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บทคัดย่อ 

บทความนี้น าเสนอการวิเคราะห์ที่ครอบคลุมและอธิบายผล
การตอบสนองของระบบการสั่นสะเทือนที่มี 1 ดีกรีอิสระโดย
ละเอียดซึ่งเกี่ยวข้องกับการสั่นแบบอิสระและแบบถูกบังคับทั้งที่มี
และไม่มีการหน่วง รายละเอียดของการวิเคราะห์ได้ให้ไว้และ
น าไปสู่การได้มาซึ่งผลเฉลยรูปแบบปิดเชิงวิเคราะห์ ได้สังเกตเห็น
ผลลัพธ์ที่ส าคัญและมีการอภิปรายให้ไว้ในบทความ หลักการ
ต่างๆ สามารถใช้เป็นพื้นฐานสู่การจ าลองระบบที่มีความซับซ้อน
โดยการใช้หลายจ านวนดีกรีอิสระที่เหมาะส าหรับเทคนิคเชิง
ตัวเลข 

 

ค าส าคัญ: การสั่นสะเทือน การหน่วง ผลเฉลยรูปแบบปิด ระบบที่มี 1 
ดีกรีอิสระ 
 
 

ABSTRACT 

This paper presents a comprehensive analysis and 

clearly explains the responses of vibrating system 

having single degree of freedom, which involved free 

and forced vibrations with and without damping. 

Detailed analysis is given and led to obtain an 

analytical closed-form solution. Important results are 

observed and discussed in the paper. The concepts can 

be used as a basic to model a more complex system 

using the multidegree of freedom suitable for 

numerical techniques. 
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1. บทน าและความส าคัญของปัญหา 

การสั่นสะเทือน (Vibration or oscillation) หรือ เรียกโดยย่อ
ว่า การสั่น คือ การศึกษาเกี่ยวกับการเคลื่อนท่ีซ้้าหรือซ้้าใกล้เคียง 
(Repeated or nearly repeated motion) กับแนวเส้นทางการ
เคลื่อนท่ีเดิมของวัตถุ หรือของระบบเชิงกลท่ีสัมพัทธ์กับกรอบอ้างอิง 
(Reference frame) หรือ ต้าแหน่งท่ีระบุ (Nominal position) [1] 
– [3] 

การให้ความสนใจต่อการวิเคราะห์การสั่นในเชิงวิศวกรรม คือ 
เพื่อหลีกเลี่ยงการสั่นสะเทือนมากเกินไป (Excessive vibration) [1] 
ท่ีอาจส่งผลกระทบต่อโครงสร้าง (Structures) เครื่องจักรกล 
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(Machines) หรือ ยานพาหนะ (Vehicles) ซ่ึงเมื่อไหร่ก็ตาม 
ค่าความถี่ธรรมชาติของการสั่น (Natural vibration frequency) 
ของระบบท่ีก้าลังพิจารณามีการซ้อนทับกับค่าความถี่การสั่นของการ
กระตุ้นจากภายนอก (External exciting vibration frequency) 
ส่งผลท้าให้เกิดปรากฏการณ์ท่ีเรียกว่า การก้าทอน (Resonance) 
ซ่ึงเป็นสาเหตุน้าไปสู่การ เคลื่อนท่ีมากหรือการเสียรูปมากท่ีมี
ผลกระทบต่อการใช้งานหรืออาจเกิดการวิบัติ (Failures) ตามมาใน
ภายหลัง ดังน้ัน การค้านวณหาค่าความถี่ธรรมชาติจึงเป็นสิ่งส้าคัญ
หลักในการศึกษาการสั่นของระบบ 

คุณสมบัติส้าคัญท่ีเป็นองค์ประกอบพื้นฐานของการสั่น (Basic 
components of vibrating) โดยส่งผลต่อพฤติกรรมการตอบสนอง
ของระบบประกอบด้วย [4] 
(1) มวล (Mass) ท้าให้เกิดแรงเฉื่อย (Inertia force) ในทิศทางตรง

ข้ามกับการเคลื่อนท่ี 
(2) ความแกร่ง (Stiffness) มีผลต่อแรงต้านทาน (Resisting force) 

ของระบบ 
(3) กลไกการหน่วง (Damper mechanism) ส่งผลต่อการกระจาย

หรือสลายพลังงาน (Energy dissipation) 
เมื่อองค์ประกอบพื้นฐานของการสั่นมีคุณลักษณะเป็นแบบเชิง

เส้น จึงเรียกการสั่นของระบบท่ีเกิดขึ้น น้ีว่า การสั่นแบบเชิงเส้น 
(Linear vibration) โดยสามารถท้าการประยุกต์ใช้หลักการของการ
ซ้อนทับ (Principle of superposition) กับระบบได้ [5] ส้าหรับ
การสั่นของระบบท่ีปราศจากผลของแรงพลวัตจากภายนอกกระท้า 
(External dynamic forces) แต่ยังคงสามารถเกิดการสั่นได้ภายใต้
ผลของแรงประจ้าตัว (Inherent forces) ท่ีมีในระบบ จึงเรียก
รูปแบบการสั่นน้ันว่า การสั่นอิสระ (Free vibrations) และถ้าระบบ
ไม่เกิดการสูญเสียพลังงานหรือไม่มีการกระจายพลังงานเกิดขึ้นจึง
เรียกว่า การสั่นแบบไร้การหน่วง (Undamped vibrations) 
 

2. แบบจ าลองทางคณิตศาสตร์และสมการควบคุมการสั่น
ทั่วไปของระบบ SDOF 

กระบวนการวิ เคราะห์การสั่น (Vibration analysis 
procedure) ของระบบพลวัต (Dynamic system) เริ่มต้นจากการ
พิจารณา [5] 
(1) การสร้างแบบจ้าลองเชิงคณิตศาสตร์ หรือแบบจ้าลองเชิง

วิเคราะห์ (Mathematical or analytical modelling) ขึ้นอยู่

กับการพิจารณาตัดสินใจเลือกพารามิเตอร์ต่างๆ ท่ีเกี่ยวข้องและ
เหมาะสมในการอธิบายลักษณะของพฤติกรรมการสั่นหรือการ
เคลื่อนท่ีของระบบ 

(2) การพิสูจน์สมการควบคุม (Derivation of governing 
equation) หรือเรียกว่า สมการการเคลื่อนท่ี (Motion 
equation) เพื่อใช้ในการวิเคราะห์ปัญหา 

(3) การหาผลเฉลยของสมการ (Solution of equation) ซ่ึงเป็น
การแก้ปัญหาทางคณิตศาสตร์เพื่อหาผลการตอบสนองต่อการ
สั่น โดยมีหลากหลายวิธีการขึ้นอยู่กับความซับซ้อนของปัญหาท่ี
พิจารณา 

(4) การแปลความของผลลัพธ์ (Interpretation of results) โดย
ผลลัพธ์ท่ีได้อาจแสดงอยู่ในรูปแบบประวัติเวลา (Time history) 
ของการกระจัด (Displacements) ความเร็ว (Velocities) หรือ
ความเร่ง  (Accelerations) ท้ัง น้ี การแปลความหมายของ
ผลลัพธ์ขึ้นอยู่กับวัตถุประสงค์ของการวิเคราะห์ 
ดังน้ัน ผลการตอบสนองต่อการสั่นจึงเป็นฟังก์ชั่นท่ีมีการแปรผัน

ตามเวลา (Time-dependent) และขึ้นอยู่กับเงื่อนไขแรกเริ่มท่ี
ก้าหนด (Initial conditions) และผลการกระตุ้นจากภายนอก 
(External excitations) 

