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ABSTRACT 

Dynamics of symmetric and antisymmetric 2-

solitons and 3-solitons is studied in the model of the 

nonlinear dual-core coupler and its PT -symmetric 

version. Regions of the convergence of the injected 

perturbed symmetric and antisymmetric N-solitons into 

symmetric and asymmetric quasi- solitons are found. 

In the PT -symmetric system, with the balanced gain 

and loss acting in thetwo cores, borders of the stability 

against the blowup are identi¯ed. Notably, in all the 

cases thestability regions are larger for antisymmetric 

2-soliton inputs than for their symmetric counterparts, 

on the contrary to previously known results for 

fundamental solitons (N = 1). Dynamical regimes 

(switching) are also studied for the 2-soliton injected 

into a single core of the coupler. In particular, a region 

of splitting of the input into a pair of symmetric 

solitons is found, which is explained as a manifestation 

of the resonance between the vibrations of the 2-soliton 

and oscillations of energy between the two cores in the 

coupler. 
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1. INTRODUCTION 

The profound importance of optical solitons for 

fundamental studies and technological applications in 

photonics is well known [1]. In addition to the 

ubiquitous fundamental solitons, integrable models and 

physical media described by nearly-integrable equations 

[2] give rise to N-solitons, with N≥2, which are 

oscillating pulses periodically restoring their shape at 

distances that are multiples of the fundamental soliton 

period [3]. Experimentally, this was demonstrated for 2- 

and 3-order solitons in 1983 [4]. In a different 

experiment, initial narrowing of higher-order solitons 

was observed for values of N up to 13 [5]. Higher-order 

solitons were also created in the cavity of a mode-locked 

dye laser operating at the wavelength of 620 nm [6]. 

Strongly oscillating higher-order solitons find natural 

applications for the pulse compression [7], [8] and 

frequency conversion [9]. A more recent, extremely 

important, application is the use of the fission of higher-

order solitons as the source of ultra-broadband optical 

supercontinuum [10] – [13]. In particular, the enhanced 

nonlinearity of micro- and nano-structured materials 

may help to create higher-order solitons and catalyze 

their subsequent fission, using reduced pump intensities 

[14], [15].  

In the present work we aim to study the dynamics of 

higher-order solitons in nonlinear dual-core couplers 

[16], [17] and their PT (parity-time)-invariant 

counterparts. The dynamics of fundamental solitons in 

couplers, the most important feature of which is the 

spontaneous symmetry breaking, i.e., a transition from 

symmetric solitons to asymmetric ones, has been 

analyzed in many works [18] - [21], the study of N-

solitons being a natural extension of that analysis. Inter 

alia, one may expect a resonance between the frequency 
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of the intrinsic vibrations of the higher-order solitons 

(which does not depend on N [1], [3]) and the frequency 

of the field oscillations between two cores of the 

coupler. On the other hand, PT -invariant counterparts of 

usual conservative systems are introduced as those with 

spatially separated balanced gain and loss, which admits 

the existence of the real spectrum and a continuous 

family of modes, instead of isolated states typical to 

generic dissipative systems [22]. It was proposed [23] 

and demonstrated experimentally [24] that PT -balanced 

system can be readily built in optics, see also review 

[25]. Fundamental symmetric and antisymmetric 

solitons in the PT -invariant version of the nonlinear 

coupler, with the balanced gain and loss applied to the 

two cores, were recently studied in Refs. [26] and [27]. 

Stability borders for such soliton families were found, in 

contrast to more general systems with imbalanced gain 

and loss acting in the separated cores, which give rise to 

isolated stable dissipative solitons in models of photonic 

and [28] and plasmonic [29] couplers (see a review in 

Ref. [30]), including two-dimensional solitons and 

vortices in planar couplers [31].  

In this work, we identify stability borders for modes 

in the nonlinear coupler and its PT -symmetric 

generalization, produced by symmetric and 

antisymmetric 2- and 3-soliton inputs, and compare the 

results with those found previously for fundamental 

solitons. Dynamical regimes for 2-solitons injected into 

one core of the coupler are investigated too. The 

analysis is performed by means of systematic 

simulations.  

 

2.  DYNAMICS OF HIGHER-ORDER SOLITONS 

IN NONLINEAR COUPLERS. 

