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ABSTRACT

Dynamics of symmetric and antisymmetric 2-
solitons and 3-solitons is studied in the model of the
nonlinear dual-core coupler and its PT -symmetric
version. Regions of the convergence of the injected
perturbed symmetric and antisymmetric N-solitons into
symmetric and asymmetric quasi- solitons are found.
In the PT -symmetric system, with the balanced gain
and loss acting in thetwo cores, borders of the stability
against the blowup are identi ed. Notably, in all the
cases thestability regions are larger for antisymmetric
2-soliton inputs than for their symmetric counterparts,
on the contrary to previously known results for
fundamental solitons (N = 1). Dynamical regimes
(switching) are also studied for the 2-soliton injected
into a single core of the coupler. In particular, a region
of splitting of the input into a pair of symmetric
solitons is found, which is explained as a manifestation
of the resonance between the vibrations of the 2-soliton
and oscillations of energy between the two cores in the
coupler.

Keywords : Dual-series equations, Fredholm integral
equation, Hankel integral transform, Mixed boundary
conditions, Partial differential equation, Rectangular
plate, Singularities.

1. INTRODUCTION

The profound importance of optical solitons for
fundamental studies and technological applications in

photonics is well known [1]. In addition to the
ubiquitous fundamental solitons, integrable models and
physical media described by nearly-integrable equations
[2] give rise to N-solitons, with N>2, which are
oscillating pulses periodically restoring their shape at
distances that are multiples of the fundamental soliton
period [3]. Experimentally, this was demonstrated for 2-
and 3-order solitons in 1983 [4]. In a different
experiment, initial narrowing of higher-order solitons
was observed for values of N up to 13 [5]. Higher-order
solitons were also created in the cavity of a mode-locked
dye laser operating at the wavelength of 620 nm [6].
Strongly oscillating higher-order solitons find natural
applications for the pulse compression [7], [8] and
frequency conversion [9]. A more recent, extremely
important, application is the use of the fission of higher-
order solitons as the source of ultra-broadband optical
supercontinuum [10] — [13]. In particular, the enhanced
nonlinearity of micro- and nano-structured materials
may help to create higher-order solitons and catalyze
their subsequent fission, using reduced pump intensities
[14], [15].

In the present work we aim to study the dynamics of
higher-order solitons in nonlinear dual-core couplers
[16], [17] and their PT (parity-time)-invariant
counterparts. The dynamics of fundamental solitons in
couplers, the most important feature of which is the
spontaneous symmetry breaking, i.e., a transition from
symmetric solitons to asymmetric ones, has been
analyzed in many works [18] - [21], the study of N-
solitons being a natural extension of that analysis. Inter
alia, one may expect a resonance between the frequency
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of the intrinsic vibrations of the higher-order solitons
(which does not depend on N [1], [3]) and the frequency
of the field oscillations between two cores of the
coupler. On the other hand, PT -invariant counterparts of
usual conservative systems are introduced as those with
spatially separated balanced gain and loss, which admits
the existence of the real spectrum and a continuous
family of modes, instead of isolated states typical to
generic dissipative systems [22]. It was proposed [23]
and demonstrated experimentally [24] that PT -balanced
system can be readily built in optics, see also review
[25]. Fundamental symmetric and antisymmetric
solitons in the PT -invariant version of the nonlinear
coupler, with the balanced gain and loss applied to the
two cores, were recently studied in Refs. [26] and [27].
Stability borders for such soliton families were found, in
contrast to more general systems with imbalanced gain
and loss acting in the separated cores, which give rise to
isolated stable dissipative solitons in models of photonic
and [28] and plasmonic [29] couplers (see a review in
Ref. [30]), including two-dimensional solitons and
vortices in planar couplers [31].

In this work, we identify stability borders for modes
in the nonlinear coupler and its PT -symmetric
generalization,  produced by  symmetric  and
antisymmetric 2- and 3-soliton inputs, and compare the
results with those found previously for fundamental
solitons. Dynamical regimes for 2-solitons injected into
one core of the coupler are investigated too. The
analysis is performed by means of systematic
simulations.