ส่วนใหญ่แล้ว พบว่า สมการการเคลื่อนท่ีอยู่ในรูปแบบของชุด
สมการเชิงอนุพันธ์สามัญ (Ordinary differential equations) ใน
กรณีของระบบไม่ต่อเน่ือง (Discrete or lumped system) ซ่ึงมี
ดีกรีอิสระจ้านวนจ้ากัด (Finite number of degrees of 
freedom) [1,2] หรือ ในรูปแบบของสมการเชิงอนุพันธ์แยกส่วน 
(Partial differential equations) ในกรณีของระบบต่อเน่ือง 
(Continuous or distributed system) ท่ีมีดีกรีอิสระจ้านวนอนันต์
ค่า (Infinite degrees of freedom) [6], [7] 
 

 

รูปที่ 1 แบบจ าลองระบบมวล-สปริง-ตัวหน่วงภายใต้แรงพลวัต 
 

อย่างไรก็ดี เพื่อเป็นการง่ายต่อความเข้าใจจึงเริ่มต้นจากการ
พิจารณาแบบจ้าลองของระบบการสั่นอย่างง่ายท่ีมี 1 ดีกรีอิสระ 
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(Single degree of freedom: SDOF system) [8-11] ท่ีอยู่ภายใต้
ผลของแรงกระท้าเชิงพลวัต ( )F t และเป็นฟังก์ชั่นของเวลา ( )t โดย
มีองค์ประกอบพื้นฐานของการสั่นดังต่อไปน้ี คือ มวล ( m ) สปริง
ยืดหยุ่นเชิงเส้น (Linear elastic spring) ท่ีมีค่าคงท่ีของสปริงเป็น k

และตัวหน่วงท่ีมีค่าสัมประสิทธิ์การหน่วง (Damping coefficient 
or constant: c ) หรือเรียกว่า แบบจ้าลองของระบบมวล-สปริง-ตัว
หน่วง (Mass-spring-damper model system) ดังแสดงในรูปท่ี 1 

สมการการเคลื่อนท่ีสามารถท้าการพิสูจน์มาได้ด้วยการ
พิจารณาสมดุลพลวัต (Dynamic equilibrium) ของแผนภาพวัตถุ
แข็งเกร็งพลวัต (Dynamic free-body-diagram: DFBD) [1-3] ดัง
รูปท่ี 2 
 

 

รูปที่ 2 แผนภาพวัตถุแข็งเกร็งเชิงพลวัตของแบบจ าลองระบบมวล-
สปริง-ตัวหน่วง 
 

จากรูปท่ี 1 และรูปท่ี 2 ก้าหนดให้ ( ) ( )x t x t และ ( )x t

หมายถึง ปริมาณการกระจัด ความเร็วและความเร่ง ตามล้าดับ โดย 
( ) d dt  ส้าหรับ ( )df t คือ แรงหน่วง (Damping force) 
และ ( )sf t คือ แรงสปริง (Spring force) โดยมีสมการความสัมพันธ์
เชิงเส้น (Linear relationships) ดังต่อไปน้ี คือ 
 

( ) ( )df t cx t  (1) 

 

( ) ( )sf t kx t  (2) 

 

ดังน้ัน สมการการเคลื่อนท่ีของแบบจ้าลองระบบมวล-สปริง-ตัว
หน่วงในรูปแบบมาตรฐาน (Standard form) สามารถแสดงได้ดังน้ี 
[1], [4], [5] 
 

2 2( ) 2 ( ) ( ) ( )x t x t x t f t      (3) 

 

เมื่อ   คือ ความถี่ธรรมชาติเชิงมุม (Circular natural 
frequency) 
 

k m   (4) 

และ   คือ ตัวประกอบหรืออัตราส่วนการหน่วง (Damping factor 
or damping ratio) ท่ีมีนิยาม คือ 

 

2cc c c mk    (5) 

 
โดย 

cc  เรียกว่า ค่าสัมประสิทธิ์หรือค่าคงท่ีของการหน่วงวิกฤติ 
(Critical damping coefficient or constant) ส้าหรับฟังก์ชั่นของ
แรงพลวัตจากภายนอก ( )f t  ให้ไว้ดังนี้ 
 

( ) ( )f t F t k  (6) 

 

สังเกตได้ว่าท้ัง   และ   ตามท่ีได้นิยามไว้ในสมการ (4) และ
สมการ (5) ตามล้าดับ แสดงอยู่ในพจน์ของปริมาณองค์ประกอบ
พื้นฐานของการสั่น ( , ,m c k ) ของระบบ ซ่ึงสมการ (3) เป็นสมการ
เชิงอนุพันธ์สามัญอันดับท่ี 2 แบบไม่เอกพันธ์ (Nonhomogeneous 
2nd-order ODE) [12] ท่ีมีตัวแปรอิสระ (ตัวแปรต้น) คือ เวลา ( )t

และตัวแปรตาม คือ ( )x t ซ่ึงเป็นผลเฉลยท่ีต้องการหา 
 

3. การสั่นอิสระแบบไร้การหน่วง 

เริ่มจากการพิจารณาการสั่นของระบบอย่างง่าย ซ่ึงในท่ีน้ี คือ 
การสั่นอิสระแบบไร้การหน่วงของระบบมวล-สปริง (Undamped 
free vibration of mass-spring system) โดย
ก้าหนดให้ ( ) 0f t   และ 0   ดังน้ัน แบบจ้าลองในรูปท่ี 1 จึง
กลายมาเป็นแบบจ้าลองในรูปท่ี 3 
 

 

รูปท่ี 3 แบบจ าลองการสั่นอิสระของระบบมวล-สปริง 
 

สมการการเคลื่อนท่ีของระบบดังแสดงไว้ในสมการ (3) จึงลดรูป
มาสู่สมการต่อไปน้ี 
 

2( ) ( ) 0x t x t   (7) 
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โดยนัยทางคณิตศาสตร์เรียกรูปแบบสมการ (7) ว่า สมการฮาร์
มอนิค (Harmonic equation) และมีผลเฉลยท่ีสามารถแสดงใน
รูปแบบต่าง ๆ ไดด้ังน้ี คือ [1] – [5], [12], [13] 
 

รูปแบบที่ 1:   1 2( ) i t i tx t C e C e    (8) 
 

ท้ัง น้ี 
1C  และ 

2C  เป็นค่าคงท่ีจ้านวนเชิงซ้อน (Complex 

constants) ท่ีได้จากการอินทิเกรตสมการ (7) ส่วนค่า 1i    
เป็นจ้านวนจินตภาพ (Imaginary number) 
 

รูปแบบที่ 2:   
1 2( ) cos sinx t A t A t    (9) 

 

1 1 2A C C   (10) 

 

2 1 2( )A C C i   (11) 

 

โดยที ่
1A และ

2A  คือ ค่าคงทีจ่้านวนจริง (Real constants) 
 

รูปแบบที่ 3:   ( ) cos( )x t A t    (12) 
 

2 2

1 2A A A   (13) 

 
1

2 1tan ( )A A   (14) 

 

ในท่ีน้ี A  คือ ปริมาณหรือขนาดของการสั่น (Amplitude) และ   
คือ มุมเฟส (Phase angle) 
 

รูปแบบที่ 4:   ( ) sin( )ox t A t    (15) 
 

1

1 2tan ( )o A A   (16) 

 

ค่าคงท่ีต่าง ๆ ท่ีปรากฏอยู่ในสมการ (8) สมการ (9) สมการ 
(12) และสมการ (15) คือ 1 2( , )C C 1 2( , )A A ( , )A   และ 
( , )oA   ตามล้าดับ ซ่ึงสามารถหาค่าท่ีแน่นอนได้ด้วยการประยุกต์
เ งื่ อ น ไ ข ค่ า เ ริ่ ม ต้ น ท่ี  0t   โ ด ย ก้ า ห น ด ใ ห้ (0) ox x