The transmission of light in the lossless dual-core 

waveguide is described by the linearly coupled nonlinear 

Schrödinger (NLS) equations for amplitudes u(z, t) and 

v(z, t) in the two cores: 
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where z is the propagation distance and t reduced time or 

transverse coordinate, in the temporal- or spatial-domain 

setting, respectively. Coefficients accounting for the 

dispersion or diffraction, Kerr nonlinearity, and inter-

core coupling 2 are all normalized here to be 1. 

The temporal profiles of injected light corresponds to 

symmetric (+) or antisymmetric (-) N-solitons with 

fundamental amplitude η, v(z = 0, t) = ±u(z = 0, t) = N   

ηsech (ηt). In both cases, this input gives rise to obvious 

exact solutions to Eqs. (1), which are tantamount to the 

respective exact solutions of the single NLS equation. 

The issue is the stability of these solitons against 

perturbations that tend to destroy their symmetry or 

antisymmetry. This problem was tackled by means of 

systematic simulations of Eqs. (1), with the 

symmetry/antisymmetry-breaking perturbations 

introduced by adding 2% to and subtracting 2% from 

amplitudes of the two components. Such per- turbations 

were found to be much stronger in affecting the solitons 

than other perturbation modes (for instance, symmetric 

ones, which act identically on both components). In 

principle, one may attack the stability problem 

differently, through the computation of Floquet 

multipliers for small perturbations around the time-

periodic solutions [32], but the implementation of such a 

rigorous analysis for the N-solitons is quite tricky. 

Generic outcomes of the evolution of the perturbed 

symmetric and antisymmetric N-solitons for relatively 

low amplitudes are illustrated by Fig. 1. In this case, the 

higher-order solitons are unstable in the dual-core 

system, rearranging themselves into breather-like 

symmetric modes oscillating around fundamental 

solitons. Note that the breather generated by the 

antisymmetric input features a much larger amplitude of 

the intrinsic oscillations, but it always oscillates around 

a symmetric fundamental soliton, rather than an 

antisymmetric one. The latter finding illustrates the fact 

that, while antisymmetric fundamental solitons have a 

limited stability region [20], the symmetric 

solitons are more robust objects, which realize the 

ground state of the coupler [21].  

With the increase of η, this scenario changes above a 

certain critical value ηcr, where the perturbed symmetric 

or antisymmetric higher-order soliton undergoes the 

spontaneous symmetry breaking, being transformed by 

the instability into an excited state oscillating around an 

asymmetric fundamental soliton, which is the basic 

propagation mode (ground state) in the nonlinear 

directional coupler for energies exceeding the respective 

threshold [18]-[21]. These cases are shown, severally, in 

Figs. 2 and 3, for the symmetric 2-soliton with η
2
 = 0.2 

> η
2

cr ≈ 0.090, and for the antisymmetric one, with η
2
= 

0.5 > η
2

cr ≈ 0.366. Note that, in both cases, the 

established mode features a strong asymmetry, with the 

pulse in one core being close to a fundamental soliton 

existing in this core without the coupling, while the 

weak component in the other core is a quasi-linear mode 

supported by its attraction to the strong component in 

the first core. 

The so found critical values for the spontaneous 

symmetry breaking are collected in Table 1. Included 

into the table are also η
2

cr = 4/3 for the fundamental 

symmetric soliton, which is a well-known exact result 

[18], and η
2

cr ≈ 0.75 for the antisymmetric soliton, which 
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was found in a numerical form [20]. The critical values 

for the 2- and 3-solitons of both types, symmetric and 

antisymmetric, are new results obtained in the present 

work. It is worthy to note that (η
2

cr) symm rapidly 

decays with the increase of the soliton's order, and (η
2

cr) 

anti decays too, but much slower. As a result, while the 

threshold is higher for the fundamental (N = 1) 

symmetric solitons than for their antisymmetric 

counterparts, the relation is opposite for N = 2 and 3. 

 

Table 1. The critical value of the squared amplitude η
2 

for the symmetric and antisymmetric solitons of orders 

N = 1 (fundamental), 2, and 3, above which the soliton 

undergoes the spontaneous rearrangement into a 

breather oscillating around a fundamental asymmetric 

soliton.  

 

N 1 2 3 

Symm 4/3 0.090 0.018 

anti 0.75 0.366 0.200 

 

An essential characteristic of the dynamical 

rearrangement of the solitons of different types is the 

share of the initial energy, 2 2[| ( ) | | ( ) | ]t t 

   dt, 

which is kept by the established symmetric or 

asymmetric breather (despite the persistent vibrations, 

the breathers in the final state do not emit radiation). 