2. DYNAMICS OF HIGHER-ORDER SOLITONS
IN NONLINEAR COUPLERS.

The transmission of light in the lossless dual-core
waveguide is described by the linearly coupled nonlinear
Schrodinger (NLS) equations for amplitudes u(z, t) and
v(z, t) in the two cores:

iU, + 1/ 2)u, +[uf u+v =0, "

iV, +(L/ 2)V, +]v[*v+u =0,

where z is the propagation distance and t reduced time or
transverse coordinate, in the temporal- or spatial-domain
setting, respectively. Coefficients accounting for the
dispersion or diffraction, Kerr nonlinearity, and inter-
core coupling 2 are all normalized here to be 1.

The temporal profiles of injected light corresponds to
symmetric (+) or antisymmetric (-) N-solitons with
fundamental amplitude #, v(z =0, t) = xu(z =0, t) = N
nsech (nt). In both cases, this input gives rise to obvious
exact solutions to Egs. (1), which are tantamount to the

respective exact solutions of the single NLS equation.
The issue is the stability of these solitons against
perturbations that tend to destroy their symmetry or
antisymmetry. This problem was tackled by means of
systematic  simulations of Egs. (1), with the
symmetry/antisymmetry-breaking perturbations
introduced by adding 2% to and subtracting 2% from
amplitudes of the two components. Such per- turbations
were found to be much stronger in affecting the solitons
than other perturbation modes (for instance, symmetric
ones, which act identically on both components). In
principle, one may attack the stability problem
differently, through the computation of Floquet
multipliers for small perturbations around the time-
periodic solutions [32], but the implementation of such a
rigorous analysis for the N-solitons is quite tricky.

Generic outcomes of the evolution of the perturbed
symmetric and antisymmetric N-solitons for relatively
low amplitudes are illustrated by Fig. 1. In this case, the
higher-order solitons are unstable in the dual-core
system, rearranging themselves into breather-like
symmetric modes oscillating around fundamental
solitons. Note that the breather generated by the
antisymmetric input features a much larger amplitude of
the intrinsic oscillations, but it always oscillates around
a symmetric fundamental soliton, rather than an
antisymmetric one. The latter finding illustrates the fact
that, while antisymmetric fundamental solitons have a
limited stability region [20], the symmetric
solitons are more robust objects, which realize the
ground state of the coupler [21].

With the increase of #, this scenario changes above a
certain critical value 7, where the perturbed symmetric
or antisymmetric higher-order soliton undergoes the
spontaneous symmetry breaking, being transformed by
the instability into an excited state oscillating around an
asymmetric fundamental soliton, which is the basic
propagation mode (ground state) in the nonlinear
directional coupler for energies exceeding the respective
threshold [18]-[21]. These cases are shown, severally, in
Figs. 2 and 3, for the symmetric 2-soliton with #* = 0.2
> %~ 0.090, and for the antisymmetric one, with #°=
0.5 > 5% =~ 0.366. Note that, in both cases, the
established mode features a strong asymmetry, with the
pulse in one core being close to a fundamental soliton
existing in this core without the coupling, while the
weak component in the other core is a quasi-linear mode
supported by its attraction to the strong component in
the first core.

The so found critical values for the spontaneous
symmetry breaking are collected in Table 1. Included
into the table are also nzcr = 4/3 for the fundamental
symmetric soliton, which is a well-known exact result
[18], and 7, ~ 0.75 for the antisymmetric soliton, which
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was found in a numerical form [20]. The critical values
for the 2- and 3-solitons of both types, symmetric and
antisymmetric, are new results obtained in the present
work. It is worthy to note that (7°%,) symm rapidly
decays with the increase of the soliton's order, and (%)
anti decays too, but much slower. As a result, while the
threshold is higher for the fundamental (N = 1)
symmetric  solitons than for their antisymmetric
counterparts, the relation is opposite for N = 2 and 3.

Table 1. The critical value of the squared amplitude n?
for the symmetric and antisymmetric solitons of orders
N = 1 (fundamental), 2, and 3, above which the soliton
undergoes the spontaneous rearrangement into a
breather oscillating around a fundamental asymmetric
soliton.