และ (0) (0) ox v v  เมื่อ ( ) ( )v t x t คือ ความเร็วของการ
เคลื่อนท่ี ท้ังน้ี ผลเฉลย ( )x t ของสมการ (7) คือ ผลการตอบสนอง
ของระบบ ณ เวลา ( )t ใด ๆ ดังแสดงในรูปท่ี 4 ท่ีได้จากการเลือกใช้

รูปแบบของสมการ (12) และมีคุณสมบัติ (Property) ดังน้ี [1] 
 

( ) ( )x t nT x t  ; 1,2,3,...n   (17) 

 

เมื่อ T  เรียกว่า คาบการสั่นอิสระแบบไร้การหน่วง (Undamped 
free vibration period) และมีความสัมพันธ์กับความถี่ธรรมชาติ
ของการสั่นอิสระ ดังน้ี 
 

2T    (18) 

 

 

 

รูปท่ี 4 ประวัติเวลาของการสั่นอิสระแบบฮาร์มอนิค 
 

4. การสั่นอิสระแบบหน่วง 

ล้าดับถัดไป พิจารณาระบบการสั่นอิสระแบบหน่วง (Damped 
free vibration system) ดังรูปท่ี 5 เมื่อก้าหนดให้ ( ) 0f t  ใน
สมการ (3) ซ่ึงผลท่ีได้ คือ สมการการเคลื่อนท่ีดังต่อไปน้ี 
 

2( ) 2 ( ) ( ) 0x t x t x t     (19) 

 

 

รูปท่ี 5 แบบจ าลองการสั่นอิสระของระบบมวล-สปริง-ตัวหน่วง 
 

ส้าหรับผลเฉลยของสมการ (19) สามารถแสดงได้ในรูปแบบ 
[12], [13] 

 
2 2( 1) ( 1)

1 2( )
t t

x t C e C e
          

   (20) 
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จากต้ าราสากลเกี่ ยวกับการวิ เคราะห์การสั่ นสรุปได้ว่ า 
พฤติกรรมการเคลื่อนท่ี (การตอบสนอง) ภายใต้การหน่วงสามารถจัด
จ้าแนกออกได้เป็น 3 กรณี โดยให้พิจารณาพจน์ 2( 1)   ใน
สมการ (20) ดังน้ี คือ [1] – [7] 
 

กรณีที่ 1: การเคลื่อนท่ีภายใต้การหน่วงน้อย (Underdamped 
motions) เมื่อ 2 1 0    

 
2 1   หรือ 1 1    (21) 

 

เน่ืองจากองค์ประกอบพื้นฐานของการสั่น ( , ,m c k ) มีค่าเป็น
บวกทุก ๆ ค่า และจากนิยาม   ในสมการ (5) ดังน้ัน จึงเขียน
สมการ (21) ได้ใหม่เป็น 
 

0 1   หรือ 0 cc c   (22) 

 

ก้าหนดให้ 
d  คือ ความถี่ธรรมชาติแบบหน่วง (Damped 

natural frequency) และมีค่าน้อยกว่า   เสมอ โดยมีนิยาม คือ 
 

2 21 1d i         (23) 

 

ท้ังน้ีแล้ว ในทางปฏิบัติ (In practices) พบว่า 0.2   ดังน้ันจึง
สมมติให ้

d   ในสมการ (23) 
เมื่อท้าการแทนท่ีสมการ (23) กลับลงสูส่มการ (20) ผลท่ีได ้คือ 

 
2 2( 1 ) ( 1 )

1 2( )
i t i t

x t C e C e
          

   (24) 

 

จากนั้น ให้พิจารณาเปรียบเทียบกันระหว่างสมการ (24) และสมการ 
(8) ร่วมกับการใช้สมการ (23) จึงสามารถเขียนผลเฉลย ( )x t ได้ใหม่
ใน 4 รูปแบบ ดังน้ี [1] – [5], [12], [13] 
 

รูปแบบที่ 1:   1 2( ) ( )d di t i ttx t e C e C e
     (25) 

 

รูปแบบที่ 2:   1 2( ) ( cos sin )t

d dx t e A t A t     (26) 
 

รูปแบบที่ 3:   ( ) cos( )t

dx t Ae t     (27) 
 

รูปแบบที่ 4:   ( ) sin( )t

d ox t Ae t     (28) 
 

 
รูปท่ี 6 ลักษณะการตอบสนองของระบบภายใต้การหน่วงน้อย 

รูปท่ี 6 แสดงตัวอย่างผลการตอบสนอง ( )x t เมื่อมีการ
แปรเปลี่ยนค่าไปตามปริมาณ

d t  โดยได้เลือกใช้สมการของ ( )x t

ให้อยู่ในรูปแบบท่ี 3 หรือ รูปแบบท่ี 4 
คาบการสั่นอิสระแบบหน่วง (Damped free vibration 

period) 
dT  มีนิยามดังน้ี 

 

22 2 ( 1 )d dT         (29) 

 

และ เวลา t  และ  
o

t ท่ีสอดคล้องกับมุม เฟส   และ  
o  

ตามล้าดับ คือ 
 

dt    (30) 

 

o o dt    (31) 

 

กรณีที่ 2: การเคลื่อนท่ีภายใต้การหน่วงวิกฤติ (Critically damped 
motions) เมื่อ 2 1 0    

ส้าหรับในกรณีน้ี ค่า 1   เท่าน้ัน โดยผลเฉลยท่ีแสดงไว้ใน
สมการ (20) น้ันไม่สามารถใช้ได้  ดังน้ันแล้ว จึงท้าการเขียนผล
เฉลย ( )x t ขึ้นมาใหม่ดังน้ี [12] 
 

1 2( ) ( ) tx t B B t e    (32) 

 

เมื่อ 1B  และ 2B  คือ ค่าคงท่ีจ้านวนจริงท่ีหาค่าได้จากเงื่อนไขค่า
เริ่มต้น 
 

จากการพิจารณาสมการ (32) สังเกตได้ว่า การเคลื่อนท่ีมี
ปริ ม าณถดถอย ในรู ปแบบขอ งฟั ง ก์ ชั่ น เ อ็ ก ซ์ โ ป เนน เชี ย ล 
(Exponential functions) จนกระท่ังเป็นศูนย์ (หยุดน่ิง) เมื่อ
เวลา ( )t มีค่าเพิ่มมากขึ้นตามล้าดับ ท้ังน้ีเป็นผลมาจากฟังก์ชั่น 
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0te    เมื่อ t   ดังน้ัน จึงสรุปได้ว่า ในกรณีท่ี 2 น้ีไม่เป็น
การเคลื่อนท่ีแบบสั่น (Nonoscillation) หรือไม่เป็นการเคลื่อนท่ีใน
ลักษณะแบบคาบ (Nonperiodic motion) 
 

กรณีที่ 3: การเคลื่อนท่ีภายใต้การหน่วงมาก (Overdamped 
motions) เมื่อ 2 1 0    

ในกรณีน้ี 1   ซ่ึงผลเฉลยของสมการ (19) สามารถเขียนให้
อยู่ในรูปแบบเช่นเดียวกันกับสมการ (20) ไดเ้ป็น [1-5,12,13] 
 

รูปแบบที่ 1: 
 

2 2( 1) ( 1)

1 2( )
t t

x t D e D e
          

   (33) 

 

รูปแบบที่ 2: 
 

2 2

1 2( ) ( cosh 1 sinh 1 )tx t e E t E t         (34) 

 

โดยที ่
 

1 1 2E D D   (35) 

 

2 1 2E D D   (36) 

 

ในท่ีน้ี 1 2( , )D D และ 1 2( , )E E เป็นค่าคงท่ีจ้านวนจริงซ่ึงสามารถหา
ค่าได้จากการประยุกต์เงื่อนไขค่าเริ่มต้นของปัญหา เมื่อพิจารณา
สมการ (33) พบว่า ไม่มีพฤติกรรมการตอบสนองของการเคลื่อนท่ี
แบบสั่นหรือแบบคาบดังแสดงในรูปท่ี 7 
 

