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บทคัดย่อ 

การศึกษานี้เกี่ยวข้องกับปัญหาการโก่งเดาะของเสาแบบออย
เลอร์ที่มีเงื่อนไขของปลายเสาทั้ง 2 ข้างยึดรั้งแบบยืดหยุ่นภายใต้
แรงอัดตามแนวแกน ดังนั้น วัตถุประสงค์คือเพื่อพิสูจน์สมการ
เกณฑ์การโก่งเดาะทั่วไปบนพื้นฐานของวิธีการเชิงวิเคราะห์และ
แสดงวิธีการตรวจสอบผลลัพธ์ที่ได้ จุดเด่นของการศึกษาคือการ
สร้างสมการเชิงอนุพันธ์ควบคุมปัญหาและการแก้หาค าตอบใน
รูปแบบไร้มิติ ที่ส าคัญ เสาที่พิจารณาสามารถปรับเปลี่ยนเงื่อนไข
ไปสู่เสากรณีอื่นที่มีการยึดรั้งปลายเสาท่ีหลากหลายได้ 

ค าส าคัญ: วิธีการเชิงวิเคราะห์ ปัญหาการโก่งเดาะ เสาแบบออย
เลอร์ การยึดรั้งแบบยืดหยุ่น เกณฑ์การโก่งเดาะ 

ABSTRACT 

This study is concerned with the buckling problem 

of an Euler column with the condition of both ends elastically 

restrained under an axial compressive force. The 

objectives are, therefore, to derive a general buckling 

criteria equation based on an analytical method and to 

present verification for the obtained results. The 

highlight of the study is that the problem governing 

differential equation which is formulated and solved in 
the form of non-dimension. Significantly, the 

considering column can be re-conditioned to other cases 

of column having various end restraints. 

Keywords: Analytical Method, Buckling Problem, Euler 

Column, Elastic Restraint, Buckling Criteria 

1. บทน า 

ส าหรับองค์อาคาร ท่ีรับแรงอัดตามแนวแกน (Axial 
compressive members) เป็นหลักหรือในท่ีน้ีเรียกว่า เสา 
(Columns) โดยการวิเคราะห์โครงสร้างสามารถจัดจ าแนกออกได้
เป็น 2 ประเภทตามพฤติกรรมการวิบัติภายใต้แรงอัดดังน้ีคือ (1) เสา
สั้น (Short columns) ซ่ึงความสามารถต้านทานแรงแปรผันโดยตรง
กับก าลังวัสดุ (Strength of materials) ของเสาและ (2) เสายาว
หรือเรียกว่าเสาชะลูด (Long or slender columns) โดย
ความสามารถต้านทานแรงของเสาดังกล่าวนอกจากแปรผันตาม
ก าลังวัสดุแล้วยังขึ้นอยู่กับความสามารถในการต้านทานการเสียรูป 
(Stiffness) ลักษณะทางกายภาพของเสาแสดงในพจน์ของค่า
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อัตราส่วนความชะลูด (Slenderness ratios) และสภาพเงื่อนไขของ
การยึดรั้งที่ปลายเสา (End constraint conditions) [1] และเมื่อท า
การเปรียบเทียบความสามารถในการต้านทานแรงอัด ท่ีกระท า
ระหว่างเสาสั้นและเสายาวโดยก าหนดให้ใช้วัสดุประเภทเดียวกันและ
มีพื้นท่ีหน้าตัดเสาท่ีเท่ากัน พบว่า เสาสั้นสามารถต้านทานแรงอัดได้
มากกว่าเสายาว ซ่ึงการวิบัติของเสาสั้นเกิดจากการบดอัดแตก 
(Crushing) ของวัสดุ ส่วนเสายาวมีการวิบัติเน่ืองจากเกิดการเสียรูป
ด้านข้างจนกระท่ังเสาเกิดการโก่งเดาะ (Buckling) และหักลง ดังน้ัน 
จึงกล่าวได้ว่าเสาสั้นมีการใช้ก าลังวัสดุได้เต็มประสิทธิภาพเพื่อ
ต้านทานการวิบัติจากแรงอัดท่ีกระท าได้มากกว่าเสายาวท่ีมีการวิบัติ
แบบทันทีทันใดจากการเสียรูปมาก (Large deformation) หรือเกิด
การโก่งเดาะขึ้นก่อน 

