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ABSTRACT 

Localization is the crucial problem for mobile robot 

navigation. For indoor mobile robot, since a global 

positioning system (GPS) is incapable, another 

promising technique to detect the position is the 

received signal strength indicator (RSSI) from wireless 

communication. To improve the precision and 

robustness of mobile unit localization, an inertial 

measurement unit (IMU) is normally used. In this 

report, we propose the algorithm for mobile robot 

localization based on sensor fusion between RSSI from 

wireless local area network (WLAN) and an IMU. The 

proposed fusion scheme is based on the extended 

Kalman filter (EKF).  The experiment is conducted by 

using mobile unit equipped with low-cost IMU and a 

wireless communication module together with access 

points to evaluate the performance of our algorithm, 

and the result is promising. 
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1 INTRODUCTION 

 

Mobile unit localization is the most fundamental and 

important problem in many applications such as 

unmanned autonomous vehicles, mobile robots in 

explore, search and rescue operation, asset tracking in 

warehouse, etc. Since past few decades, there has been 

extensive research in this area. Depending on various 

types of sensor, there are many approaches for 

localization. In general, however, there are two types of 

sensor using in localization, namely relative position or 

inertial sensors and absolute position sensor. We refer 

the reader to [1], [2] for a survey. 

The relative sensor, e.g., an odometer and an IMU or 

an inertial navigation system (INS), provides the 

implicit pose's information relative to initial pose. The 

method to obtain a pose of an object, then, involves in 

integration, and, hence, suffers from bias that, even a 

tiny, causes huge error in long run. Certain schemes 

need to be used to reset an error intermittently. The 

advantage of this type of sensor is that it relies on its 

own system not on other references or outside 

environment that cannot be manipulated.  

The absolute sensor provides the information on the 

distance or orientation relative to known-position 

references. In theory, it requires multiple references in 

localization based on these sensors; for example, three 

distances or angles are necessary to identify a unique 

position in two-dimensional plane. These methods are 

also known as trilateration in distance based and 

triangulation in orientation based. Currently, the most 

widely used localized method based on relative distance 

is the GPS, in which distances from at least four 

references (satellites) are required to identify a unique 

position of an object in 3-dimensional space. For 

trilateration, the distance information may inherit from 

time of flight of the beacon signal from references. 

Hence, it requires very precise time synchronization 

between references and a mobile unit, as in, for example, 

the GPS. Another way to obtain distance is from power 

loss of the beacon signal from references. This method, 

as used in this paper, is recently received much 

attention, since it is relatively low cost due to the vast 

availability of wireless communication system in both 
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outdoor and indoor environment. This absolute sensor 

based method relies on wireless communication link 

between a mobile unit and remote references, so it 

normally suffers from the loss of communication or 

interference from outside environment such as in tunnel 

or building. The localization method, however, has no 

drift effect since there is no integration require. 

Most of practical navigation system, however, makes 

use of advantages from both relative and absolute 

sensors as a complementary to their weakness, for 

example GPS/IMU/INS sensor fusion, particularly for 

low cost devices, in which huge amount of research can 

be found; see refs. [3] - [6]. There are also many 

localization methods dealing with various types of 

sensor fusion; for example, in [7], the distance induced 

from time of flight of data packet from ultra wide band 

(UWB) communication is used to handle the drifting 

effect from IMU sensors in pose estimation of human 

gesture. In [8], [9], the visual sensing and IMU are used 

in pose estimation of mobile robot. Recently published 

paper [10] provides comprehensive review of various 

methods for general sensor fusion—not particular for 

navigation purpose or certain types of sensor. 

Since the GPS system is incapable for indoor 

environment due to communication disruption, the 

transmitted power loss form wireless communication 

link, or RSSI, is, therefore, a promising method to derive 

distances from known-position references. The 

localization based on RSSI has been a popular research 

topic for a few decade due to the widely used of wireless 

communication in mobile phone as well as WLAN. 