 
 

รูปท่ี 7 รูปแบบการตอบสนองภายใต้การหน่วงมากเมื่อ 1   

 
 

รูปที่  8 การเปรียบเทียบการตอบสนองอิสระแบบหน่วงเมื่อมี
ประเภทการหน่วงแตกต่างกัน 
 

 
 

รูปที่ 9 ระนาบเฟส (ปริภูมิสถานะ) ของการตอบสนองแบบหน่วง
เมื่อมีการหน่วงแตกต่างกัน 
 

จากผลการวิเคราะห์การสั่นอิสระแบบไร้การหน่วง ( 0)  และ
การสั่นอิสระแบบหน่วง (0 1)  ของระบบท่ีมี 1 ดีกรีอิสระดัง
ได้กล่าวไว้ข้างต้น จึงสามารถสรุปได้ว่า ระบบมีการเคลื่อนท่ีแบบสั่น
ไดเ้ฉพาะในกรณีของการสั่นอิสระแบบไร้การหน่วงและกรณีของการ
สั่นอิสระแบบหน่วงน้อย (Underdamped free vibration) ท่ีอยู่
ภายใต้เงื่อนไข 0 1   เท่าน้ัน โดยรูปท่ี 8 ได้แสดงการ
เปรียบเทียบลักษณะการเคลื่อนท่ี (การสั่น) อิสระภายใต้การหน่วง 
(Damped free motions) ของท้ัง 3 กรณี หรือสามารถแสดงอยู่บน
ระนาบเฟส (Phase plane) หรือเรียกว่า ปริภูมิสถานะ (State 
space) [1] ดังรูปท่ี 9 
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5. การสั่นแบบถกูบังคับท่ีไร้การหน่วง 

ล้าดับถัดไป ท้าการพิจารณาในกรณีของระบบท่ีมีการสั่นแบบถูก
บังคับ (Forced vibration systems) โดยระบบท่ีก้าลังสนใจศึกษา
อาจอยู่ภายใต้ผลการกระตุ้นอันเน่ืองมาจาก (1) กรณีการประยุกต์
แรงพลวัต (Applied dynamic forces) หรือ (2) กรณีการ
ก้าหนดการกระจัดท่ีเป็นฟังก์ชั่นแปรผันตามเวลา (Imposed time-
dependent displacement) 

การกระตุ้นจากภายนอกน้ันสามารถมีรูปแบบท่ีเป็นได้ท้ังฮาร์มอ
นิค (Harmonic) หรือไม่เป็นฮาร์มอนิค (Nonharmonic) โดยอาจมี
ลักษณะท่ีเป็นคาบ (Periodic) หรือไม่เป็นคาบ (Nonperiodic) ก็ได้ 
หรือสามารถมีรูปแบบสุ่ม (Random) ท้ังน้ีแล้ว หากการกระตุ้นมี
รูปแบบเป็นฮาร์มอนิค พบว่า ระบบมีการตอบสนองเป็นแบบฮาร์มอ
นิคด้วยเช่นกัน (Harmonic responses) ส้าหรับในกรณีของการ
กระตุ้นท่ีมีลักษณะไม่เป็นคาบ ช่วงระยะเวลา (Time duration) 
ของการกระตุ้นอาจมีระยะเวลาท่ียาวหรือสั้นก็ได้ (Long or short 
duration) ส่วนกรณีท่ีการกระตุ้นมีลักษณะไม่เป็นคาบและกระท้า
ในแบบทันทีทันใดในช่วงระยะเวลาสั้นๆ (Suddenly applied 
nonperiodic excitations) ผลการตอบสนองของระบบท่ีได้น้ัน
เรียกว่า การตอบสนองแบบชั่วคราวหรือชั่วขณะ (Transient 
responses) [1-3] 

เริ่ มจากการพิจารณาการสั่นแบบถูกบัง คับไร้การหน่วง 
(Undamped forced vibration) ของแบบจ้าลองมวล-สปริงอย่าง
ง่าย (Mass-spring model) ภายใต้ผลของแรงขับพลวัตแบบฮาร์มอ
นิค (Harmonic driving force) ดังแสดงในรูปท่ี 10 
 

 

รูปท่ี 10 แบบจ าลองระบบมวล-สปริงภายใต้แรงพลวัต ( )F t  
 

โดยท่ีแรงพลวัตแบบฮาร์มอนิค ( )F t สามารถเลือกแสดงให้อยู่
ในรูปแบบของฟังก์ชั่นต่าง ๆ ได้ดังต่อไปน้ี คือ [1] – [5] 
 

( )( ) i t

oF t F e    (37) 

( ) cos( )oF t F t     (38) 

 

( ) sin( )oF t F t     (39) 
 

ในท่ีน้ี 
oF  คือ ขนาด (Magnitude) หรือขนาดท่ีมากสุดของแรง

พลวัต (Maximum amplitude of dynamic force)   คือ 
ความถี่ของแรงพลวัตกระท้า (Frequency of applied dynamic 
force) และนอกจากน้ีเมื่อ   พบว่า ผลการตอบสนอง (การ
เคลื่อนท่ี) ของระบบจะมีค่ามากจากปรากฏการณ์การก้าทอน 
(Resonance) และสุดท้าย   คือ มุมเฟสของแรงพลวัต (Phase 
angle of dynamic force) ท่ีขึ้นกับค่าเริ่มต้น ณ เวลา 0t   ซ่ึง
โดยส่วนใหญ่แล้วสามารถก้าหนดให้มีค่าเท่ากับศูนย์ ( 0  ) 

สมการควบคุมการสั่นแบบถูกบังคับไร้การหน่วงสามารถหาได้
จากการก้าหนดให้ 0   ลงในสมการ (3) และสมมติเลือกใช้
รูปแบบของแรง ( )F t เป็นไปตามสมการ (38) พร้อมท้ังก้าหนดให้ 

0   จึงได้ 
 

2( ) ( ) cosox t x t f t    (40) 

 

o of F m  (41) 

 

การหาผลเฉลยท่ัวไป (General solution) หรือผลเฉลยรวม
ท้ังหมด (Total solution) ของสมการ (40) น้ันประกอบไปด้วย
ผลรวมระหว่าง (1) ผลเฉลยสมทบ (Complementary 
solution:

hx ) ท่ีสอดคล้องกับเงื่อนไขเริ่มต้นและ (2) ผลเฉลยเฉพาะ 
(Particular solution: px ) ท่ีสอดคล้องกับรูปแบบของฟังก์ชั่นแรง
พลวัต [12] 

ส้าหรับผลเฉลยสมทบของสมการ (40) มีความสอดคล้องกับ
กรณีท่ีเป็นการสั่นอิสระแบบไร้การหน่วงจึงมีรูปแบบของผลเฉลยดัง
แสดงในสมการ (8) สมการ (9) สมการ (12) หรือสมการ (15) 

เน่ืองจากได้ก้าหนดให้แรงพลวัตมีรูปแบบฮาร์มอนิค ดังน้ัน ผล
เฉลยเฉพาะจึงมีรูปแบบฮาร์มอนิคด้วยเช่นกัน ท้ังน้ีแล้ว จึงสามารถ
ท้าการสมมติให้ผลเฉลยมีรูปแบบฟังก์ชั่นในลักษณะเช่นเดียวกับ
ฟังก์ชั่นของแรงพลวัตท่ีมีความถี่   ได้ดังต่อไปน้ี 
 

( ) cospx t X t   (42) 

 

เมื่อ X เป็นค่าคงท่ีท่ีบ่งบอกถึงขนาดของการตอบสนองต่อการสั่น



POSAYANANT et al.: VIBRATION RESPONSES FOR SDOF SYSTEM: I                     41 

แบบถูกบังคับ (Amplitude of forced response) 
ล้าดับถัดไป ท้าการแทนสมการ (42) ย้อนกลับลงสู่สมการ (40) 