N 1 2 3
Symm 4/3 0.090 0.018
anti 0.75 0.366 0.200
An essential characteristic of the dynamical

rearrangement of the solitons of different types is the
share of the initial energy, [*[ u(t)[? +|v(t)[] dt,

which is kept by the established symmetric or
asymmetric breather (despite the persistent vibrations,
the breathers in the final state do not emit radiation).
This share is shown in Fig. 4 as a function of # for both
the symmetric and antisymmetric 2-soliton inputs. A
salient feature of the dependence is that the
rearrangement of the antisymmetric 2-soliton into the
symmetric or asymmetric mode gives rise to essentially
larger loss than the rearrangement of its symmetric
counterpart. This fact is natural, as the rearrangement is
more dramatic for the antisymmetric input, always
transforming it into a mode of the opposite symmetry. In
fact, the strong loss suffered by the antisymmetric input
explains its stronger effective stability in comparison
with its symmetric counterpart, as the decrease of the
pulse's energy pushes it farther from the instability
border.

3. DYNAMICS OF HIGHER-ORDER SOLITONS
IN PT SYMMETRIC COUPLERS.

The dual-core waveguide with the balanced gain and
loss acting in the two cores is described by the following
generalization of Egs. (1) [26]:

iu, +(1/2)u +uzu—iu+v:0,
L+ @ 2)uy +]u[ u—iy @

iV, +(L/ 2)v, +|v] v=ipv+u =0,

where y represents equal coefficients of the linear gain

and loss. The PT symmetry holds in this system for
y <1. In this case, the inputs in the form of v(t) = u(t)

exp(i sin(y)) = Ny sech (4t), or v(t) = -u(t) exp(-i sin’
1
(7)=

0.9

0.8 2

[uf
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Fig. 1 (a) A typical example of the relaxation of a
perturbed second-order symmetric soliton with n° =
0.05 intoa persistent breather oscillating around a
symmetric fundamental soliton. (b) An example of the
convergence of a perturbed second-order antisymmetric
soliton with n° = 0.2 into a symmetric breather.

N # sech (nt) automatically generate exact solutions
to Egs. (2) [26], in the form of N-solitons, which are,
respectively,counterparts of the symmetric and
antisymmetric solutions of Eq. (1). Accordingly, they
may be called PT —symmetric and PT -antisymmetric
modes.

For small #2, both the PT -symmetric and
antisymmetric inputs are transformed into breathers
oscillating around PT -symmetric fundamental solitons.
In this case, the loss and gain remain exactly balanced,
hence the situation is not different from that considered
above for the ordinary coupler, without the PT terms.
However, unlike the regular coupler, the PT -symmetric
system does not support asymmetric solitons, as the
balance between the gain and loss is impossible for
them, the symmetry/antisymmetry-breaking instability
leading to blowup [26]. Thus, the basic issueis to
identify the respective stability border, #%m.x. For the
exact PT -symmetric and antisymmetric fundamental
solitons, the borders were found in Ref. [26], in the
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analytical and numerical forms, respectively. Here, we
have identied stability borders for the PT -symmetric
and antisymmetric inputs in the form of 2-solitons, as
shown in Fig. 5. For the sake of the comparison, the
stability limits found in Ref. [26] for the fundamental
solitons are shown too in the figure.

Note that the stability borders for the PT -symmetric
and antisymmetric 2-soliton inputs in Fig. 5 start, at ¥ =

0, from values coinciding with those given for N = 2 in
Table 1. It is worthy to note that, similar to the situation
in the system without the PT terms, the stability region
is much smaller for the PT -symmetric input than for its
PT -antisymmetric counterpart, on the contrary to the
relation between the stability borders for the
fundamental solitons.
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Fig. 2 A typical example of the relaxation of a perturbed
second-order symmetric soliton with #°> = 0.2 into a
breather oscillating around a fundamental asymmetric
soliton.

Switching dynamics of higher-order solitons in the
nonlinear coupler. Nonlinear couplers are mostoften
used in the dynamical regime, launching the input signal
(a fundamental soliton) into one core, and following
oscillations of the energy between the cores. The most
typical application of such regimes is nonlinearity-
controlled switching between the cores [17]-[21], [33].
These studies suggest to investigate the dynamics of 2-
solitons injected into a single core, i.e., simulate Egs. (1)
with initial conditions u (z = 0; t) = 2 5 sech(yn t), v(z =

0,t) = 0, and compare results with those reported
previously for the fundamental solitons.

