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ABSTRACT 

The flow and heat transfer characteristics of 
impinging jets with cross-flow effect were investigated 
for single impinging jet, a row of impinging jets and an 
array of impinging jets. For case of single impinging 
jet and a row of impinging jets, the cross-flow was 
introduced in wind tunnel and flew cross the single jet 
and row of jets. The jet velocity was fixed 
corresponding to Re=13400, and cross-flow velocity 
were varied corresponding to velocity ratio (jet 
velocity/cross-flow velocity), VR=3, 5 and 7. For array 
of impinging jets, the jets from 4 rows × 6 columns was 
studied in the confined channel for inline and 
staggered arrangement. The jet Reynolds number for 
each orifice was fixed at Re=13,400. The jet-to-jet 
distance was fixed at S/D=3, and jet-to-plate distance 
was fixed at H/D=2 (D is 13.2 mm of orifice diameter). 
For single impinging jet and row of impinging jets, it 
was found the local heat transfer at impingement 
regions for the high cross-flow velocity are higher than 
that the low one. This result attributes from high 
momentum that impinge on target surface and high 
turbulence intensity distribution on the surface. For 
array of impinging jets, it was found that the heat 
transfer rate of jet with inline arrangement is higher 
than those the staggered one. The cross-flow can easily 
pass through the gaps between the rows of inline jets, 
whereas it appears to be directly blocked by the 
downstream jet for the case of staggered arrangement.  
 
Keywords: Impinging jets, Cross-flow, Heat transfer 
characteristics, Flow characteristics, Thermochromic 
liquid crystal, Flow visualization, CFD  
  
1. INTRODUCTION 

Jet impingement is a heat transfer enhancement 
technique which is widely applied in thermal equipment. 

It has also been used in industrial processes for heating, 
cooling and drying. Since the heat transfer rate is very 
high at the area where the jet directly impinges on, it 
provides rapid cooling or heating on the local heat 
transfer area. When high and uniform heat transfer rate 
is required over the entire surfaces, multiple impinging 
jets or array of impinging jets are applied such as 
combustor chamber wall and gas turbine blade cooling, 
steel and glass quenching and textile and paper drying 
[1] – [5].  

An important factor affecting on flow and heat 
transfer characteristics of multiple impinging jets in 
confined space is cross-flow. Cross-flow is defined as 
fluid which flow cross to the jet impingement flow. In 
case of multiple impinging jets in a confined space, the 
spent jet is accumulated from upstream to the 
downstream end of the channel. The flow rate or 
velocity of the cross-flow is thus increased from 
upstream to the downstream of the channel. 
Consequently, impinging jets tend to deflect to 
cross-flow direction and impinge on impingement 
surface with lower momentum due to mixing with 
cross-flow, and their heat transfers are significantly 
reduced by the cross-flow [4], [5].  

The effects of cross-flow on flow and heat transfer 
characteristics for multiple impinging jets were 
preliminarily investigated. Katti and Prabhu [5] 
experimentally investigated the influence of jet-to-jet 
distance in the range of 2≤S/D≤6 and jet-to-plate 
distance in the range of 1≤H/D≤3 (D is nozzle diameter) 
on heat transfer rate of array of impingement jets with 
in-line arrangement in confined duct with orifice 
nozzles. Their results suggested that cross-flow 
significantly affected the heat transfer rate of 
impingement jets in downstream. Florschuetz et al. [4] 
developed the Nusselt number correlation for both inline 
and staggered arrangement using orifice nozzles with a 
jet-to-jet distance and a jet-to-plate distance in the range 
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of 4≤S/D≤15 and 1≤H/D≤6, respectively. Brizzi et al. 
[2] showed the flow and temperature patterns on the 
impingement surface of array of jets from orifice nozzle 
with an inline arrangement under jet-to-plate at H/D=2 
and jet-to-jet distance S/D=4. Their findings indicated 
that the flow patterns corresponded to the temperature 
distributions.  