Furthermore, in most indoor environment, there are 

many WLAN transmitters that can be used in 

localization without additional cost, since most 

computers today are capable of this wireless 

communication. 

There have been researches on RSSI-based 

localization in logistic applications to track products, 

assets or equipment. For example, in [11], the RSSI is 

used in multilateration scheme in wireless sensor 

network in food transportation. Also, the paper [12] 

proposes the localization scheme based on spatial 

reasoning filter using several sensor nodes in various 

directions, by moving sensor nodes, which is opposing 

to temporal filter that acquires multiple RSSI at the same 

location. Similar application can be found from the 

paper [13] that studies and testes various localization 

method to track the material in construction site. 

The recent work on RSSI/IMU-based localization 

can be found in [14], where it applies the particle filter 

as a localization algorithm to track a pedestrian with 

foot-mounted IMUs and uses RSSI from WiFi access 

points to compensate the drift error from an IMU. The 

paper also uses the precise model of the map to 

constraint or narrow down the possibility of the 

pedestrian location. Another key important idea is that 

the way to detect when the pedestrian stop walking and 

then velocity is reset in both longitudinal and lateral 

directions to reduce drift error.  

The RSSI-based localization that uses the robust 

extended Kalman filter (EKF) can be found in [15], [16]. 

The former paper deals with the tracking of cellular 

phone user in the service cells to improve quality of 

service. The results are presented by simulation. The 

later paper proposes the localization method to locate the 

mobile robot in indoor environment. The experimental 

results are based on dedicated wireless communication 

links that can measure the receiving analog power signal 

directly, which is opposing to our system that obtains 

the RSSI information with low sampling rate and high 

quantization noise.  

In this work, we study the possibility of using sensor 

fusion from a low cost IMU and RSSIs by using the 

EKF for mobile unit localization in two-dimensional 

plane. The information from an IMU, which is velocity 

in this study, suffers a tiny bias causing drift error in 

long run. On the other hand, the information of an RSSI, 

based on IEEE802.11b standard, is corrupted by large 

multi-path fading effect and quantization noise. Also, 

the RSSI information is available in lower sampling rate 

than of the IMU. The test bed is performed in indoor 

environment by moving the mobile platform in the 

predefined path repeatedly to verify the accuracy of 

algorithm.  

The sampling rate of the RSSI data is 4 times slower 

than of the IMU. Hence, we also study multi-rate 

sampling setting. That is, we first reduce the sampling 

rate of the IMU down to match with the one from RSSI. 

Then, we increase the sampling rate of IMU and use 

zero-order hold to up sample the RSSI information to 

match the IMU rate.  

Furthermore, we also study the possibility of using 

smallest number of reference nodes for RSSI. Firstly, we 

use RSSI information from four reference nodes to fuse 

with the IMU information. This, in fact, is redundant. 

Then we reduce the numbers of reference node to 

validate the possibility and performance.  
The body of the paper is organized as follows. In 

section 2, we address the problem by using simple 

kinematic model of moving object and discuss the 
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characteristic of the measurement equations from both 

sensors. In section 3, we briefly present the well-known 

EKF algorithm. The experimental results will be 

presented in section 4, and the conclusions are drawn in 

section 5 to sum up our work. 

 

2 SYSTEM MODELING 

2.1 Kinematic Model 

To simplify the sensor fusion scheme, the kinematic 

model of the vehicle, i.e., position and velocity will be 

used. Now, let 
xp , 

yp , 
xv , 

yv  denote position and 

velocity in x and y direction in Cartesian space 

respectively. Then, let 
T

x y x yx p p v v 
 

. In 

this note, we consider the control signal as unknown 

command or acceleration denoted by u . Note that, the 

acceleration in current velocity direction could be 

regarded as uncertainty to the system model. Now 

consider the kinematic model of the vehicle in discrete-

time as follows:  

 

1( ) ( ) ( )x k Ax k Bu k   , k   ¢ , (1)  

where  
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and T  is a sampling time. The goal is to estimate the 

position of above mobile platform from IMU and RSSI 

sensing systems.   

