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ABSTRACT

Localization is the crucial problem for mobile robot
navigation. For indoor mobile robot, since a global
positioning system (GPS) is incapable, another
promising technique to detect the position is the
received signal strength indicator (RSSI) from wireless
communication. To improve the precision and
robustness of mobile unit localization, an inertial
measurement unit (IMU) is normally used. In this
report, we propose the algorithm for mobile robot
localization based on sensor fusion between RSSI from
wireless local area network (WLAN) and an IMU. The
proposed fusion scheme is based on the extended
Kalman filter (EKF). The experiment is conducted by
using mobile unit equipped with low-cost IMU and a
wireless communication module together with access
points to evaluate the performance of our algorithm,
and the result is promising.
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1 INTRODUCTION

Mobile unit localization is the most fundamental and
important problem in many applications such as
unmanned autonomous vehicles, mobile robots in
explore, search and rescue operation, asset tracking in
warehouse, etc. Since past few decades, there has been
extensive research in this area. Depending on various
types of sensor, there are many approaches for
localization. In general, however, there are two types of
sensor using in localization, namely relative position or

inertial sensors and absolute position sensor. We refer
the reader to [1], [2] for a survey.

The relative sensor, e.g., an odometer and an IMU or
an inertial navigation system (INS), provides the
implicit pose's information relative to initial pose. The
method to obtain a pose of an object, then, involves in
integration, and, hence, suffers from bias that, even a
tiny, causes huge error in long run. Certain schemes
need to be used to reset an error intermittently. The
advantage of this type of sensor is that it relies on its
own system not on other references or outside
environment that cannot be manipulated.

The absolute sensor provides the information on the
distance or orientation relative to known-position
references. In theory, it requires multiple references in
localization based on these sensors; for example, three
distances or angles are necessary to identify a unique
position in two-dimensional plane. These methods are
also known as trilateration in distance based and
triangulation in orientation based. Currently, the most
widely used localized method based on relative distance
is the GPS, in which distances from at least four
references (satellites) are required to identify a unique
position of an object in 3-dimensional space. For
trilateration, the distance information may inherit from
time of flight of the beacon signal from references.
Hence, it requires very precise time synchronization
between references and a mobile unit, as in, for example,
the GPS. Another way to obtain distance is from power
loss of the beacon signal from references. This method,
as used in this paper, is recently received much
attention, since it is relatively low cost due to the vast
availability of wireless communication system in both
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outdoor and indoor environment. This absolute sensor
based method relies on wireless communication link
between a mobile unit and remote references, so it
normally suffers from the loss of communication or
interference from outside environment such as in tunnel
or building. The localization method, however, has no
drift effect since there is no integration require.

Most of practical navigation system, however, makes
use of advantages from both relative and absolute
sensors as a complementary to their weakness, for
example GPS/IMU/INS sensor fusion, particularly for
low cost devices, in which huge amount of research can
be found; see refs. [3] - [6]. There are also many
localization methods dealing with various types of
sensor fusion; for example, in [7], the distance induced
from time of flight of data packet from ultra wide band
(UWB) communication is used to handle the drifting
effect from IMU sensors in pose estimation of human
gesture. In [8], [9], the visual sensing and IMU are used
in pose estimation of mobile robot. Recently published
paper [10] provides comprehensive review of various
methods for general sensor fusion—not particular for
navigation purpose or certain types of sensor.

Since the GPS system is incapable for indoor
environment due to communication disruption, the
transmitted power loss form wireless communication
link, or RSSI, is, therefore, a promising method to derive
distances from known-position references. The
localization based on RSSI has been a popular research
topic for a few decade due to the widely used of wireless
communication in mobile phone as well as WLAN.
Furthermore, in most indoor environment, there are
many WLAN transmitters that can be wused in

localization without additional cost, since most
computers today are capable of this wireless
communication.

There have been researches on RSSI-based

localization in logistic applications to track products,
assets or equipment. For example, in [11], the RSSI is
used in multilateration scheme in wireless sensor
network in food transportation. Also, the paper [12]
proposes the localization scheme based on spatial
reasoning filter using several sensor nodes in various
directions, by moving sensor nodes, which is opposing
to temporal filter that acquires multiple RSSI at the same
location. Similar application can be found from the
paper [13] that studies and testes various localization
method to track the material in construction site.