การโก่งเดาะเชิงโครงสร้าง (Structural buckling) หรือเป็นท่ี
ทราบโดยท่ัวไปในความหมายของความไร้เสถียรภาพเชิงโครงสร้าง 
(Structural Instability) อาจจ าแนกได้เป็น (1) การโก่งเดาะจาก
การเปลี่ยนรูปแบบหรือทิศทางการเสียรูป (Bifurcation buckling) 
จากรูปแบบหน่ึงไปสู่อีกรูปแบบหน่ึง ดังตัวอย่างเช่น เสายาวเมื่ออยู่
ภายใต้ผลของแรงอัดท าให้เกิดการเสียรูปเริ่มแรกจากการหดตัวสั้น
ลงตามแนวแกน (Axial shortening) จนกระท่ังแรงอัดมีค่าเพิ่มขึ้น
ถึงระดับหน่ึงจึงส่งผลท าให้เกิดการเสียรูปมาเป็นการโก่งตัวด้านข้าง 
(Lateral deflection) และเรียกแรงหรือน้ าหนักบรรทุก ณ ขณะน้ัน
ว่า น้ าหนักบรรทุกโก่งเดาะวิกฤติหรือน้ าหนักบรรทุกวิกฤติ (Critical 
buckling load or critical load) และ (2) การโก่งเดาะจากการ
จ ากัดค่าน้ าหนักบรรทุก (Limit load buckling) ท้ังน้ี โครงสร้าง
ยังคงความสามารถในการรับน้ าหนักบรรทุกได้สูงสุด (Maximum 
load) โดยปราศจากการเปลี่ยนรูปแบบของการเสียรูปเกิดขึ้น [2] – 
[6] 
 

 

รูปท่ี 1 การวิบัติจากการโก่งเดาะของเสาในอาคาร [7] 

 

รูปท่ี 2 การวิบัติจากการโก่งเดาะในชิ้นส่วนรับแรงอัดของโครงสร้าง
ทาวเวอร์เคลน [8] 
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รูปท่ี 3 การวิบัติจากการโก่งเดาะในชิ้นส่วนรับแรงอัดของโครงสร้าง
หอสายส่งไฟฟ้า [9] 

การโก่งเดาะขององค์อาคารเสาชะลูดยาว (Column buckling) 
เป็นพฤติกรรมพื้นฐานส า คัญ (Significant fundamental 
behaviours) ท่ีต้องพึงพิจารณาในการออกแบบเชิงวิศวกรรม
โครงสร้างดังได้มีการประยุกต์ใช้ในทางปฏิบัติ อาทิเช่น การออกแบบ
เสายาวในโครงสร้างอาคาร (Building Structures) เพื่อหลีกเลี่ยง
การวิบัติจากการโก่งเดาะดังในรูปท่ี 1 [7] หรือการพิจารณา
ออกแบบชิ้นส่วนองค์อาคารรับแรงอัดในโครงสร้างประเภทโครงถัก
หรือโครงข้อหมุน (Truss structures) ดังในรูปท่ี 2 [8] และรูปท่ี 3 
[9] เป็นต้น ท้ังน้ี ได้มีการศึกษาและวิเคราะห์ปัญหาในลักษณะน้ีมา
เป็นระยะเวลาท่ียาวนานต่อเนื่องนับจากอดีตจนถึงปัจจุบัน [10-12] 

การศึกษาวิจัยเริ่มแรกในเชิงทฤษฎี พบว่า มุ่งเน้นวิเคราะห์เพื่อ
หาค่าน้ าหนักบรรทุกโก่งเดาะวิกฤติหรือเรียกว่าน้ าหนักบรรทุกโก่ง
เดาะของออยเลอร์ (Euler buckling load,

crP ) ในปัญหาพื้นฐาน
ของเสาเดี่ยวภายใต้เงื่อนไขการยึดรั้งท่ีปลายเสาแบบคลาสสิค 
(Classical end conditions) เช่น ปลายยึดหมุน (Simple or 
hinged end) ปลายยึดแน่น (Clamped or fixed end) ปลาย
ล้อเลื่อนไถลบังคับในราง (Sliding guided end) หรือ ปลายอิสระ 
(Free end) เพื่อให้เสามีเสถียรภาพเชิงโครงสร้างภายใต้ผลของ
แรงอัดตามแนวแกนต้านทานการโก่งเดาะ [3] – [6] 