 

2.2 IMU Measurement Model 

The IMU using in this work is low-cost 

microcomputer embedded system, around US$100, 

composing of three-axis accelerometers, rate gyro and 

magnetic compass sensor that provides many outputs 

including the raw data from accelerometers, gyroscopes 

and magnetometer, as well as processed output 

including linear velocity and attitude. In our study, 

however, we consider only the velocity output. Hence 

from above state space representation, we can describe 

measurement equation from the IMU as follow: 
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                     (2) 

 

where   is an alignment angle between any reference 

frame and IMU frame referencing to the magnetic north 

pole with positive angle measuring in clockwise (see  

Fig. 1) direction, 
xb  and 

yb  are bias noises, and 
iv  is a 

general measurement noise.  

 

 

Fig. 1 Reference frame versus IMU frame. 

 

Since the bias noises have significant impact, so it is 

common in localization scheme that this bias noises are 

modeled as constants or slowly change values, and 

hence can be incorporated in system modeling. That is, 

let new state variable 

 

 :
T

x y x y x yx p p v v b b 
 

. 

 
Hence, we can modify the state space description as 

follow: 

1k k k kx Ax Bu w    , k   ¢ ,        (3)  

 

where kw  could be considered as uncertainties or 

disturbances to the system, disturbing the bias state in 

particular, and 

 

Yr XIMU (North) 

Xr 

YIMU (South) 
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. 

 

Therefore, the new measurement from the IMU can be 

rewritten as 

 

0 0 0 0

0 0 0 0

sin cos

cos sin
i i
k k ky x v

 

 

 
  
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. (4) 

 

From our experiment, it is obvious that even a tiny 

bias in IMU, as in Fig. 2, makes a significant drift in 

position as depicted in Fig. 3. Note that, Fig. 3 is the 

result of the Kalman filter that is solely based on the 

IMU data.  

 

 
 

Fig. 2 Output (velocity) from IMU in both directions. 

 
 

Fig. 3 Reconstructed map from IMU output only. 

 

2.3 RSSI Measurement Model 

It is well known in the radio communication that 

transmitted power loss, known as path loss, at the 

receiver side is related to distance between them. The 

relation between RSSI and distance is described by 

([17], [18]) 

 

0 1010 ,  log ( ) r
r kP P d v            (5) 

 

where rP  is the power at the receiver side in dB, 0P   is 

a constant depending on transmitted power, antenna 

characteristic and average channel attenuation,   is a 

path loss exponent, and 
r
kP  is a measurement noise 

dominated by shadowing fading [17], [15]. In above 

equation, two major factors, that make it very difficult to 

derive distance d , are the path loss exponent and 

shadowing fading. The path loss exponent   depends 

on environment; for example, 2   in the open space 

and it may be in the range of 1.6-3.5 in an office; see, 

for example, Table 2 in [17] or Table 4.2 in [19]. The 

shadowing fading or multipath fading causes unexpected 

high power at the receiver that averages them from 

multiple received data packets. The example of the RSSI 

measured versus distance is shown in Fig. 4, in which 

large variation is obviously observed. Also, in  

Fig. 6, the measured RSSI during the experiment 

comparing with the ideal one computed by using 

reference moving path shows significant effect of 
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shadowing fading that causing abnormally high RSSI. 

The reconstructed map from the EKF based only on 

RSSI from four reference nodes is shown in Fig. 5. 

Comparing with the result from IMU in Fig. 3, the result 

from RSSI only has no drift, but it is not in the good 

shape of reference path. 

 

 
Fig. 4 Example of RSSI versus distances, solid line is the 

approximate model. 

 

Fig. 5 Reconstructed map from RSSI output only. 