This share is shown in Fig. 4 as a function of η
2 

for both 

the symmetric and antisymmetric 2-soliton inputs. A 

salient feature of the dependence is that the 

rearrangement of the antisymmetric 2-soliton into the 

symmetric or asymmetric mode gives rise to essentially 

larger loss than the rearrangement of its symmetric 

counterpart. This fact is natural, as the rearrangement is 

more dramatic for the antisymmetric input, always 

transforming it into a mode of the opposite symmetry. In 

fact, the strong loss suffered by the antisymmetric input 

explains its stronger effective stability in comparison 

with its symmetric counterpart, as the decrease of the 

pulse's energy pushes it farther from the instability 

border. 

  

3. DYNAMICS OF HIGHER-ORDER SOLITONS 

IN PT SYMMETRIC COUPLERS.  

The dual-core waveguide with the balanced gain and 

loss acting in the two cores is described by the following 

generalization of Eqs. (1) [26]: 

 
2
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z tt
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where   represents equal coefficients of the linear gain 

and loss. The PT symmetry holds in this system for 

 1. In this case, the inputs in the form of v(t) = u(t) 

exp(i sin
-1

(  )) = Nη sech (ηt), or v(t) = -u(t) exp(-i sin
-

1
(  ))= 

 

 
 

Fig. 1 (a) A typical example of the relaxation of a 

perturbed second-order symmetric soliton with η
2
 = 

0.05 into a persistent breather oscillating around a 

symmetric fundamental soliton. (b) An example of the 

convergence of a perturbed second-order antisymmetric 

soliton with η
2
 = 0.2 into a symmetric breather. 

 

N η sech (ηt) automatically generate exact solutions 

to Eqs. (2) [26], in the form of N-solitons, which are, 

respectively,counterparts of the symmetric and 

antisymmetric solutions of Eq. (1). Accordingly, they 

may be called PT –symmetric and PT -antisymmetric 

modes. 

For small η2, both the PT -symmetric and 

antisymmetric inputs are transformed into breathers 

oscillating around PT -symmetric fundamental solitons. 

In this case, the loss and gain remain exactly balanced, 

hence the situation is not different from that considered 

above for the ordinary coupler, without the PT terms. 

However, unlike the regular coupler, the PT -symmetric 

system does not support asymmetric solitons, as the 

balance between the gain and loss is impossible for 

them, the symmetry/antisymmetry-breaking instability 

leading to blowup [26]. Thus, the basic issue is to 

identify the respective stability border, η
2

max. For the 

exact PT -symmetric and antisymmetric fundamental 

solitons, the borders were found in Ref. [26], in the 
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analytical and numerical forms, respectively. Here, we 

have identied stability borders for the PT -symmetric 

and antisymmetric inputs in the form of 2-solitons, as 

shown in Fig. 5. For the sake of the comparison, the 

stability limits found in Ref. [26] for the fundamental 

solitons are shown too in the figure. 

Note that the stability borders for the PT -symmetric 

and antisymmetric 2-soliton inputs in Fig. 5 start, at   = 

0, from values coinciding with those given for N = 2 in 

Table 1. It is worthy to note that, similar to the situation 

in the system without the PT terms, the stability region 

is much smaller for the PT -symmetric input than for its 

PT -antisymmetric counterpart, on the contrary to the 

relation between the stability borders for the 

fundamental solitons. 

 

 
 

 
 

Fig. 2 A typical example of the relaxation of a perturbed 

second-order symmetric soliton with η
2
 = 0.2 into a 

breather oscillating around a fundamental asymmetric 

soliton. 

 

Switching dynamics of higher-order solitons in the 

nonlinear coupler. Nonlinear couplers are mostoften 

used in the dynamical regime, launching the input signal 

(a fundamental soliton) into one core, and following 

oscillations of the energy between the cores. The most 

typical application of such regimes is nonlinearity-

controlled switching between the cores [17]-[21], [33]. 

These studies suggest to investigate the dynamics of 2-

solitons injected into a single core, i.e., simulate Eqs. (1) 

with initial conditions u (z = 0; t) = 2 η sech(η t), v(z = 

0,t) = 0, and compare results with those reported 

previously for the fundamental solitons. 