ในการประยุกต์ใช้งานโครงสร้างทางปฏิบัติซ่ึงโดยส่วนมากมัก
พบว่า เงื่อนไขการยึดรั้งท่ีปลายเสาไม่เป็นไปตามเงื่อนไขแบบ
คลาสสิคโดยสมบูรณ์ตามทฤษฎีหรือสามารถกล่าวอีกนัยหน่ึงได้ว่า มี
เงื่อนไขการยึดรั้งท่ีปลายเสาเป็นแบบไม่คลาสสิคหรือมีลักษณะเป็น
แบบยืดหยุ่น (Non-classical or flexible end conditions) หรือ
ในทางโครงสร้างเรียกว่า เงื่อนไขแบบกึ่งแข็งเกร็ง (Semi-rigid 
condition) ซ่ึงในกรณีดังกล่าวน้ี การวิเคราะห์ท าได้ด้วยการจ าลอง
รูปแบบเงื่อนไขท่ีปลายเสาให้มีการยึดรั้งด้วยสปริงยืดหยุ่นแบบเชิง
เส้น (Linear or translational spring) หรือสปริงยึดหยุ่นแบบ
เชิงมุม (Rotational or torsional spring) หรือมีการยึดรั้งด้วย

สปริงท้ัง 2 ประเภทร่วมกันหรืออาจมีการยึดรั้งแบบผสมระหว่าง
สปริงยืดหยุ่นและการยึดรั้งแบบคลาสสิคท่ีสามารถก าหนดค่าความ
แกร่งของสปริงให้แปรเปลี่ยนได้ตามพฤติกรรมท่ีเกิดขึ้นจริงหรือ
ใกล้เคียงตามท่ีไดก้ าหนดไว้ในขั้นตอนการวิเคราะห์หรือในทางปฏิบัติ 

ตัวอย่างการศึกษางานวิจัยในอดีตท่ีเกี่ยวข้องมีดังน้ี Baisheng 
[13] พิจารณาปัญหาการโก่งเดาะของเสาอย่างง่ายท่ีมีปลายยึดรั้ง
แบบยึดหมุนท้ัง 2 ข้าง โดยมีสปริงยืดหยุ่นต้านทานการเคลื่อนท่ีเชิง
เส้นท่ีมีค่าความแกร่งของสปริง ( )wk รองรับตรงบริเวณกึ่งกลาง
ความยาวเสาดังรูปท่ี 4 ส าหรับสมการควบคุมปัญหาการโก่งเดาะ
พิสูจน์ได้ด้วยวิธีพลังงาน (Energy method) และท าการแก้หา
ค าตอบแบบแม่นตรง ผลลัพธ์ท่ีได้คือ สมการเกณฑ์การโก่งเดาะ
แสดงในพจน์ของค่าความแกร่งของสปริงโดยไม่มีการแสดงผลลัพธ์
เชิงตัวเลข 
 

 
 

รูปท่ี 4 เสามีปลายทั้ง 2 ข้างยึดรั้งแบบยึดหมุนและมีสปริงยืดหยุ่น
แบบเชิงเส้นรองรับท่ีกึ่งกลางความยาวเสา 
 