Now the equation (5) can be used to characterize our 

measurement equations with multiple references. Let 

,( )x y
i ip p  denote the position of the i th reference. Then 

we can define the measurement equations from RSSI, 

for 1,2,…i , related to our system as 

 

 0 1010 ,  logri i i ri
k ky P d v  (5)  

 

where    
2 2

   i x x y y
i id p p p p . In our 

experiment, we have four access points as the reference 

nodes. 

 
 

Fig. 6 RSSI from one of reference access point during 
experiment (solid line) comparing to ideal one (dash line) 

inheriting from known reference moving path. 

 

3. EXTENDED KALMAN FILTER 

Since the EKF is well known (e.g., see [20], [21]), 

and widely used as a linearized version of the Kalman 

filter for nonlinear system, we, therefore, briefly give 

some details of it. Consider a general nonlinear system: 

 

1 ;

,

  

 

( , , )

( , )

k k k k k

k k k k

x x u k w

y x k
 

(6)  

 

where kw  and k  are process and measurement noises 

respectively. These noises are assumed to be white 

Gaussian noise with known covariance as 

E    
T

k kw w Q  and E     
T

k k R , where  E   

denotes the mathematic expectation. In our case, kw  

could be considered as the uncertainty from inaccurate 

modeling. In practice, these noise covariance serve as 

tuning parameters of the filter, and could be adjusted 

based on the empirical experiment. Also, since the 

existence of the solution of the EKF is not guaranteed to 

exist for all time, Q  and R  weighting matrices also 

serve as tuning parameters for stability of the filter. In 

addition, we assume that  0E x  and 
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   0 0E
T
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 

 Then, the EKF could be 

summed up as follows: 
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 (7)  

 

with initial conditions 0̂x  , and 0P   , and where 

kF  and kH  are the Jacobian matrices, i.e., 

 

ˆ ˆ

,
k k

k k
x x x x

F H
x x  

 
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4. EXPERIMENTAL RESULTS 

 

In our experiment, we manually move the wheel 

mobile platform equipped with the IMU sensor, the 

WLAN receiver that communicates to four access 

points, and reports all the RSSIs. The IMU, as shown in 

Fig. 7, used in this experiment is aMG IMU-9A having 

three-axis accelerometers chip set LSM303DLH, three-

axis gyroscope chip set L3G4200D and a magnetometer 

chip set LSM303DLH. The velocity is computed by 

microcontroller from the IMU raw data with equations 

suggested in the product manual. The wireless 

communication is the IEEE802.11b standard with 

2.4GHz carrier frequency with access point model 

Aolynk WAP500ag as shown in Fig. 8.  

 

 
Fig. 7 IMU sensor module used in the experiment. 

 

 

Fig. 8 IEEE802.11b wireless access point. 

The experiment is conducted by moving the mobile 

platform in predefine rectangular path for five rounds. 

The RSSI information is sampled every 4 seconds, while 

the IMU information is sampled every 1 second.  

 

4.1 Effect of sampling time 

 

Since the sampling rate of the RSSI information is 

much slower than of the IMU, so we study the effect of 

using different sampling rate inside the fusion algorithm. 

We compare three different use of sampling time; that is 

4 seconds, 2 seconds, and 1 second. Simple zero order 

hold is used for up sampling. That is, for 4T  , the 

information from the IMU is down sampled by 4, for 

2T  , the information from the IMU is down sampled 

by 2 when the information from RSSI is up sampled by 

2, and for 1T  , the information from the RSSI is up 

sampled by 4.  

The EKF in (7) is performed, where dynamics k  

equals to (3), and measurement equation k  is from (4) 

and (5); that is 
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where  

 

0 1.   rad. The EKF parameters are of follows:  

0 1 1 0 0 1 0 0ˆ .
T

x  
 

and 
6

0 6 610P I

 . 
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For different sampling time, we use different 

weighting matrices of process and measurement noise 

covariance as shown in Table 1 below. 