The recent work on RSSI/IMU-based localization
can be found in [14], where it applies the particle filter

as a localization algorithm to track a pedestrian with
foot-mounted IMUs and uses RSSI from WiFi access
points to compensate the drift error from an IMU. The
paper also uses the precise model of the map to
constraint or narrow down the possibility of the
pedestrian location. Another key important idea is that
the way to detect when the pedestrian stop walking and
then velocity is reset in both longitudinal and lateral
directions to reduce drift error.

The RSSI-based localization that uses the robust
extended Kalman filter (EKF) can be found in [15], [16].
The former paper deals with the tracking of cellular
phone user in the service cells to improve quality of
service. The results are presented by simulation. The
later paper proposes the localization method to locate the
mobile robot in indoor environment. The experimental
results are based on dedicated wireless communication
links that can measure the receiving analog power signal
directly, which is opposing to our system that obtains
the RSSI information with low sampling rate and high
guantization noise.

In this work, we study the possibility of using sensor
fusion from a low cost IMU and RSSIs by using the
EKF for mobile unit localization in two-dimensional
plane. The information from an IMU, which is velocity
in this study, suffers a tiny bias causing drift error in
long run. On the other hand, the information of an RSSI,
based on IEEE802.11b standard, is corrupted by large
multi-path fading effect and quantization noise. Also,
the RSSI information is available in lower sampling rate
than of the IMU. The test bed is performed in indoor
environment by moving the mobile platform in the
predefined path repeatedly to verify the accuracy of
algorithm.

The sampling rate of the RSSI data is 4 times slower
than of the IMU. Hence, we also study multi-rate
sampling setting. That is, we first reduce the sampling
rate of the IMU down to match with the one from RSSI.
Then, we increase the sampling rate of IMU and use
zero-order hold to up sample the RSSI information to
match the IMU rate.

Furthermore, we also study the possibility of using
smallest number of reference nodes for RSSI. Firstly, we
use RSSI information from four reference nodes to fuse
with the IMU information. This, in fact, is redundant.
Then we reduce the numbers of reference node to
validate the possibility and performance.

The body of the paper is organized as follows. In
section 2, we address the problem by using simple
kinematic model of moving object and discuss the
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characteristic of the measurement equations from both
sensors. In section 3, we briefly present the well-known
EKF algorithm. The experimental results will be
presented in section 4, and the conclusions are drawn in
section 5 to sum up our work.

2 SYSTEM MODELING
2.1 Kinematic Model

To simplify the sensor fusion scheme, the kinematic
model of the vehicle, i.e., position and velocity will be
used. Now, let p*, p’, v", v’ denote position and
velocity in x and y direction in Cartesian space

T
respectively. Then, let z = [p” p’ v v”} . In

this note, we consider the control signal as unknown
command or acceleration denoted by % . Note that, the
acceleration in current velocity direction could be
regarded as uncertainty to the system model. Now
consider the kinematic model of the vehicle in discrete-
time as follows:

z(k+1) = Az(k) + Bu(k) ,Vk e ¢ ", (1)
where

1 0 T 0] [0 0]

01 0 T 0 O
A=10 01 o871 of

0 0 0 1 0 T

and T is a sampling time. The goal is to estimate the
position of above mobile platform from IMU and RSSI
sensing systems.

2.2 IMU Measurement Model

The IMU wusing in this work is low-cost
microcomputer embedded system, around US$100,
composing of three-axis accelerometers, rate gyro and
magnetic compass sensor that provides many outputs
including the raw data from accelerometers, gyroscopes
and magnetometer, as well as processed output
including linear velocity and attitude. In our study,
however, we consider only the velocity output. Hence
from above state space representation, we can describe
measurement equation from the IMU as follow:

|0 0 —siné@ cosd
b = 0 0 cos® sind|™
1 0]fb” 7‘
Tlo e [T

2

where @ is an alignment angle between any reference
frame and IMU frame referencing to the magnetic north
pole with positive angle measuring in clockwise (see

Fig. 1) direction, b* and b” are bias noises, and v" is a
general measurement noise.

XIM (North) Yr
I

YIMU (SOuth)
Xr

Fig. 1 Reference frame versus IMU frame.

Since the bias noises have significant impact, so it is
common in localization scheme that this bias noises are
modeled as constants or slowly change values, and
hence can be incorporated in system modeling. That is,
let new state variable

T
x::[p'” p! vt v b by}.

Hence, we can modify the state space description as
follow:

z,, = Az, + Bu, + w,,Vk € ¢ ", ©)

where w, could be considered as uncertainties or

disturbances to the system, disturbing the bias state in
particular, and
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Therefore, the new measurement from the IMU can be
rewritten as

00
00

—sin@ cosd 0 O
sin@ 0 O

i

Y, = Zy, +U,i- (4)

cos @

From our experiment, it is obvious that even a tiny
bias in IMU, as in Fig. 2, makes a significant drift in
position as depicted in Fig. 3. Note that, Fig. 3 is the
result of the Kalman filter that is solely based on the
IMU data.