Wang [14] ได้อธิบายตัวอย่างปัญหาพื้นฐานท่ีสามารถประยุกต์
ในการจ าลองปัญหาในทางปฏิบัติได้อย่างมีประสิทธิผล โดยเสนอ
แบบจ าลองการโก่งเดาะของเสาท่ีมีจุดต่อภายในเป็นแบบยึดหมุน 
(Internally hinged column) ซ่ึงก าหนดให้เป็นตัวแทนของหน้าตัด
เสาท่ีอ่อนแอ (Weakened section) หรือมีความเสียหายขึ้น 
(Damaged section) แต่ยังไม่เกิดการวิบัติโดยสมบูรณ์ 
(Completely failure) บนหน้าตัดเสาท่ีพิจารณาและท าการเสริม
ความแข็งแรง (Strengthening) เสาด้วยการเพิ่มท่ีรองรับเป็นสปริง
ยืดหยุ่นเชิงเส้นในการค้ ายันเสาให้คงอยู่ได้ดังรูปท่ี 5 ท้ังน้ี ปลายเสา
ท้ัง 2 ข้างก าหนดให้มีเงื่อนไขการยึดรั้งเป็นแบบคลาสสิค ในเวลาถัด
มา Wang and Nazmul [15] น าเสนอเกณฑ์เสถียรภาพแบบแม่น
ตรง (Exact stability criteria) ของเสาในรูปท่ี 6 ด้วยการแก้หา
ค าตอบจากสมการเชิงอนุพันธ์ควบคุมปัญหาการโก่งเดาะของเสา 
นอกจากน้ี ได้มีการพิจารณาเพิ่มเติมในกรณีขอบเขตจ ากัดบน 
(Upper limiting case) ของฐานรองรับภายในโดยก าหนดให้ค่า
ความแกร่งของสปริงมีค่าอนันต์ ( )wk ซ่ึงสอดคล้องในกรณีท่ีมี
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ฐานรองรับแบบยึดหมุนภายใน (Internally hinged support) 
 

 
 
รูปที่ 5 เสาท่ีมีปลายยึดรั้งท้ัง 2 ข้างแบบคลาสสิคและมีสปริง
ยืดหยุ่นแบบเชิงเส้นรองรับค้้าท่ีจุดยึดหมุนภายในเสา 
 

 
 
รูปที่ 6 เสาท่ีมีปลายยึดรั้งแบบยึดแน่นและปลายอิสระและมีสปริง
ยืดหยุ่นแบบเชิงเส้นรองรับภายในเสา 
 

Bolotin et al. [16] ได้ศึกษาปัญหาเสถียรภาพเชิงพลวัต 
(Dynamic stability) ในกรณีของท่อส่งล าเลียงของเหลว (Pipeline) 
ท่ีไม่มีความหนืด (Nonviscous fluid) โดยมีเงื่อนไขขอบเขตท่ีปลาย
ของแบบจ าลองเสาดังแสดงในรูปท่ี 7 ท้ังนี้ สมการควบคุมปัญหาได้มี
การพิจารณาผลกระทบของมวลของเหลวท่ีมีความเร็วในท่อร่วมอยู่
ในขั้นตอนการสร้างสมการ 
 

 
 
รูปท่ี 7 แบบจ้าลองท่อส่งล้าเลียงของเหลวท่ีมีปลายข้างหน่ึงยึดแน่น
และปลายอีกข้างรองรับด้วยสปริงยืดหยุ่นแบบเชิงเส้น 
 

Yan-Ping et al. [17] ศึกษาและวิเคราะห์จุดเปลี่ยนของ
เสถียรภาพของเสาท่ีมีเงื่อนไขที่ปลายดังรูปท่ี 8 โดยใช้วิธีการอนุกรม
ฟูเรียร์ (Fourier series) บนทฤษฎีการโก่งเดาะของคอยเตอร์ 
(Koiter’s buckling theory) 
 

 
 

รปูท่ี 8 เสามีปลายยึดแน่นและมีปลายอีกข้างบังคับการหมุนและยึด
รั้งด้วยสปริงยืดหยุ่นแบบเชิงเส้น 
 