 

Table 1 Noise covariance in different sampling time 

T  ,Q R  

4 

3 6 610 diag 1 1 0 1 0 1 10 10( , , . , . , , )Q     

4 4diag 40 40 40 40 10 10( , , , , , )R    

2 

3 6 610 diag 1 1 0 1 0 1 2 10 2 10( , , . , . , , )Q       

4 4diag 7 7 7 7 10 10( , , , , , )R    

1 

4 5 53 10 diag 1 1 0 1 0 1 10 10( , , . , . , , )Q      

5 5diag 1 1 1 1 10 10( , , , , , )R    

 

The experimental data from the IMU is shown in 

Fig. 2, and the comparison to the output from the EKF 

(for 4T   sec.) is shown in Fig. 9. It can be seen from 

the Fig. 9 that the estimated velocity from the EKF 

shows less significant bias in comparison with the 

velocity output from the IMU, particularly in y-

direction. Also, the comparisons of the actual RSSIs 

from four access points and the estimate from the EKF 

are depicted in Fig. 10. It is obvious that the estimated 

RSSI is significantly smoother than the sensor one, and 

corresponds to the moving pattern which is high power 

when the platform moves close to the access point and 

low power when it moves away. The bias states in both 

directions are shown in  

Fig. 11.  

The estimate position in x-y coordinate from the 

EKF is plotted together with the reference moving path 

in Fig. 12 to Fig. 14 for 4 2 1{ , , }T   respectively. It is 

obvious that the position outputs from the EKF in three 

cases are close to the reference path with no drift effect; 

see Fig. 3 and Fig. 5. for comparison. 

 

 

 
(a) x-direction 

 
(b) y-direction 

Fig. 9 Estimated and actual IMU output comparison: solid 

line and dash line are actual and estimate IMU output 
respectively. 

 
     (a) access point no. 1         (b) access point no. 2 

 
     (c) access point no. 3         (d) access point no. 4 

Fig. 10 Estimated and actual RSSI output comparison: solid 

line and dash line are actual and estimate RSSI output 
respectively. 
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Fig. 11 IMU bias state in both x and y directions from the EKF 

when 4T  . 

 

 
Fig. 12 Reconstructed map from the EKF when 4T  . 

 

 

Fig. 13 Reconstructed map from the EKF when 2T   

 

Fig. 14 Reconstructed map from the EKF when 1T  . 

 

 
 

Fig. 15 Comparison of absolute error for different sampling 

time. 

The comparison of root mean square (RMS) error in 

each case is shown in Table 2 below. Also the 

comparison of the absolute error and the trace of error 

covariance are shown in  

Fig. 15 and Fig. 16. Note that, the covariance matrix 

kP  is normally used to indicate the convergent of the 

filter, and, hence, it is useful in the tuning process. Note 

that even the shorter sampling time yield lower RMS 

error, but the difference is not significant. So the EKF, 

in this experiment, is robust to sampling period. In fact, 

it depends on the dynamics of the moving platform. 
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Table 2 Comparison of RMS error for different sampling time 

T  (sec) RMS error (meter) 

4 0.8832 

2 0.8661 

1 0.7860 

 

4.1 Effect of number of nodes 

 

Although, in theory, three reference nodes are 

sufficient to uniquely determine the position of a mobile 

unit, in practice, however, more reference nodes will 

provide better result. In previous setup, we validate the 

possibility of the fusion scheme in well setup 

environment having 4 reference nodes for RSSI. In this 

subsection, we study the possibility of using smallest 

number of reference nodes, since the information from 

the RSSI can be considered as an assistance to the IMU. 

 
 

Fig. 16 Comparison of trace of error covariance 

(  trace kP ) for different sampling time. 

Thus, from previous raw information from both 

RSSI and IMU, we reduce the number of the RSSI 

information from 4 nodes to 3, 2 and 1. The base line is 

the result from previous subsection having 4 reference 

nodes and sampling time 1T  sec. Different value for 

noise covariance weighting matrices are used in 

different numbers of reference nodes as shown in Table 

3 below. 