However, flow characteristics of an impinging jet 
under cross-flow and the interactions between adjacent 
impinging jets and inherent cross-flow are rarely 
discussed. So, the investigations are usually performed 
by applying simulated cross-flow through a single 
impinging jet in a wind tunnel. Barata and Durao [6] 
studied impinging jet flow from long pipe nozzle 
discharging through a cross-flow using Laser-Doppler 
measurement under constant jet-to-plate distance of 
H/D=5 and velocity ratio in the range of 30≤VR≤73. The 
size of upstream ground vortex was found to be smaller 
when the cross-flow velocity increased. Goldstein and 
Behbahani [7] and Bouchez and Goldstein [8] examined 
impinging jet from pipe nozzle impinging in simulated 
cross-flow with jet-to-plate distance of H/D=6 and 12 
and velocity ratio in the range of 3.37≤VR≤17.50. They 
found that the heat transfer rate by an impinging jet at 
stagnation point decreased with increasing cross-flow 
velocity. Heo et al. [9] used numerical simulation to 
predict the flow and heat transfer characteristics of an 
inclined impinging jet from long pipe impinging into the 
cross-flow under a jet-to-plate distance of H/D=6 and 
velocity ratio at VR=7.98. 

According to the previous works as reviewed, a 
single and multiple impinging jets with effects of 
cross-flow were studied separately with identical 
parameters. To identify the cross-flow effect on 
impingement flow, the investigation parameters (a 
jet-to-plate distances, nozzle configuration and velocity 
ratio) of a single impinging jet with simulated 
cross-flow should be the same with the investigation 
parameters of an array of impinging jets in a confined 
channel. In this study, effects of cross-flow on flow and 
heat transfer characteristics of single and multiple 
impinging jets under the same investigation parameters 
were studied. 

The aim of this article is to investigate the effect of 
cross-flow on flow and heat transfer characteristics of a 
single impinging jet, a row and an array of impinging 
jets at small jet-to-plate distance H/D=2. To explain the 
effect of cross-flow on flow and heat transfer 
characteristics of a single impinging jet, a row and an 
array of impinging jets, orifice nozzle, jet-to-plate 
distance and jet Reynolds number were identically 
assigned. 

 
 

2. EXPERIMENTAL MODELS AND 
PARAMETERS  

2.1 Experimental Models 

Experimental models are categorized with three 
types; the single impinging jet and the row of jets 
impinging on the inner wall of wind tunnel under 
simulated cross-flow as shown in Fig. 1, and array of 
impinging jets with inline and staggered arrangement as 
shown in Fig. 2. The air jets discharge from round 
orifices on one side of wind tunnel and impinge on wind 
tunnel wall on the opposite side. For the single 
impinging jet and the row of impinging jets, the 
cross-flow was simulated by introducing through the test 
section of wind tunnel. For the case of array of 
impinging jets, the cross-flow is generated by 
accumulation of the spent jet (jet after impinging) in the 
upstream region which flows out to the exit at the other 
end of the confined channel as shown in Fig. 2(a). The 
jet configurations, for the inline and staggered 
arrangement, consist of 24 jet holes distributed in 6 
columns and 4 rows as shown in Fig.2(b) and 2(c). [9] – 
[11] 
 

 
(a) Side view 

 

 
 

(b) Top view for single jet 
 

 
 

(c) Top view for row of jets 
 
Fig. 1 Experimental models for single impinging jet and 
a row of impinging jets with cross-flow. 
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(a) Side view 
 

 
 

(b) Top view for inline arrangement 
 

 
 

(c) Top view for staggered arrangement 
 
Fig. 2 Experimental model for array of impinging jets in 
confined channel. 

2.2 Experimental Parameters 

For case of single impinging jet and row of 
impinging jets, the effect of the cross-flow velocity on 
the flow and heat transfer characteristics was 
investigated by varying the cross-flow velocity 
corresponding to three different velocity ratios (jet 
velocity to cross-flow velocity measured at the center of 
channel) VR=3, 5 and 7 while the jet velocity was kept 
constant at 15 m/s corresponding to Re=13,400. The 
diameter of each round orifice, having smooth 
square-edge nozzle drilled on a plate of 2-mm thickness, 
is D=13.2 mm. The jet-to-plate distance was H/D=2, and 

the jet-to-jet distance for a row of impinging jets was 
fixed at S/D=3. 