โดยก้าหนดให้ ( ) ( )px t x t  และท้าการแก้หาค่า X  ซ่ึงเป็นขนาด
การสั่นมากสุด (Maximum amplitude) ผลลัพธ์ท่ีได้ คือ 
 

2 2( )oX f    (43) 
 

โดยเลือกใช้สมการ (9) ส้าหรับผลเฉลยสมทบเน่ืองจากสะดวกใน
การประยุกต์เงื่อนไขเริ่มต้นในภายหลังและให้แทนสมการ (43) กลับ
ลงในสมการ (42) ดังน้ัน ผลเฉลยท่ัวไป คือ 
 

2 2

1 2( ) cos sin [ ( )]cos tox t A t A t f        (44) 

 

เมื่อก้าหนดใหเ้งื่อนไขเริ่มต้นมีค่าดังต่อไปน้ี 
 

(0) ox x  และ (0) (0) ox v v   (45) 

 

ภายหลังจากการประยุกต์สมการ (45) ร่วมกับการใช้สมการ (44) จึง
แก้หาค่าคงที่ 1A และ 2A ไดต้ามล้าดับ คือ 
 

2 2

1 ( )o oA x f     (46) 

 

2 oA v   (47) 

 

เช่นน้ีแล้ว สมการ (44) สามารถจัดรูปใหม่ได้เป็น 
 

2 2( ) [ ( )]coso ox t x f t     

 
2 2( )sin [ ( )]cos to ov t f       (48) 

 

ส้าหรับกรณีปัญหาแบบสถิตย์ (Static case) พบว่า สมการ
สมดุลเชิงสถิตย์ (Static equilibrium) สามารถท้าการลดรูปมาได้
ด้วยการพิจารณาสมการ (40) เมื่ อก้ าหนดให้ ( ) 0x t   ซ่ึงมี
ความหมายว่าไม่มีความเร่งปรากฏในระบบและในท่ีน้ี x ไม่เป็น
ฟังก์ชั่นของเวลา ( )t และจากการใช้สมการ (4) ร่วมกับสมการ (41) 
เช่นน้ีแล้ว โดยให้ st stx X   คือ การกระจัดเชิงสถิตย์ (Static 
displacement) จึงได้ [1] 
 

st st oX F k   (49) 

 

จากน้ัน ให้พิจารณาผลหารหรืออัตราส่วนระหว่างสมการ (43) 
และสมการ (49) พบว่า 
 

21 (1 )o stX r     (50) 

 

และก้าหนดให ้
 

r   (51) 

 

โดยท่ี o  เรียกว่า  ตัวประกอบขยาย (Magnification or 
amplification factor) ของการสั่นแบบถูกบังคับท่ีไร้การหน่วง 
(Undamped forced vibration) และมีการแปรผันไปตามค่า r  
ดังรูปท่ี 11 ซ่ึง r  เรียกว่า ค่าอัตราส่วนความถี่ (Frequency ratio) 

ส้าหรับการตอบสนองต่อการสั่นแบบถูกบังคับไร้การหน่วง
สามารถท้าการพิจารณาและจัดจ้าแนกออกได้เป็น 3 กรณี ตามค่า 
r  ได้ดังนี้ [1-5] 
กรณีที่ 1: เมื่อ 0 1r  (0 )  

เมื่อตัวหาร (denominator) ของสมการ (50) มีค่าเป็นบวก 
ดังน้ันแล้ว สมการ (42) ยังคงมีรูปแบบสมการเหมือนเดิมและมีการ
ตอบสนองร่วมเฟส (in-phase) กับแรงพลวัต ( ) cosoF t F t   
กรณีที่ 2: เมื่อ 1r  ( )  

ในกรณีน้ี พบว่า ตัวหารของสมการ (50) มีค่าเป็นลบ จึงเขียน
สมการ (42) ใหม่ได้เป็น 
 

( ) cospx t X t    (52) 

 

และนิยามขนาดการสั่น X  ในสมการ (50) ใหม่ให้มีค่าเป็นบวก ดังน้ี 
 

ด้ ว ย ก า ร พิ จ า ร ณ า ส ม ก า ร  (52) แ ล ะ แ ร ง พ ล วั ต 
( ) cosoF t F t   พบว่า มีเครื่องหมายตรงกันข้าม ดังน้ัน จึง

กล่าวได้ว่า การตอบสนอง ( )px t  มีลักษณะนอกเฟสกับแรงพลวัต 
โ ด ย มี มุ ม เ ฟ ส แ ต ก ต่ า ง กั น ร ะ ห ว่ า ง  ( )px t  แ ล ะ ( )F t

เท่ากับ 180 (180 out-of-phase) และเมื่อพิจารณาให้ r  
หมายถึง ความถี่   ในสมการ (51) น้ันมีค่ามากๆ ส่งผลท้าให้การ
ตอบสนอง X  ในสมการ (53) มีค่าเข้าใกล้ศูนย์ ( 0)X   
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รูปที่ 11 ผลการตอบสนองของ 
o  ท่ีแปรผันกับ r  

 
2( 1)stX r   (53) 

 
กรณีที่ 3: เมื่อ 1r  ( )  

ส้าหรับกรณี น้ี  เมื่อ   จึงท้าให้เกิดการก้าทอน 
(Resonance) และส่งผลให้การตอบสนอง X  ในสมการ (50) หรือ
สมการ (53) มีค่าเข้าสู่ค่าอนันต์ หากต้องการศึกษาพฤติกรรมการ
ตอบสนองเมื่อ 1r  จึงเขียนสมการ (48) ขึ้นใหม่โดยใช้สมการ (42) 
และสมการ (50) จึงได้ 
 

( ) cos ( )sino ox t x t v t     

 
2[(cos cos ) (1 )]st t t r      (54) 

 

หลังจากน้ัน ท้าการหาลิมิตส้าหรับพจน์สุดท้ายทางขวามือใน
สมการ (54) โดยก้าหนดให้ 1r  พบว่า [13] 
 

2

1
lim(cos cos ) (1 ) ( 2)sin
r

t t r t t  


     (55) 

 

เมื่ อแทนสมการ  (55) กลับลงสู่ สมการ (54) ส้ าหรับการ

ตอบสนองในกรณีท่ีมีการก้าทอนเกิดขึ้น ( ) หรือ 1r  ดังน้ัน
แล้ว 

 
( ; 1) cos ( )sino ox t r x t v t      

 ( 2)sinst t t    (56) 
 

ในท่ีน้ี สังเกตได้ว่า พจน์สุดท้ายทางขวามือของสมการ (56) คือ 
ผลเฉลยเฉพาะ ( ; 1)px t r  ซ่ึ งมี แนวโ น้มของขนาดการสั่ น 
(Amplitude) ท่ีเพิ่มขึ้นแบบไม่มีค่าขอบเขตจ้ากัด (Unbounded) 
เมื่อเวลามีค่าเพิ่มมากขึ้น ดังน้ัน จึงสรุปได้ว่า เมื่อ   ท้าให้การ
สั่นของระบบมีขนาดโต (Large amplitude) และมีขนาดโตเพิ่มขึ้น
เรื่อยๆ เมื่อเวลาเพ่ิมมากขึ้นดังแสดงในรูปท่ี 12 
 

 
 

รูปท่ี 12 การตอบสนองแบบฮาร์มอนิคของ ( ; 1)px t r   
 

 
 

