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The principle of the NIST transfer standard is based 
on the heterodyne frequency response measurement. The 
NIST implements the principle by using two phase 
locked single frequency Nd:YAG lasers as light source 
where the excitation of the detector can be calculated 
from fundamental principles. The system uses two 
commercially available Nd:YAG lasers operating at 
1319 nm. The frequency of each laser can be tuned 
thermally to give beat frequencies greater than 50 GHz 
when the beats have a short-term bandwidth of less than 
3 kHz. The beat frequency is measured using a 
microwave counter. As the frequency is scanned, data 
are acquired automatically. However, the resolution of 
the system is limited by the scan rate, the frequency 
jitter, and the time constants of the data acquisition 
equipment. The highest resolution achievable is about 
200 kHz. This measurement system is too complex for a 
general laboratory. For example, it requires a 
sophisticated control system for the two phase locked 
lasers. 

Recently, a frequency response heterodyne 
calibration technique using a high extinction-ratio Mach 
Zehnder Modulator (MZM) instead of Nd:YAG laser 
has been proposed [1-2][6]. The method has the same 
principle as the NIST standard but it is simpler to 
implement because there is no need for two phase-
locked lasers and the only measuring instruments are an 
optical power meter and an RF power sensor. Thus the 
method allows an easy photodiode calibration to be 
performed at most laboratories. 
 
4.1 Principle of two-tone frequency response 

characterization of an O/E device 

An O/E device such as photodiode generally 
responds to the illumination of the light which may 
usually form in the sine wave format. The optical signal 
at the end of optical fiber is usually weak and distorted, 
photodiode with high responsivity is required. 
Photodiode requirements in high speed optical 
communications include high responsivity at the desired 
wavelength, low noise, fast response time, insensitive to 
temperature variations, compatible with fiber’ physical 
dimensions and long operating life.  

The amount of current flowing in the circuit with a 
photodiode depends on the incident optical power (or 
the number of photons) as in the following equation, 
 

PD optI P        (9). 

 
where   is called the frequency response or the 
responsivity of the photodiode, that is the ability to 
respond to variations in the incident intensity. optP  is the 

incident optical power. The responsivity of the PD, 
which is the same as /

21
O ES , is a function of light carrier 

wavelength as well as the modulating signal frequency.  
Letting the two-tone frequencies be 1  and 1 , the 

electric field of the two-tone light incident on the 
photodiode is  

 
1 1 1 1cos cos .optE E t E t                 (10) 

 
The optical frequencies are tuned such that 

1 1 2 RF      as in figure 1.4 ( 1P  and 1P  tones 

respectively), which is the frequency at which we want 
to find the PD responsivity.  The instantaneous optical 
power can be calculated by 
  

2

.opt
opt

E
p

z
                                                                 (11) 

 
By substituting (10) into (11) we obtain several 
frequency components. The components at 12  , 12

and 1 1  are out of the PD band. Only DC 

component and 1 1 2 RF     are converted by PD. If 

1 1E E  is assumed, the optical power expression, as 

detected by the PD, reduces to, 
 

2 2 cos(2 )

cos(2 )

opt opt opt RF

opt opt RF

p E E t

P P t





 
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                       (12) 

 
The small signal RF photocurrent RFi   to be generated 

by a photodiode is 
 

   cos 2 cos 2 ,RF opt RF RF RFi P t I t                      (13)

 
where   is the frequency response of the photodiode 
under test at 2 RF  and RFI   is the peak photocurrent. 

The average RF power driving a load  LZ  of 50Ω is 

 

225 .
2 2

RF RF
RF L RF

I I
P Z I                         (14)

 
Therefore, from (13) and (14), the frequency response 
  can be expressed as [2] 
 

.
5

RF

opt

P

P
                                         (15) 
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