IMU output

0.5

magnitude

-0.5

sample

Fig. 2 Output (velocity) from IMU in both directions.

Trajectory by Extended Kalman Filter

Y coordinate (m)

-5
X coordinate (m)

Fig. 3 Reconstructed map from IMU output only.

2.3 RSSI Measurement Model

It is well known in the radio communication that
transmitted power loss, known as path loss, at the
receiver side is related to distance between them. The
relation between RSSI and distance is described by

([17], [18])

b, = F, —10ylog;y(d) + v, ®)

where P_ is the power at the receiver side in dB, F, is

T
a constant depending on transmitted power, antenna
characteristic and average channel attenuation, ¥ isa

path loss exponent, and P," is a measurement noise

dominated by shadowing fading [17], [15]. In above
equation, two major factors, that make it very difficult to
derive distance d , are the path loss exponent and
shadowing fading. The path loss exponent  depends

on environment; for example, ¥ = 2 in the open space

and it may be in the range of 1.6-3.5 in an office; see,
for example, Table 2 in [17] or Table 4.2 in [19]. The
shadowing fading or multipath fading causes unexpected
high power at the receiver that averages them from
multiple received data packets. The example of the RSSI
measured versus distance is shown in Fig. 4, in which
large variation is obviously observed. Also, in

Fig. 6, the measured RSSI during the experiment
comparing with the ideal one computed by using
reference moving path shows significant effect of
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shadowing fading that causing abnormally high RSSI.
The reconstructed map from the EKF based only on
RSSI from four reference nodes is shown in Fig. 5.
Comparing with the result from IMU in Fig. 3, the result
from RSSI only has no drift, but it is not in the good
shape of reference path.
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Fig. 4 Example of RSSI versus distances, solid line is the

approximate model.

Trajectory by Extended Kalman Filter
T

+

Y coordinate (m)
@

X coordinate (m)

Fig. 5 Reconstructed map from RSSI output only.

Now the equation (5) can be used to characterize our
measurement equations with multiple references. Let
(p;,p!) denote the position of the 7th reference. Then
we can define the measurement equations from RSSI,
for i =1,2,..., related to our system as

Y =B —10ylogy, (d') + v, ©)

where our

i T 2 \2 9 y\2
e e U D |
experiment, we have four access points as the reference
nodes.

Access Point 4
T T

&

d

signal strength (dBm)

:

0 20 40 60 80 100 120 140
Sample

Fig. 6 RSSI from one of reference access point during
experiment (solid line) comparing to ideal one (dash line)
inheriting from known reference moving path.

3. EXTENDED KALMAN FILTER

Since the EKF is well known (e.g., see [20], [21]),
and widely used as a linearized version of the Kalman
filter for nonlinear system, we, therefore, briefly give
some details of it. Consider a general nonlinear system:

:Ck'-#l = ‘E: (xk- ) uk" k) + wlf ;

Y, = H.(z,,k) + v, (6)

where w, and v, are process and measurement noises
respectively. These noises are assumed to be white
Gaussian  noise  with  known  covariance  as
E[w,-w,|=Q and E[v,-v," =R, where E[-]
denotes the mathematic expectation. In our case, w,
could be considered as the uncertainty from inaccurate
modeling. In practice, these noise covariance serve as
tuning parameters of the filter, and could be adjusted
based on the empirical experiment. Also, since the
existence of the solution of the EKF is not guaranteed to
exist for all time, @ and R weighting matrices also
serve as tuning parameters for stability of the filter. In
addition,  we  assume that E[z,]=7nand
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E[(:z:o -n)-(z, - n)TJ =Z Then, the EKF could be

summed up as follows:

Ty, = fx;(fk;vukak)é
g}m—l = Hk-+l (@741);
Ty =2, +K (yk+1 - ?ku);

_ (7
F.= EﬂE«T + Q)

_ _ -1
K., =hF.,H I.-+1T (H VY k+1T + le) ;

B.= (I - Kk:+1Hk+1) By,

with initial conditions %, =7, and F, = =, and where
F, and H, are the Jacobian matrices, i.e.,

_OF

"~ or

g N

B .