For the array of impinging jets, the in-line and 
staggered arrangement were examined. Both jet 
arrangements have same array of 6×4 jet holes; 6 
columns in the streamwise direction and 4 rows in the 
spanwise direction of confined channel. Both 
arrangements have a constant jet-to-jet distance of 
S/D=3 and jet-to-plate distance of H/D=2. The orifice 
geometry was the same as used in single impinging jet 
and row of impinging jets. The experiments were carried 
out at jet Reynolds number of Re=13,400. 
 
3 MEASUREMENT METHODS 

3.1 Heat Transfer Measurement 

Air with a constant temperature is discharged 
through the orifice plate and impinges upon the heat 
transfer surface. The heat transfer surface, made of 
stainless steel foil (30 µm thick), is attached with a 
Thermochromic Liquid Crystal (TLC) sheet on the rear 
side of the impingement surface for measuring the 
temperature distributions. The stainless steel foil is 
stretched between two of copper bus bars. The heat 
transfer surface is heated by a DC power supply that can 
supply an electrical current up to 50 A through the 
copper bus bars. Electrical energy dissipated in the 
stainless steel foil can be calculated with the Joule effect 
equation: 

 

A
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q joule
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where I is the electrical current, R is the thermal 
resistance of the stainless steel foil and A is area of 
stainless steel foil.  

The local heat transfer coefficient due to the forced 
convection of the impinging jets, h, can be evaluated 
from:  
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where 

radlossq ,  and 
convlossq ,

 
are the heat losses from 

TLC sheet on the impingement surface to the 
environment by radiation and natural convection, 
respectively, 

wT  and 
jT  are the wall temperature 

obtained from TLC sheet and jet temperature measured 
in the jet chamber with thermocouple type T. 

Heat loss due to radiation can be calculated from: 
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with a negative velocity corresponds to the upwash flow 
due to the ground vortex in the upstream region. When 
the cross-flow velocity increases, the impingement 
region becomes smaller and shifts downstream, 
especially, the case of a high cross-flow velocity at 
VR=3 (Fig.3(c)). The location of upward flow moves 
more close to the impingement region when the 
cross-flow velocity is increased. This is due to the 
significant jet deflection caused by the cross-flow. 

The flow visualization on the impingement surface 
captured by the oil film technique is shown in Fig.5. The 
black region is the impingement region where the oil 
film was completely removed while the grey region 
around the impingement region is the wall jet region 
where the oil film partly removed from wall. The small 
white region surrounded by the black region 
(impingement region) represents the stagnation point 
bounded by the impingement region. The visualization 
shows that impingement region (black region) becomes 
smaller and the wall jet (grey region) upstream of the 
impingement region is more contracted while the wall 
jet in the downstream of impingement region is more 
elongated to the downstream region as the cross-flow 
velocity increases. This corrresponds with flow patterns 
on Fig.4.. 

Temperature distributions on the impingement 
surface for all VR are shown with a color pattern on the 
TLC sheet in Fig. 6. The region with low temperature 
corressponds to the impingement region with a high heat 
transfer rate. The area with a higher temperature 
corresponds to region with a lower heat transfer rate. 
The area of the impingement region with a red color 
tend to increase with cross-flow velocity (decreasing 
from VR=7 to 3), while the area of the wall region with 
a green color tends to decrease in the upstream region 
and increase in downstream region when the cross-flow 
velocity is increased. The temperature patterns coincide 
with the flow patterns on the impingement surface as 
shown in Fig. 4 and Fig. 5. 

The Nusselt number distributions along the 
cross-flow direction at Z/D=0 obtained from the 
numerical simulation are shown in Fig.7(a). These 
results agree well with the heat transfer characteristics 
from the TLC sheet in Fig. 6. The Nusselt number in 
upstream region (X/D<0) becomes lower when 
cross-flow velocity increases. This corresponds to the 
contraction of the wall jet and impingement region in the 
upstream as shown in Fig. 5.  