รูปท่ี 13 การตอบสนองท่ัวไปของ ( )x t เมื่อ 0 1r   
 

ส้าหรับการหาผลการตอบสนองท่ัวไป (General responses) 
หรือเรียกว่า การตอบสนองโดยรวมหรือท้ังหมด (Total responses) 
ซ่ึงก็คือ ( )x t สามารถท้าได้โดยการเลือกใช้รูปแบบของ ( )hx t ตาม
สมการ (12) เช่นน้ีแล้ว จึงสามารถแสดงให้เห็นความสัมพันธ์
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ระหว่าง ( )x t และเวลา t  ได้ดังในรูปท่ี 13 กรณีท่ี 0 1r   และ
รูปท่ี 14 กรณีท่ี 1r   
 

 
 

รูปท่ี 14 การตอบสนองท่ัวไปของ ( )x t เมื่อ 1r   
 

นอกจากน้ี ยังมีอีกหน่ึงปรากฏการณ์ท่ีน่าสนใจในการวิเคราะห์
พ ฤ ติ ก ร ร ม ก า ร สั่ น  คื อ  ป ร า ก ฏ ก า ร ณ์ บี ท ติ้ ง  (Beating 
phenomenon) [1-3] ซ่ึงเกิดขึ้นเมื่อ   แต่พิจารณาให้ 

  ส่งผลท้าให้ขนาดของการสั่นมีค่าเพิ่มขึ้น (Build up) และ
ลดลง (Die down) อย่างมีแบบแผนท่ีแน่นอน (Regular pattern) 
โดยสามารถอธิบายปรากฏการณ์บีทติ้งน้ีได้ด้วยการพิจารณาสมการ 
(48) และเพื่อให้เกิดความสะดวกในการวิเคราะห์และอธิบาย
พฤติกรรมการตอบสนองจึงก้าหนดให้เงื่อนไขค่าเริ่มต้นมีค่าเป็นศูนย์
ท้ังหมด ( 0)o ox v   ผลท่ีได้ คือ 
 

2 2( ) [ ( )](cos cos )ox t f t t      (57) 

 

และท้าการจัดรูปสมการใหม่ให้เป็น 
 

2 2( ) [2 ( )][sin( ) 2]ox t f t     

 [sin( ) 2]t   (58) 

 

หลังจากน้ัน ก้าหนดให้   มีค่าท่ีแตกต่างเพียงเล็กน้อยไป
จาก  เป็นปริมาณ 2 เมื่อ  คือ ปริมาณน้อย ๆ ท่ีมีค่าเป็นบวก 
(small positive quantity) พบว่า 
 

2    (59) 

 

2   (60) 

 

เมื่อท้าการคูณกันระหว่างสมการ (59) และสมการ (60) ผลลัพธ์
ท่ีได้ คือ 
 

2 2 4     (61) 

 

และให้ท้าการแทนสมการ (59) ถึงสมการ (61) กลับลงไปในสมการ 
(58) จึงน้าไปสู่สมการ 
 

( ; 1) [( 2 )sin ]sinox t r f t t      (62) 

 

เมื่อก้าหนดให้ 1  (very small t ) คือ  มีค่าน้อยกว่า 1 
มาก ๆ จึงท้าให้ค่าของฟังก์ชั่น sin t  น้ันมีการแปรเปลี่ยนค่า
เป็นไปอย่างช้า ๆ ตามค่าของ t  และส่งผลท้าให้คาบการสั่นมีค่า
มาก โดยที่ 
 

2T    (63) 

 

และเมื่อย้อนกลับไปพิจารณาสมการ (62) โดยก้าหนดให้เป็นตัวแทน
ของการสั่นเมื่อมีคาบของการสั่นเป็น 2T    และมีขนาดการ
สั่นท่ีมีการแปรเปลี่ยนค่าแทนด้วย *( )X t ซ่ึงมีสมการเป็น 
 

*( ) ( 2 )sinoX t f t    (64) 

 

โดยรูปท่ี 15 แสดงถึงผลการตอบสนองของปรากฏการณ์บีทติ้ง
เมือ่ก้าหนดให้ 1r  ท่ีสอดคล้องตามสมการ (62) 

ส้าหรับค้านิยามคาบของการบีทติ้ง (Beating period: bT ) 
สามารถอธิบายได้ดังนี้ คือ ระยะเวลาระหว่างจุด 2 จุด ท่ีมีขนาดการ
สั่นมากที่สุด (Maximum amplitude) ซ่ึงแสดงได้ด้วยสมการ 

 
 

รูปท่ี 15 การตอบสนองของปรากฏการณ์บีทติ้งเมื่อ 1r   
 

2 2 2 ( )bT        (65) 

 

และมีความถี่บีท (Beat frequency: b ) เป็น 
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2b      (66) 

 

ดัง น้ัน จึงสามารถอธิบายปรากฏการณ์บีทติ้ ง ได้ ว่า เป็น
ปรากฏการณ์ ท่ีมีพฤติกรรมของการสั่นอย่างรวดเร็ว  (rapid 
oscillation) และมีขนาดของการสั่นท่ีไม่คงท่ี โดยท่ีขนาดการสั่นมี
การเปลี่ยนแปลงไปอย่างช้า ๆ อย่างไรก็ตาม สมการ (62) ไม่เป็นจริง 
ก็ต่อเมื่อ   
 

6. การสั่นแบบถกูบังคับท่ีมีการหน่วง 

ก้าหนดให้พิจารณาแบบจ้าลองท่ัวไปของมวล-สปริง-ตัวหน่วง
ภายใต้แรงพลวัตส้าหรับระบบท่ีมี 1 ดีกรีอิสระ ดังแสดงในรูปท่ี 1 
โดยท่ี สมการการเคลื่อนท่ีของระบบน้ี คือ สมการ (3) และเลือกใช้
รูปแบบของแรงพลวัตตามสมการ (38) อีกครั้ง ท้ังน้ี สมมติให้มุมเฟส 

0   จึงได้ [1], [4], [5] 
 

2( ) 2 ( ) ( ) cosox t x t x t f t      (67) 

 

การหาผลเฉลยเฉพาะ ( )px ในสมการ (67) ส้าหรับกรณีการสั่น
แบบถูกบังคับท่ีมีการหน่วงภายใต้ผลของแรงพลวัตสามารถท้าได้ใน
ท้านองเดียวกับกรณีการสั่นแบบถูกบังคับไร้การหน่วงดังในสมการ 
(40) โดยสมมติ ( )px t ให้มีความถี่เดียวกับแรงพลวัตแต่มีความ
แตกต่างกันอยู่ท่ีมุมเฟส s ท้ังน้ีอันเน่ืองมาจากผลกระทบของแรง
หน่วง (Damping force) ท่ีมีต่อระบบเป็นส้าคัญ ดังน้ันแล้ว ผล
เฉลยเฉพาะ ( )px ในสมการ (67) สามารถเขียนให้มีรูปแบบได้
ดังต่อไปน้ี คือ [1] – [5], [12], [13] 
 

รูปแบบที่ 1:  ( ) cos( )p sx t X t     (68) 

 

เมื่อ X และ s เป็นค่าคงที่และสามารถหาได้จากเงื่อนไขค่าเริ่มต้น 
 

รูปแบบที่ 2:  ( ) cos sinp s sx t A t B t     (69) 
 

coss sA X   (70) 

 

sins sB X   (71) 

 

ในท่ีน้ี sA และ sB มีความสอดคล้องตามความสัมพันธ์ต่อไปน้ี คือ 

2 2

s sX A B   (72) 

 
1tan ( )s s sB A   (73) 

 

รูปแบบท่ี 3: ( ) sin( )p sx t X t     (74) 
 

รูปแบบที่ 4: ( )
( ) si t

px t Xe
 

  (75) 
 

รูปท่ี 16 แสดงการแปรเปลี่ยนของแรงพลวัตตามสมการ (38) 
และการตอบสนอง ( )px t จากสมการ (68) เมื่อเวลา t  มีค่าเพิ่มขึ้น
ตามล้าดับ 
 

 
 

