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ABSTRACT

This paper compares the use of deep learning with
YOLOV5 and ReLU to create a prediction system for
Aeronautical Meteorological Services. The system
forecasts five types of weather conditions: BKN,
CAVOK, FEW, OVER, and SCT. The evaluative
information for the images is based on observing the
characteristics of grouped clouds and comparing them
with quantities in the sky using the "okta™ unit of
measurement, which divides each image into eight
parts. Thus, the deep learning aspect of this paper
involves teaching the model to recognize various image
characteristics both during the day and at night to use
the forecast results to inform sky conditions. The
process described in this article involves three steps:
The first step is to train the data with images that have
varying characteristics from the five data types. The
next step is to test the accuracy of the weights
generated from the training and training steps. The
final step is to use the weights to create a decision-
making system for users. From the experiment, a
private dataset in this article used more than 10,000
images in the testing. The experimental results found
that the average accuracy results for the YOLOV5 and
ReLU algorithms could be measured at 80.88% and
76.82%, respectively.
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