)

=) T=T

4. EXPERIMENTAL RESULTS

In our experiment, we manually move the wheel
mobile platform equipped with the IMU sensor, the
WLAN receiver that communicates to four access
points, and reports all the RSSIs. The IMU, as shown in
Fig. 7, used in this experiment is aMG IMU-9A having
three-axis accelerometers chip set LSM303DLH, three-
axis gyroscope chip set L3G4200D and a magnetometer
chip set LSM303DLH. The velocity is computed by
microcontroller from the IMU raw data with equations
suggested in the product manual. The wireless
communication is the IEEE802.11b standard with
2.4GHz carrier frequency with access point model
Aolynk WAP500ag as shown in Fig. 8.

Fig. 7 IMU sensor module used in the experiment.

Fig. 8 IEEE802.11b wireless access point.

The experiment is conducted by moving the mobile
platform in predefine rectangular path for five rounds.
The RSSI information is sampled every 4 seconds, while
the IMU information is sampled every 1 second.

4.1 Effect of sampling time

Since the sampling rate of the RSSI information is
much slower than of the IMU, so we study the effect of
using different sampling rate inside the fusion algorithm.
We compare three different use of sampling time; that is
4 seconds, 2 seconds, and 1 second. Simple zero order
hold is used for up sampling. That is, for 7" =4, the
information from the IMU is down sampled by 4, for
T = 2, the information from the IMU is down sampled
by 2 when the information from RSSI is up sampled by
2, and for T =1, the information from the RSSI is up
sampled by 4.

The EKF in (7) is performed, where dynamics F,

equals to (3), and measurement equation 7, is from (4)
and (5); that is

—Z,8in 6 + 2, cos 0 + I

Zyco80 + 2, sin 6 + I

—24 - 25log,, ( [i7 + 32 )

H,=|  -33-25log, ( @2 + (2, —14.6)° ) ;
33~ 25log, (\/(93l ~8.2)" + (3, - 146) |
~24 - 25log,, ( (2, -8.2)° + 22 )
where

60 = 0.1 rad. The EKF parameters are of follows:

~ T s
x(,:[l 10010 o] and P, =10°1, , .
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For different sampling time, we use different
weighting matrices of process and measurement noise
covariance as shown in Table 1 below.

Table 1 Noise covariance in different sampling time

T | QR
Q =10"diag(1,1,0.1,0.1,10°,10°°)
) R = diag(40,40,40,40,10*,10™*)
Q =107°diag(1,1,0.1,0.1,2-10°,2-10°°)
’ R = diag(7,7,7,7,10%,107%)
Q =3x10"diag(1,1,0.1,0.1,10°,107°)
' R = diag(1L11,1,107°,10°)

The experimental data from the IMU is shown in
Fig. 2, and the comparison to the output from the EKF
(for T =4 sec.) is shown in Fig. 9. It can be seen from
the Fig. 9 that the estimated velocity from the EKF
shows less significant bias in comparison with the
velocity output from the IMU, particularly in y-
direction. Also, the comparisons of the actual RSSIs
from four access points and the estimate from the EKF
are depicted in Fig. 10. It is obvious that the estimated
RSSI is significantly smoother than the sensor one, and
corresponds to the moving pattern which is high power
when the platform moves close to the access point and
low power when it moves away. The bias states in both
directions are shown in

Fig. 11.

The estimate position in x-y coordinate from the
EKF is plotted together with the reference moving path
in Fig. 12 to Fig. 14 for T ={4,2,1} respectively. It is
obvious that the position outputs from the EKF in three
cases are close to the reference path with no drift effect;
see Fig. 3 and Fig. 5. for comparison.
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Fig. 9 Estimated and actual IMU output comparison: solid
line and dash line are actual and estimate IMU output
respectively.
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Fig. 10 Estimated and actual RSSI output comparison: solid
line and dash line are actual and estimate RSSI output
respectively.
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Fig. 11 IMU bias state in both x and y directions from the EKF

when T =4,

Trajectory by Extended Kalman Filter
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Fig. 12 Reconstructed map from the EKF when 7' = 4.
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Fig. 13 Reconstructed map from the EKF when 7' = 2
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Fig. 14 Reconstructed map from the EKF when 7' =1.
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Fig. 15 Comparison of absolute error for different sampling
time.

The comparison of root mean square (RMS) error in
each case is shown in Table 2 below. Also the
comparison of the absolute error and the trace of error
covariance are shown in

Fig. 15 and Fig. 16. Note that, the covariance matrix
P, is normally used to indicate the convergent of the

filter, and, hence, it is useful in the tuning process. Note
that even the shorter sampling time yield lower RMS
error, but the difference is not significant. So the EKF,
in this experiment, is robust to sampling period. In fact,
it depends on the dynamics of the moving platform.
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Table 2 Comparison of RMS error for different sampling time

Table 3 Noise covariance in different number of reference
node (#N).