Fig.7(b) presents the distributions of the 
Y-component of the velocity in the direction normal to 
the impingement wall) at 1.5-mm above the 
impingement surface. When the cross-flow velocity is 
increased, the peak velocity in the jet impingement 
region tends to decrease and shift to downstream region, 

particularly for the case of VR=3. 
The distributions of the turbulence kinetic energy at 

1.5-mm above the impingement surface are shown in 
Fig.7(c). At low and medium cross-flow velocity (VR=7 
and 5), the regions with high turbulence kinetic energy 
are detected in both the upstream and downstream 
regions of the wall jet, and the high intensity region of 
the upstream wall jet is larger than that of the 
downstream one. In addition, the turbulence kinetic 
energy in stagnation region is very low for the case of 
small impingement distance [15, 16]. As the cross-flow 
velocity increases to VR=3, the peak of turbulence 
kinetic energy in the upstream wall jet becomes smaller, 
and the turbulence kinetic energy in the stagnation 
region becomes larger than the case of VR=5 and 7. 

The peak of Nusselt number for case of VR=3 
becomes larger than case of VR=5 and 7. This can be 
explained by high impingement velocity and high 
turbulence kinetic energy. However, The Nusselt number 
peak for case of VR=5 and 7 is lower than case of VR=3. 
This is due to small turbulence kinetic energy. This is 
different from what was found at a large jet-to-plate 
distance (H/D>2) [4], [15]. 

4.2 Row of Impinging Jets in Simulated Cross-flow 

The velocity vectors and velocity contours on the 
Z-X plane above the impingement surface of 1.5-mm are 
presented in Fig.8. It should be noted that these figures 
show the center of two impinging jets within the row of 
impinging jets. The impingement region is found in a 
semi-circular shape for the case of VR=7. This is 
different from the case of a single impinging jet in 
cross-flow. It is due to the row of impinging jets 
blocking the simulated cross-flow in the wind channel 
and the cross-flow effect becomes more significant. 

The lines of negative velocity (upward flow) can be 
clearly observed in the upstream regions of jet 
impingement which is the same as the case of a single 
impinging jet. In addition, the lines of negative velocity 
contour are detected in the middle region between 
adjacent impingement regions. It is due to the interaction 
between adjacent impinging jets. However, this area 
becomes smaller when the cross-flow velocity increases 
due to the strong mixing of upward flow and cross-flow. 

The flow visualizations on the impingement surface 
by the oil film technique are shown in Fig.9. This figure 
shows the oil film patterns comparisons of the effect of 
cross-flow. These oil film patterns agree well with those 
of the simulated results in Fig.8. The impingement 
regions shift to the downstream and the wall jet regions 
elongate to downstream when increasing the cross-flow 
velocity. The oil film between the impingement regions 
is partly removed due to the strong collision between the 
wall jets from adjacent impinging jets. 
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Fig.18 Spanwise average Nusselt number for an array 
of impinging jets in confined channel (each arrow 
indicates the location of column jet). 
 
5. CONCLUDING REMARKS 

In this study, the flow and heat transfer 
characteristics for a single impinging jet, a row of 
impinging jets and an array of impinging jets with a 
cross-flow effect were investigated for small jet-to-plate 
distance at H/D=2. The effect of the cross-flow velocity 
and jet arrangement were studied experimentally and 
numerically. The following conclusions could be drawn 
as follow:   

1. For a single impinging jet with simulated 
cross-flow, the impingement region shifted to the 
downstream region and the shape of impingement region 
became semi-circular. This is due to the cross-flow 
deflecting and mixing with the jet before impingement. 
The cross-flow can enhance the heat transfer rate in the 
impingement region for the case of high cross-flow 
velocity at VR=3. This result is due to the high 
impingement velocity and high turbulence intensity near 
the impingement surface.  

2. For a row of impinging jets, the displacement of 
impingement regions is larger than the case of a single 
impinging jet due to the blockage of row jets in 
cross-flow. The heat transfer enhancement was found in 
the downstream region of the impingement region when 
compared to the case of the single impinging jet. This is 
result of the circulation flows induced by the collision of 
wall jets from the adjacent impinging jets. 

3. For an array of impinging jets, the effects of the 
cross-flow on the flow and heat transfer characteristics 
in the staggered arrangement are stronger than the case 
of the inline arrangement. The cross-flow can pass 
through the gaps between the rows of inline impinging 
jets, whereas the cross-flow was blocked by the 
downstream impinging jet in the case of staggered 
arrangement. The spanwise average Nusselt number for 
the case of the inline arrangement is higher than the case 

of the staggered arrangement, particularly for the 
downstream impinging jets. 
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