ส าหรับการศึกษาน้ี ให้ความสนใจศึกษาและวิเคราะห์ปัญหาการ
โก่งเดาะของเสาแบบออยเลอร์ ด้วยวิธีการเชิงวิ เคราะห์ โดย
ก าหนดให้ปลายเสาท้ัง 2 ข้างมีการยึดรั้งแบบยืดหยุ่นท่ัวไปด้วยสปริง
ยืดหยุ่นแบบเชิงเส้นและแบบเชิงมุมท่ีไม่จ าเป็นต้องจ ากัดให้ค่าความ
แกร่งของสปริงประเภทเดียวกันต้องมีค่าเท่ากัน (Arbitrary spring 
stiffness) ผลลัพธ์ท่ีได้จากการวิเคราะห์แสดงในรูปแบบของสมการ
เกณฑ์การโก่งเดาะแบบยืดหยุ่นของเสา (Elastic column buckling 
criteria equation) และฟังก์ชั่นรูปร่างการโก่งเดาะ (Buckling 
shape function) พร้อมแสดงวิธีการตรวจสอบความถูกต้อง 
นอกจากน้ี ได้ค านวณหาค่าพารามิเตอร์เสถียรภาพวิกฤติ (Critical 
stability parameters) จากสมการท่ีน าเสนอในกรณีเงื่อนไขของ
ปลายเสาเป็นแบบคลาสสิคท่ีแตกต่างกัน 
 

2. ทฤษฎีและการสร้างสมการไร้มิตคิวบคุมปัญหา 

เริ่มต้นพิจารณาเสายาวชะลูดโดยสมมติให้เป็นเสาตรงท่ีมีหน้าตัด
คงท่ีสม่ าเสมอและมีความยาว L ความแกร่ง EI ท่ีอยู่ภายใต้แรงอัด
ตามแนวแกนเสา P และมีการรองรับด้วยสปริงยืดหยุ่นแบบเชิงเส้น
และแบบเชิงมุมท่ีมีความแกร่งของสปริงทางปลายด้านซ้าย

wLk

และ Lk และปลายด้านขวา wRk และ Rk ของเสาดังแสดงในรูปท่ี 9 
 

 
 

รูปท่ี 9 แบบจ้าลองเสาท่ีมีปลายท้ัง 2 ข้างยึดรั้งแบบยืดหยุ่น 
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จากทฤษฎีของออยเลอร์ และ เบอร์ นูลี  (Euler-Bernoulli 
theory) [1], [3] จึงได้ความสัมพันธ์ระหว่างโมเมนต์ดัด ( )M และ
ปริมาณการโก่งตัว ( )w บนหน้าตัดใด ๆ ท่ีพิกัดระยะทาง x และ
ความสัมพันธ์ระหว่างแรงเฉือน ( )V และปริมาณการโก่งตัวดังน้ี 
 

2

2

( )


d w x
M EI

dx
 (1) 

 
3

3

( ) ( )
 

d w x dw x
V EI P

dx dx
 (2) 

 

เมื่อพิจารณาสมดุลของแรงในทิศทางท่ีตั้งฉากกับแนวแกนเสา
ส าหรับชิ้นส่วนเล็ก ๆ (Infinitesimal element) ท่ีมีความยาว dx

จึงได้สมการเชิงอนุพันธ์สามัญ (Ordinary differential equation: 
ODE) คือ 
 

4 2

4 2

( ) ( )
0 

d w x P d w x

dx EI dx
 (3) 

 

โดยทีส่มการ (3) สามารถเรียกได้อีกอย่างว่าเป็นสมการการโก่งเดาะ
ของเสาแบบออยเลอร์ (Euler column buckling equation) 

เพื่อความสะดวกในการวิ เคราะห์ในล าดับถัดไปจึง เสนอ
พารามิเตอร์ไร้มิติ (Non-dimensional parameters) ดังน้ี 
 

  x L , ( ) ( ) W w x L  (4) 

 

โดยการแทนสมการ (4) ลงในสมการ (3) น าไปสู่สมการไร้มิติ 
(Non-dimensional equation) คือ 
 

4 2
2

4 2

( ) ( )
0

d W d W

d d

 


 
   (5) 

 

ท้ังน้ี พารามิเตอร์ไร้มิติ และน้ าหนักบรรทุกโก่งเดาะวิกฤติ crP มี
นิยามเป็น [1] – [3] 
 

crP P   (6) 

 
2 2

crP EI L  (7) 

 

ผลเฉลย (ค าตอบ) ของสมการ (5) คือ ปริมาณ ( )W ซ่ึง
สามารถหามาไดด้้วยการสมมติให้ [18] 