For the input with large # the nonlinearity dominates
over the coupling, hence the 2-soliton stays, essentially,
as the oscillating mode in the straight core, feeling little
presence of the cross one. With the decrease of #, the
amplitude of the oscillations decreases, maintaining a
constant oscillation period. As #x approaches 1, this
oscillating mode relaxes into a quasi-fundamental
soliton coupled to a quasi-linear oscillating component
in the cross core (similar to the picture displayed in Fig.
3). On the other hand, at small values of #, the input is
converted into a breather with symmetric components in
the two cores, oscillating around a fundamental soliton,
which resembles the picture shown above for another
situation (the antisymmetric 2-soliton input) in Fig. 1(b).
A more interesting scenario occurs in the interval of
0.43< 5* > 0.67, in the zone between the above-
mentioned regimes of the strongly asymmetric and
almost symmetric outputs. Close to the upper edge of
this interval, around »“ = 0.67, the frequency of the inner
vibrations of the symmetric 2-soliton approaches the
frequency of linear oscillations between the cores of the
coupler.

Fig.3 An example of the convergence of a perturbed
antisymmetric second-order soliton with % = 0.5 into a
strongly asymmetric breather.

As a result of the proximity to this resonance, a
perfect periodic switching between the cores is
observed, as shown in Fig. 6(a). A small decrease of #
gives rise to another effect, viz., splitting of the initial 2-
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soliton into a pair of separating nearly symmetric
fundamental solitons, as seen in Fig. 6(b).

4. CONCLUSIONS

We have studied the evolution of symmetric and
antisymmetric higher-order solitons of orders N = 2 and
3 in the basic model of the nonlinear coupler and in its
PT -symmetric generalization. In the former model, we
have identified regions of the convergence of injected
perturbed N-solitons into symmetric and asymmetric
breathers oscillating around fundamental solitons,
symmetric or asymmetric ones. Critical values of input
amplitude parameter, ¢, which correspond to thresholds
of the spontaneous symmetry and antisymmetry
breaking, have been found for the 2- and 3-solitons. The
evolution of the antisymmetric 2-soliton leads to a much
larger radiation loss than in the case of the symmetric
input. Asymmetric modes do not exist in the PT -
symmetric system, with mutually balanced gain and loss
acting in the linearly coupled cores. In this case, stability
borders for the inputs in the form of PT - symmetric and
antisymmetric 2-solitons have been found too. In all the
cases, a noteworthy result is that the stability region for
the antisymmetric 2-soliton is considerably larger than
for its symmetric counterpart, on the contrary to the
previously known results for fundamental solitons. This
feature is explained by strong radiation loss of the
rearranging antisymmetric mode, which pushes it back
from the instability border. We have also studied the
propagation of the 2-soliton injected into one core of the
coupler (without the PT terms). In that case, different
dynamical regimes are observed for different values of
the input amplitude. In particular, a region of splitting of
the input into a pair of symmetric solitons was found,
which may be explained by proximity to the resonance
between the intrinsic vibrations
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Fig. 4 The share of the total power kept in the final
oscillating pulse as a function of input parameter 5 for
the initial symmetric and antisymmetric 2-solitons (the
blue solid and red dashed curves, respectively). Marked
are the threshold values 5%, separating the transition
into the symmetric and asymmetric breathers, see Table

1.

Fig. 5 Stability borders for the fundamental and second-
order PT -symmetric and antisymmetric solitons, in the
PT -balanced system. The input solitons with amplitude
5 give rise to stable modes at 7% < #° ™. FS stands the
analytically found stability border for PT -symmetric

fundamental solitons, 7., = (4/3)\1-7*, and FA is

the numerically found border for PT -antisymmetric
fundamental solitons [26]. New results are represented
by the stability borders for the PT —symmetric and
antisymmetric 2-solitons (2S and 2A, respectively).of the
2-soliton and field oscillations between the two cores.

8 _max(uz)
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Fig. 6 (a) Periodic switching of light, coupled in the
form of the 2-soliton into the single core, between the
two cores of the coupler, at n* = 0.67. (b) Symmetric
splitting of the 2-soliton, coupled into the single core, at
;72= 0.53 (the field is shown in the straight core, the
picture in the other one being almost identical).
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