T (sec) RMS error (meter) #N | Q. R
4 0.8832 3 Q =2-10"diag(1,1,0.1,0.1,2-10°°,2-10°)
2 0.8661 R =10%diag(5,5,5,10°,107°)
1 0.7860
) Q@ =9-10"°diag(1,1,0.1,0.1,2-107,2-107)
4.1 Effect of number of nodes R = diag(800,800,10°,107%)
Although, in theory, three reference nodes are 2 i 8
i ) ) ” . =102diag(1,1,0.1,0.1,2-10%,2-10
sufficient to uniquely determine the position of a mobile | 1 Q ] ! g(]’j’ i ]’72 )
unit, in practice, however, more reference nodes will R = diag(7-10°,107,10°)

provide better result. In previous setup, we validate the
possibility of the fusion scheme in well setup
environment having 4 reference nodes for RSSI. In this
subsection, we study the possibility of using smallest
number of reference nodes, since the information from
the RSSI can be considered as an assistance to the IMU.
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Fig. 16 Comparison of trace of error covariance

(trace (Pk ) ) for different sampling time.

Thus, from previous raw information from both
RSSI and IMU, we reduce the number of the RSSI
information from 4 nodes to 3, 2 and 1. The base line is
the result from previous subsection having 4 reference
nodes and sampling time T =1sec. Different value for
noise covariance weighting matrices are used in
different numbers of reference nodes as shown in Table
3 below.

The resulting maps from fusion algorithm with 3
different numbers of reference nodes are depicted in Fig.
17 - Fig. 19, and the comparison of RMS error is shown
in Table 4. Also the comparison of the absolute error
and the trace of error covariance are shown in Fig. 20
and Fig. 21. From those results, it is obvious that using
more reference nodes provides better results. However,
with reduced number of reference nodes, the reconstruct
map from the EKF still yields the shape of reference
path, but, of course, with higher error. It is worth noting
that the fusion from IMU has contribution to this
situation when multiple reference nodes are not

available.
Extended Kalman Filter by 3 Access Point
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Fig. 17 Reconstructed map from the EKF with 3 reference
nodes.
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Fig. 18 Reconstructed map from the EKF with 2 reference
nodes.
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Fig. 19 Reconstructed map from the EKF with 1 reference
nodes.
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Fig. 20 Comparison of absolute error for different number of
reference node.
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Fig. 21 Comparison of trace of error covariance

(trace (H ) ) for different number of reference node.

Table 4 RMS error versus different number of reference node
(#N).

#N RMS error (meter)
4 0.7860
3 0.9389
2 1.1643
1 4.4971

5. CONCLUSION

This paper proposes the fusion algorithm by using
RSSI/IMU sensor for localization problem of a mobile
unit in indoor environment where GPS is invalid. The
information from both sensors corrupted by noise and
uncertainties are fused by the EKF. The results show
that this IMU/RSSI sensor fusion is a promising for
indoor environment that can handle the bias problem
from the IMU, and is robust to various uncertainties
from the RSSI measurement. The best result, obviously,
based on fastest sampling time and four referent nodes
achieving sub meter level of RMS error.

Further studies on sampling time, also show that this
sensor fusion scheme is robust to various value of
sampling period. This advantage is significant in
practice when the acquisition of the RSSI is much
slower than the IMU so that the single sampling rate can
be applied. High sampling frequency obviously provides
good result especially at the turning corners, since the
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mobile unit change velocity abruptly, and the fast
accessing to IMU can capture that movement. It is also
worth noting that with simple zero order hold for RSSI
information, we can increase sampling rate to match the
IMU sampling rate without the need of multi-rate
scheme and still yields good results.

We also further study on reducing the numbers of
reference nodes, and the results show that it can achieve
down to two reference nodes with promising results.
This is very significant in practice when the mobile unit
may loss communication to reference nodes from time
to time. For one reference nodes, however, it seems that
it cannot compensate the drift of the IMU.

The EKF, however, needs some parameter tuning
especially process and measurement noise covariance
@, R. For the future work, we will work on the method
to calibrate some parameters in measurement, such as
P,, y autonomously. Also, the fusion algorithm could

be improved by some adaptive schemes for adjusting the
process and measurement noise covariance, or applying
other estimation methods such as unscented Kalman
filter.
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