( ) rW e    (8) 

 

โดยที ่ r  คือ ค่าไอเก้น (Eigenvalues) หรือเรียกว่า ค่าเจาะจง 
เมื่อท าการแทนสมการ (8) กลับลงในสมการ (5) จึงได้สมการ

ช่วยหรือสมการลักษณะเฉพาะ (Auxiliary or characteristic 
equation) 
 

2 2 2( ) 0 r r  (9) 

 

สมการ (9) มีรากค าตอบ (Roots) คือ [18], [19] 
 

1,2

3,4

0

 

 


  

r

r i
 (10) 

 

ซ่ึ ง  1i    และ เมื่ อพิจารณาสูตรของออย เลอร์  (Euler’s 
formulae) [19] 
 

cos sin    ie i  (11) 

 

ดังน้ัน ผลเฉลยท่ัวไปของสมการ (5) จึงเขียนได้เป็น [18], [19] 
 

1 2 3 4( ) sin cosW C C C C        (12) 

 

โดยค่าคงท่ีจ านวนจริง (Real constants) 
1C  ถึง 

4C  สามารถหา
ได้จากการประยุกต์เงื่อนไขท่ีปลายเสาท้ัง 2 ข้าง ( 0,1)  ดังแสดง
ในรูป ท่ี  10 ส าหรับพารามิ เตอร์ เสถี ยรภาพ (Stability 
parameter:  ) มีนิยามเป็น 
 

    (13) 

 

 
 

รูปท่ี 10 พารามิเตอร์ไร้มิติเพื่อการวิเคราะห์ 
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จากการแทนสมการ (13) ลงในสมการ (5) จึงได้ 
 

4 2
2

4 2

( ) ( )
0

d W d W

d d

 


 
   (14) 

 

เมื่อพิจารณาสมการ (1) สมการ (2) และสมการ (4) ท าให้
สามารถเขียนโมเมนตด์ัดและแรงเฉือนในรูปแบบไร้มิติดังน้ี 
 

2

2

( )
( )

EI d W
M

L d





  (15) 

 
3

2

2 3

( ) ( )
( )

EI d W dW
V

L d d

 
 

 

 
  

 
 (16) 

 

3. วิธีการวิเคราะห์ 

ในการวิเคราะห์และแก้ปัญหาสามารถท าได้ด้วยการประยุกต์
เงื่อนไขขอบเขตท่ีปลายเสาท้ัง 2 ข้าง (End boundary conditions) ดัง
สมการต่อไปน้ี 
 

2

02

0

( ) ( )
0

d W dW
k

d d




 

 


 
  

 
 (17) 

 
3

2

03

0

( ) ( )
( ) 0w

d W dW
k W

d d


 
 

 


 
   

 
 (18) 

 
2

12

1

( ) ( )
0

d W dW
k

d d




 

 


 
  

 
 (19) 

 
3

2

13

1

( ) ( )
( ) 0w

d W dW
k W

d d


 
 

 


 
   

 
 (20) 

 

และพารามิเตอร์ไร้มิติส าหรับความแกร่งของสปริง คือ 
 

3

0w wLk k L EI  (21) 

 
3

1w wRk k L EI  (22) 

 

0 Lk k L EI   (23) 

 

1 Rk k L EI   (24) 

โดยการแทนสมการ (12) ลงในสมการ (17) ถึง สมการ (20) 
ผลลัพธ์ท่ีได้เป็นดังน้ี 
 

2

1 3 0 2( ) 0C C k C     (25) 

 
2

2 4 0 3( ) 0wC C k C     (26) 

 

1 1 2 1( sin cos ) ( cos sin )          C k C k  

3 1 0C k   (27) 

 
2

1 2 4 1 3 1( sin cos ) ( ) 0w wC C C k C k        (28) 

 

เมื่อพิจารณาสมการ (26) จึงเขียน
4C ในพจน์ของ

2C และ
3C

เป็น 
 

2

4 2 3 0( )wC C C k    (29) 

 