รู ปที่  1 6  ก า ร แ ป ร เ ปลี่ ย น ข อ ง แ ร ง พล วั ต ( )F t แ ล ะ ก า ร
ตอบสนอง ( )px t ตามเวลา 
 

หากท้าการสมมติให้รูปแบบของ ( )px t เป็นไปตามสมการ (69) 
และเมื่อแทนลงในสมการ (67) จึงน้าไปสู่สมการดังต่อไปน้ี 
 

2 2( 2 )coss s s oA B A f t        

2 2( 2 )sin 0s s sB A B t         (76) 

 

สังเกตได้ว่าสมการ (76) เป็นจริงในทุกๆ ค่าของ t  ก็ต่อเมื่อ
พจน์สัมประสิทธิ์หน้าฟังก์ชั่น cos t  และ sin t  จ้าเป็นต้องมี
ค่าเป็นศูนย์ ท้ังหมด จากน้ัน ให้ท้าการแก้หาค่า sA และ sB โดย
ผลลัพธท่ี์ได้ คือ 
 

2 2 2 2 2 2( ) [( ) (2 ) ]s oA f        (77) 

 
2 2 2 22 [( ) (2 ) ]s oB f        (78) 
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เมื่อท้าการแทนสมการ (77) และสมการ (78) กลับลงสู่สมการ 
(72) และสมการ (73) จึงได้ 
 

2 2 2 2( ) (2 )oX f       (79) 

 
1 2 2tan [2 ( )]s      (80) 

 

โดยการใช้สมการ (79) และสมการ (80) ลงในสมการ (68) 
พบว่า 
 

2 2 2 2( ) ( ) (2 )p ox t f      
 

 

 1 2 2cos{ tan [2 ( )]}t        (81) 

 

ในล้าดับถัดไป ให้ท้าการหารท้ังตัวเศษ (Numerator) และตัว
ส่วน (Denominator) ของสมการ (79) และสมการ (80) ด้วย k

และภายหลังการจัดรูปสมการจึงได้ตัวประกอบขยาย  และมุม

เฟส s ในพจน์ของ r และ  ส้าหรับกรณีการสั่นแบบถูกบังคับท่ีมี
การหน่วง (Damped forced vibration) ดังน้ี 
 

2 2 21 (1 ) (2 )stX r r       (82) 

 
1 2tan [2 (1 )]s r r    (83) 

 

รูปท่ี 17 และรูปท่ี 18 แสดงความสัมพันธ์ของตัวประกอบ
ขยาย   และมุมเฟส s ท่ีแปรเปลี่ยนตามค่าอัตราส่วนความถี่ r  ใน
แต่ละค่าคงท่ีของตัวประกอบ (อัตราส่วน) การหน่วง   ท่ีแตกต่าง
กัน [1] 

เน่ืองจากให้ความสนใจกับการเคลื่อนท่ีแบบสั่นท่ีมีการหน่วงซ่ึง
สามารถเกิดขึ้นได้เฉพาะในกรณีท่ีเป็นการสั่นแบบมีการหน่วงน้อย
เท่าน้ันภายใต้เงื่อนไข 0 1   โดยผลเฉลยท่ัวไป ( )x t น้ัน 
สามารถหาได้จากผลรวมของผลเฉลยสมทบ ( )hx t  ซ่ึงในท่ีน้ีเลือกใช้
ตามสมการ (27) และผลเฉลยเฉพาะ ( )px t ตามสมการ (68) 
ผลลัพธ์ คือ 
 

( ) cos( ) cos( )t

d sx t Ae t X t         (84) 
 

 

รูปท่ี 17 การแปรเปล่ียนระหว่างตัวประกอบขยาย  และอัตราส่วน
ความถี่ r  
 

 

รูปท่ี 18 การแปรเปลี่ยนระหว่างมุมเฟส s และอัตราส่วนความถี่ r  
 

โดยท่ี X  ได้ให้ไว้ในสมการ (79) ส่วน s ให้ไว้ในสมการ (80) หรือ
สมการ (83) ส้าหรับค่าคงท่ี A  และ  สามารถหาได้จากการ
ประยุกต์เงื่อนไขค่าเริ่มต้นตามสมการ (45) 

จากการสังเกตสมการ (84) พบว่า พจน์แรกทางขวามือของ
สมการซ่ึงเป็นพจน์ของ ( )hx t  มีค่าเข้าใกล้ศูนย์เมื่อเวลา t  มีค่าเพิ่ม
มากขึ้นเรื่อยๆ ( 0hx  as large )t ท้ังน้ีเป็นผลเน่ืองมาจาก
ฟังก์ชั่น te  ดังน้ัน ส่งผลท้าให้ px x  เมื่อ t  มีค่ามาก ๆ และ
เรียก ( )hx t ว่า เป็นการตอบสนองแบบชั่ วคราวหรือชั่ วขณะ 
ส่วน ( )px t เรียกว่า การตอบสนองแบบสภาวะคงตัวหรือคงท่ี 
(Steady-state responses) [1] – [5] 
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โดยส่วนใหญ่ของการวิเคราะห์การสั่นแบบถูกบังคับท่ีมีการหน่วง 
มักละท้ิงพจน์ของการตอบสนองแบบชั่วคราว [1] และให้ความสนใจ
กับพจน์ของการตอบสนองแบบสภาวะคงตัวบนพื้นฐานของการ
พิจารณาค่า ท่ีแปรเปลี่ยนไป ( - varied) ถึงอย่างไรตาม เมื่อ
ค่า มีค่าเพิ่มมากขึ้น พบว่า พจน์ของฟังก์ชั่น te  เป็นสาเหตุหลัก
ท่ีท้าให้ผลการตอบสนองแบบชั่วคราวสิ้นสุดลงอย่างรวดเร็ว 
(Quickly died out) และในทางกลับกัน เมื่อค่า  มีค่าน้อยๆ 
(Lightly damped factor) ส่งผลท้าให้การตอบสนองแบบชั่วคราว
น้ันมีนัยส้าคัญมากขึ้นในช่วงระยะเวลาท่ียาวนานพอสมควรจึงไม่
สามารถละท้ิงไปได ้
 

7. บทวิเคราะห์และอภิปราย 

จากผลการศึกษาเชิงวิเคราะห์ทางทฤษฎีส้าหรับแบบจ้าลองของ
ระบบท่ีม ี1 ดีกรีอิสระ (SDOF) ภายใต้เงื่อนไขการสั่นอิสระและแบบ
ถูกบังคับท้ังท่ีมีและไม่มีการหน่วงด้วยการพิสูจน์หาผลเฉลยทาง
คณิตศาสตร์สามารถน้าไปสู่บทวิเคราะห์และอภิปรายผลลัพธ์เชิง
ทฤษฎีโดยท้าการพิจารณาสมการ (82) และสมการ (83) ท่ี
สอดคล้องกับรูปท่ี 17 และรูปท่ี 18 ตามล้าดับ ซ่ึงครอบคลุม
พฤติกรรมการสั่นต่าง ๆ ไดด้ังต่อไปน้ี 

คุณลักษณะบางประการท่ีพบได้จากสมการ (82) และรูปท่ี 17 
ในเชิงปริมาณของการสั่นแสดงอยู่ในพจน์ของตัวประกอบขยาย   
คือ 

(1) เมื่อไม่มีการหน่วงในระบบ ( 0)   พบว่า สมการ (82) 
ลดรูปไปสู่สมการ (50) ดังน้ีคือ 

o    เมื่อ 0   และ 

o    เมื่อ 1r  ดังแสดงในรูปท่ี 11 
(2) ในแต่ละค่าของ   เมื่อ 0   พบว่า   มีค่าลดลงในแต่

ละค่าของ r  เมื่อ   มีค่าเพ่ิมขึ้น 
(3) ก้าหนดให้ r  มีค่าคงท่ีค่าใดค่าหน่ึง พบว่า การเพิ่มขึ้นของ 