For the input with large η the nonlinearity dominates 

over the coupling, hence the 2-soliton stays, essentially, 

as the oscillating mode in the straight core, feeling little 

presence of the cross one. With the decrease of η, the 

amplitude of the oscillations decreases, maintaining a 

constant oscillation period. As η approaches 1, this 

oscillating mode relaxes into a quasi-fundamental 

soliton coupled to a quasi-linear oscillating component 

in the cross core (similar to the picture displayed in Fig. 

3). On the other hand, at small values of η, the input is 

converted into a breather with symmetric components in 

the two cores, oscillating around a fundamental soliton, 

which resembles the picture shown above for another 

situation (the antisymmetric 2-soliton input) in Fig. 1(b). 

A more interesting scenario occurs in the interval of 

0.43≤ η
2
 ≥ 0.67, in the zone between the above-

mentioned regimes of the strongly asymmetric and 

almost symmetric outputs. Close to the upper edge of 

this interval, around η
2 

= 0.67, the frequency of the inner 

vibrations of the symmetric 2-soliton approaches the 

frequency of linear oscillations between the cores of the 

coupler. 

 
 

 
 

Fig.3 An example of the convergence of a perturbed 

antisymmetric second-order soliton with η
2
 = 0.5 into a 

strongly asymmetric breather. 

 

As a result of the proximity to this resonance, a 

perfect periodic switching between the cores is 

observed, as shown in Fig. 6(a). A small decrease of η
2
 

gives rise to another effect, viz., splitting of the initial 2-
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soliton into a pair of separating nearly symmetric 

fundamental solitons, as seen in Fig. 6(b). 

 

4.  CONCLUSIONS 

We have studied the evolution of symmetric and 

antisymmetric higher-order solitons of orders N = 2 and 

3 in the basic model of the nonlinear coupler and in its 

PT -symmetric generalization. In the former model, we 

have identified regions of the convergence of injected 

perturbed N-solitons into symmetric and asymmetric 

breathers oscillating around fundamental solitons, 

symmetric or asymmetric ones. Critical values of input 

amplitude parameter, ηcr, which correspond to thresholds 

of the spontaneous symmetry and antisymmetry 

breaking, have been found for the 2- and 3-solitons. The 

evolution of the antisymmetric 2-soliton leads to a much 

larger radiation loss than in the case of the symmetric 

input. Asymmetric modes do not exist in the PT -

symmetric system, with mutually balanced gain and loss 

acting in the linearly coupled cores. In this case, stability 

borders for the inputs in the form of PT - symmetric and 

antisymmetric 2-solitons have been found too. In all the 

cases, a noteworthy result is that the stability region for 

the antisymmetric 2-soliton is considerably larger than 

for its symmetric counterpart, on the contrary to the 

previously known results for fundamental solitons. This 

feature is explained by strong radiation loss of the 

rearranging antisymmetric mode, which pushes it back 

from the instability border. We have also studied the 

propagation of the 2-soliton injected into one core of the 

coupler (without the PT terms). In that case, different 

dynamical regimes are observed for different values of 

the input amplitude. In particular, a region of splitting of 

the input into a pair of symmetric solitons was found, 

which may be explained by proximity to the resonance 

between the intrinsic vibrations 

 

 
 

Fig. 4 The share of the total power kept in the final 

oscillating pulse as a function of input parameter η
2 

for 

the initial symmetric and antisymmetric 2-solitons (the 

blue solid and red dashed curves, respectively). Marked 

are the threshold values η
2

cr separating the transition 

into the symmetric and asymmetric breathers, see Table 

1. 

 

 
 

Fig. 5 Stability borders for the fundamental and second-

order PT -symmetric and antisymmetric solitons, in the 

PT -balanced system. The input solitons with amplitude 

η
 
give rise to stable modes at η

2
 < η

2
 
max

. FS stands the 

analytically found stability border for PT -symmetric 

fundamental solitons, 2 2

max (4 / 3) 1   , and FA is 

the numerically found border for PT -antisymmetric 

fundamental solitons [26]. New results are represented 

by the stability borders for the PT –symmetric and 

antisymmetric 2-solitons (2S and 2A, respectively).of the 

2-soliton and field oscillations between the two cores. 

 

 
 

 
 

Fig. 6 (a) Periodic switching of light, coupled in the 

form of the 2-soliton into the single core, between the 

two cores of the coupler, at η
2
 = 0.67. (b) Symmetric 

splitting of the 2-soliton, coupled into the single core, at 

η
2
= 0.53 (the field is shown in the straight core, the 

picture in the other one being almost identical). 
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