12] with 12720 elements and 73482 degrees 
of freedom. The same discretization is used for three types 
of boundary conditions. 

 
 

 
 

Fig. 1 Configuration of clamped circular plate. 
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Fig. 2 Configuration of simply supported circular plate. 

 
 

Fig. 3 Configuration of completely free circular plate. 
 
 
 

 
 

Fig. 4 Mesh of finite element net used in circular plate. 
 

 
 
3. NUMERICAL RESULTS 

The results obtained from the ANSYS computer pro-
gram are given in terms of natural frequencies (f) with 
the unit of hertz. 

However, it is convenient to express them in the form 

of frequency coefficients as 2 22 /fa h D    where 

 and D are mass density per unit area of the plate and 

plate’s flexural rigidity, respectively. 
Fig. 5 shows the first thirty frequency coefficients 

with respect to the mode number of vibrations. The 
upper, middle, and lower lines are for the plates having 
clamped, simply supported and free edges, respectively. 
It can be noted only for the case of completely free 
circular plate that the first six modes give the frequency 
coefficients equal to zero. These modes are 
corresponded with the rigid body motions of the plate. 

For the higher mode of free vibrations, the additional 
frequency coefficients up to the 80th mode are prepared 
and given in Table 1. Figs. 6 to 8 present the first twenty 
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vibration mode patterns corresponding to clamped, sim- ply supported and free circular plates, respectively. 

 
 

Fig. 5 Frequency coefficients for clamped, simply supported and free circular plates. 
 
 
4. SUMMARY 

With the implementation of a well-known ANSYS 
finite element software package, frequency coefficients 
for the free vibrations of circular plates having three 
different types of support can be determined numerically. 
A dense net of 12720 SHELL181 elements is used for 
obtaining accurate values. Numerical results for the first 
eighty frequency coefficients are provided in tabular form  

for easy use by other researchers and assessing other 
analytical and numerical methods. 
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Table 1 Frequency coefficients for the first 80 vibration modes of circular plates 

Mode Clamped 
Simply 

supported 
Free Mode Clamped 

Simply 
supported 

Free 

1  10.217   4.936   0.000 41 207.142 184.719 112.340 
2  21.279  13.906   0.000 42 207.163 184.730 119.691 
3  21.280  13.907   0.000 43 231.544 207.378 119.717 
4  34.917  25.634   0.000 44 231.651 207.465 122.787 
5  34.918  25.635   0.000 45 232.554 209.608 122.787 
6  39.853  29.763   0.000 46 232.579 209.623 124.992 
7  51.099  39.997   5.359 47 244.252 219.968 124.997 
8  51.100  39.997   5.359 48 244.268 219.974 142.949 
9  61.025  48.599   9.005 49 246.154 220.886 142.980 

10  61.035  48.605  12.441 50 246.231 220.948 149.839 
11  69.775  56.908  12.441 51 250.998 225.387 149.839 
12  69.780  56.908  20.489 52 267.987 243.401 151.249 
13  84.914  70.329  20.490 53 268.013 243.417 151.254 
14  84.924  70.334  21.840 54 274.001 247.743 154.407 
15  89.584  74.476  21.841 55 274.052 247.784 154.443 
16  90.906  76.311  33.511 56 283.930 257.801 158.236 
17  90.911  76.317  33.511 57 283.966 257.832 176.430 
18 111.494  94.864  35.293 58 293.404 265.814 176.440 
19 111.494  94.864  35.294 59 293.414 265.819 176.861 
20 114.467  98.170  38.505 60 303.559 275.241 176.861 
21 114.467  98.170  47.414 61 303.575 275.267 182.248 
22 120.921 103.369  47.415 62 305.774 279.552 182.259 
23 120.952 103.394  53.063 63 305.810 279.573 192.112 
24 140.422 122.126  53.063 64 319.138 290.836 192.122 
25 140.427 122.152  59.974 65 319.231 290.902 200.104 
26 140.730 122.444  59.979 66 326.198 298.238 200.134 
27 140.766 122.449  63.526 67 326.213 298.254 206.060 
28 155.073 135.214  63.526 68 343.371 313.566 206.060 
29 155.109 135.239  73.630 69 343.658 313.787 212.689 
30 159.774 139.505  73.636 70 345.924 318.067 212.704 
31 168.766 149.122  81.833 71 345.960 318.088 215.760 
32 168.776 149.127  81.838 72 358.935 328.053 215.775 
33 172.636 152.100  84.642 73 359.078 328.181 232.790 
34 172.647 152.105  84.647 74 364.000 332.816 232.902 
35 191.932 169.884  88.159 75 367.009 336.686 237.444 
36 191.937 169.889  96.899 76 367.091 336.743 237.444 
37 199.478 178.178  96.899 77 370.961 341.192 245.144 
38 199.494 178.188 102.323 78 371.074 341.284 245.221 
39 201.534 178.706 102.328 79 388.427 358.940 249.276 
40 201.565 178.737 112.335 80 388.473 358.965 251.691 
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Fig. 6 First 20 vibration mode contours for clamped circular plate.  
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Fig. 7 First 20 vibration mode contours for simply supported circular plate.  
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Fig. 8 First 20 vibration mode contours for completely free circular plate. 
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