  ส่งผลท้าให้ค่า   มีค่าลดลง 
(4) เมื่อ 0r   พบว่า การตอบสนองแบบพลวัตเปลี่ยนมาเป็น

การตอบสนองแบบสถิตย์และเรียกสภาวะน้ีว่า สภาวะกึ่ง
สถิตย์ (Quasi-static) ส้าหรับกรณีท่ี   มีค่าน้อยเพียงพอ 
(Low enough) 

(5) เมื่อ 0r   ท้าให้ 1   และเรียกสภาวะน้ีว่า ขีดจ้ากัด
สถิตย์ (Static limit) ซ่ึงเป็นการตอบสนองแบบสถิตย์ 
(Static responses) 

(6) เมื่อ 1r   ให้ค่า 1 (2 )   โดยได้จากการแทน 1r   
ลงในสมการ (82) 

(7) เมื่อ r  ส่งผลให้ 0  ในทุกๆ ค่าของ   โดยท่ี
แรงพลวัต ( )F t  ไม่ส่งผลกระทบต่อระบบ 

(8) ส้าหรับระบบท่ีมีการหน่วง (Damped systems) กล่าวได้
ว่า การก้าทอนเกิดขึ้นเมื่อ 1r   หรือ   แต่ไม่ใช่
เงื่อนไขท่ีท้าให้ค่า   ให้ค่ามากท่ีสุด (Peak or maximum 
value) จากสมการ (82) 

(9) ส้าหรับค่าของ r  ท่ีท้าให้   มีค่ามากสุด max( )  ในแต่
ค่าของ   ท่ีแตกต่างกันสามารถหาได้จากเงื่อนไขต่อไปน้ี 

0r    ดัง น้ัน เมื่อท้าการแทนสมการ (82) ลงใน
เงื่อนไขดังกล่าว จึงได้ pkr  ท่ีท้าให้ 

max    โดยมีค่า 
21 2pkr   และเน่ืองจากค่า pkr  ต้องไม่มีค่าเป็นลบ 

(Non-negative values) จากนิยามของสมการ (51) ดังน้ัน 
21 2 0   หรือ 1 2   

(10) ในท่ีน้ี pkr  มีนิยามเป็น ค่าของความถี่จากการกระตุ้นจาก
ภายนอก ( ) ท่ีท้าให้เกิด 

max  โดยที ่
 

21 2 1pkr     เม่ือ 0 1 2   (85) 

 

21 2pk        เม่ือ 0 1 2   (86) 

 

(11) เมื่อท้าการพิจารณาสมการ (86) สามารถบ่งชี้ได้ว่า pk

มีค่าน้อยกว่าค่าความถี่ธรรมชาติไร้การหน่วง ( ) และ

ค่าความถี่ธรรมชาติแบบหน่วง 2( 1 )d    ส้าหรับ
กรณีระบบท่ีมีการหน่วงน้อยเท่าน้ัน 

(12) สมการ (85) และสมการ (86) เป็นจริงได้ในกรณีของ
ระบบท่ีมีการสั่นแบบหน่วงน้อยเท่าน้ัน (0 1)   

(13) ค่า max  สามารถหาได้จากการแทนสมการ (85) ลงใน
สมการ (82) ผลลัพธท่ี์ได้ คือ 

 

2

max 1 (2 1 )     (87) 

 

(14) ถ้ า  1 2   แล้ ว ท้า ให้ เกิ ด เ งื่ อนไข  0r    
เกิดขึ้น โดยสมการ (85) ให้ค่า 0pkr   

(15) ถ้า 1 2   แล้ว   มีค่าลดลงอย่างต่อเน่ืองเมื่อ r  
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มีค่าเพิ่มมากขึ้น นอกจากน้ี ยังพบว่า ไม่มีค่า pkr  ท่ีท้าให้
เกิด 

max  

ส้าหรับกรณีของมุมเฟส 
s  ให้ท้าการพิจารณาสมการ (83) 

และรูปท่ี 18 ซ่ึงพบว่า มีคุณลักษณะบางประการท่ีสังเกตได้
ดังต่อไปน้ี 
(1) เมื่อไม่มีการหน่วง ( 0)   หรือเรียกว่า ระบบไร้การหน่วง 

พบว่า 
 0s   เมื่อ 0 1r   จึงอุปมาได้ว่า ( )px t  และ ( )F t  อยู่

ร่วมเฟสกัน (In-phase) และ 
 180s   เมื่อ 1r   น้ัน อุปมาได้ว่า ( )px t  และ ( )F t  อยู่

นอกเฟส (Out-of-phase) 
(2) เมื่อ 0   และ 0 1r   แล้ว 0 90s   อุปมาได้ว่า 

( )px t  เหลื่อมตามหลัง ( )F t  
(3) เมื่อ 0   และ 1r   แล้ว 90 180s   อุปมาได้ว่า 

( )px t  เหลื่อมน้าหน้า ( )F t  
(4) เมื่อ 0   และ 1r   แล้ว 90s   อุปมาได้ว่า ( )px t  

และ ( )F t  มีมุมเฟสต่างกัน 90  
(5) เมื่อ 0   และ r  มีค่ามาก แล้ว 180s   อุปมาได้ว่า 

( )px t  และ ( )F t  อยู่นอกเฟส 
 

8. บทสรุป 

ในทางปฏิบัติ พบว่า การสั่นสะเทือนท่ีมีต่อระบบ อาทิเช่น 
โครงสร้างอาคาร เครื่องจักรกล หรือยานพาหนะได้ส่งผลกระทบต่อ
สมรรถภาพและประสิทธิภาพในการใช้งานตามวัตถุประสงค์แรกเริ่ม
ของระบบ ส้าหรับการศึกษาพฤติกรรมการสั่นของระบบต่อเน่ือง 
(Continuous system) ด้วยวิธีการเชิงวิเคราะห์ (Analytical 
methods) น้ันมีความยุ่งยากและซับซ้อนเน่ืองจากมีปัจจัยหลาย
สาเหตุ เช่น ลักษณะรูปทรงทางเรขาคณิตเชิงกายภาพ (Physical 
configurations) คุณสมบัติเชิงกลประจ้าตัวของวัสดุท่ีใช้ (Inherent 
mechanical properties) หรือผลการกระตุ้นจากภายนอกท่ีกระท้า
ต่อระบบ (External excitations) การจ้าลองด้วยระบบย่อย 
(Discrete system) ท่ีมีหลายจ้านวนดีกรีอิสระ (Multidegree of 
freedom: MDOF) เพื่อเป็นตัวแทนของระบบต่อเน่ืองท่ีมีดีกรีอิสระ
จ้านวนอนันต์ค่า (Infinite DOFs) จึงมีความเหมาะสมและสะดวกใน
การวิเคราะห์ด้วยวิธีการเชิงตัวเลข (Numerical methods) ผ่าน
กระบวนการแก้ปัญหาของระบบจ้านวน n สมการ สอดคล้องตาม

จ้านวนดีกรีอิสระท่ีได้ก้าหนดขึ้น [14-18] ซ่ึงมีพื้นฐานแนวคิดมาจาก
แบบจ้าลองของระบบท่ีมี 1 ดีกรีอิสระ (SDOF) ดังน้ัน วัตถุประสงค์
ของบทความน้ีจึงน้าเสนอการศึกษาและการวิเคราะห์ท่ีครอบคลุม 
(Comprehensive study and analysis) ต่อพฤติกรรมการสั่น
อิสระและแบบถูกบังคับท้ังท่ีมีและไม่มีการหน่วงส้าหรับระบบ 
SDOF เพื่อเป็นแนวทางพื้นฐานในการจ้าลองและวิเคราะห์ปัญหาใน
ระบบท่ีมีความซับซ้อนได้อย่างเหมาะสมและถูกต้อง 
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