 

 

 

Table 3 Noise covariance in different number of reference 

node (#N). 

#N ,Q R  

3 

3 6 62 10 diag 1 1 0 1 0 1 2 10 2 10( , , . , . , , )Q      

2 6 610 diag 5 5 5 10 10( , , , , )R    

2 

3 7 79 10 diag 1 1 0 1 0 1 2 10 2 10( , , . , . , , )Q      

3 3diag 800 800 10 10( , , , )R    

1 

2 8 810 diag 1 1 0 1 0 1 2 10 2 10( , , . , . , , )Q       

3 2 2diag 7 10 10 10( , , )R     

 

The resulting maps from fusion algorithm with 3 

different numbers of reference nodes are depicted in Fig. 

17 - Fig. 19, and the comparison of RMS error is shown 

in Table 4. Also the comparison of the absolute error 

and the trace of error covariance are shown in Fig. 20 

and Fig. 21. From those results, it is obvious that using 

more reference nodes provides better results. However, 

with reduced number of reference nodes, the reconstruct 

map from the EKF still yields the shape of reference 

path, but, of course, with higher error. It is worth noting 

that the fusion from IMU has contribution to this 

situation when multiple reference nodes are not 

available.  

 

 
Fig. 17 Reconstructed map from the EKF with 3 reference 

nodes. 



98                                                                                 ENGINEERING TRANSACTIONS, VOL. 16, NO.2 (35) JUL-DEC 2013. 

 
Fig. 18 Reconstructed map from the EKF with 2 reference 

nodes. 

 
Fig. 19 Reconstructed map from the EKF with 1 reference 

nodes. 

 

Fig. 20 Comparison of absolute error for different number of 

reference node. 

 

Fig. 21 Comparison of trace of error covariance 

(  trace kP ) for different number of reference node. 

Table 4 RMS error versus different number of reference node 

(#N). 

#N RMS error (meter) 

4 0.7860 

3 0.9389 

2 1.1643 

1 4.4971 

 

5. CONCLUSION  

 

This paper proposes the fusion algorithm by using 

RSSI/IMU sensor for localization problem of a mobile 

unit in indoor environment where GPS is invalid. The 

information from both sensors corrupted by noise and 

uncertainties are fused by the EKF. The results show 

that this IMU/RSSI sensor fusion is a promising for 

indoor environment that can handle the bias problem 

from the IMU, and is robust to various uncertainties 

from the RSSI measurement. The best result, obviously, 

based on fastest sampling time and four referent nodes 

achieving sub meter level of RMS error.  

Further studies on sampling time, also show that this 

sensor fusion scheme is robust to various value of 

sampling period. This advantage is significant in 

practice when the acquisition of the RSSI is much 

slower than the IMU so that the single sampling rate can 

be applied. High sampling frequency obviously provides 

good result especially at the turning corners, since the 
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mobile unit change velocity abruptly, and the fast 

accessing to IMU can capture that movement. It is also 

worth noting that with simple zero order hold for RSSI 

information, we can increase sampling rate to match the 

IMU sampling rate without the need of multi-rate 

scheme and still yields good results.  

We also further study on reducing the numbers of 

reference nodes, and the results show that it can achieve 

down to two reference nodes with promising results. 

This is very significant in practice when the mobile unit 

may loss communication to reference nodes from time 

to time. For one reference nodes, however, it seems that 

it cannot compensate the drift of the IMU.  

The EKF, however, needs some parameter tuning 

especially process and measurement noise covariance 

, Q R . For the future work, we will work on the method 

to calibrate some parameters in measurement, such as 

0P ,   autonomously. Also, the fusion algorithm could 

be improved by some adaptive schemes for adjusting the 

process and measurement noise covariance, or applying 

other estimation methods such as unscented Kalman 

filter. 
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