จากนั้น ท าการแทนสมการ (29) กลับลงในสมการ (28) จึงได้ 
 

1 0 1 2 0 1sin (1 cos )w w w wC k k C k k    

2 2

3 1 0 1[( ) ] 0    w w wC k k k  (30) 

 

พิจารณาจัดสมการ (25) สมการ (27) และสมการ (29) ให้อยู่ใน
รูปแบบของสมการแมทริกซ์ (Matrix equation form) [20] ดังน้ี 
 

2

0

1 1

0 1 0 1

( sin cos ) ( cos sin )

sin (1 cos )w w w w

k

k k

k k k k



 

 

       

 




 
  

 

0 1

1 2

2 2

1 0 1 3(3 3)

0

0

[( ) ] 0





 


   
       
        w w w

k C

k C

k k k C

 (31) 

 

4. สมการเกณฑ์การโก่งเดาะและฟงัก์ชั่นรูปร่างการโก่งเดาะ 

เมื่อพิจารณาสมการ (31) พบว่า เป็นระบบสมการร่วมแบบเอกพันธ์ 
(Homogeneous simultaneous equation system) ในพจน์ของตัว
ไม่ทราบค่า 3 จ านวน ในท่ีน้ี คือ 1C 2C และ 3C โดยมีพารามิเตอร์
เสถียรภาพ ( ) แฝงอยู่ในแมทริกซ์สัมประสิทธิ์ (Coefficients or 
augmented matrix) ดังน้ันแล้ว ผลเฉลยท่ีมีคุณค่า (Non-trivial 
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solutions) ของสมการ (31) สามารถหาได้ด้วยการก าหนดให้ค่าดี
เทอมิแนนท์ (Determinant) ของแมทริกซ์สัมประสิทธิ์มีค่าเท่ากับ
ศูนย์ [18], [20] 
 

2

0

1 1

0 1 0 1

( sin cos ) ( cos sin )

sin (1 cos )



 

 

       

 

 

 w w w w

k

k k

k k k k

 

0

1

2 2

1 0 1 (3 3)

0

[( ) ]





 


 

  w w w

k

k

k k k

 (32) 

 

ภายหลังจากการด าเนินการในสมการ (32) [21] และท าการจัดพจน์
ให้อยู่ในรูปแบบกระชับ (Compact form) ผลลัพธ์ท่ีได้ คือ 
 

 2 2 2

0 1 0 1 0 1 1 0 12 ( )[( ) ]         w w w w wk k k k k k k k k  

0 1 0 1( ) sin   w wk k k k  

 2 2 2

0 1 1 0 1( )[( ) ]      w w wk k k k k  

0 1 0 12 cos 0   w wk k k k  (33) 

 

โดยที่ สมการ (33) เรียกว่า สมการเกณฑ์การโก่งเดาะของเสาและมี
รูปแบบเป็นสมการอดิศัย (Transcendental equation) ซ่ึงไม่สามารถ
หาพารามิเตอร์  ท่ีต้องการได้โดยตรงจึงจ าเป็นต้องใช้ระเบียบ
วิธีการเชิงตัวเลข (Numerical procedure) ในการสืบค้นหาราก
ค าตอบ (Roots searching algorithm) [21] สังเกตว่า จ านวนพจน์
ของ  สามารถมีได้เป็นจ านวนอนันต์ค่า ( i

เมื่อ 1,2,3,..., i ) 
โดยค่าแรกของ  ท่ีไม่เป็นศูนย์ 1( 0)  และมีค่าน้อยสุด (ค่า
ต่ าสุด) เรียกว่า ค่าพารามิเตอร์เสถียรภาพวิกฤติ (Critical stability 
parameter: 1 cr ) ซ่ึงเป็นค่าท่ีสอดคล้องกับค่าน้ าหนักบรรทุก
วิกฤติ ( )crP และสามารถหาค่ามาได้จากความสัมพันธ์ท่ีให้ไว้ใน
สมการ (6) และสมการ (13) 

เพื่อความสะดวกในขั้นตอนของการค านวณเชิงตัวเลข จึงสมมติให้
พารามิเตอร์ความแกร่งของสปริงต่าง ๆ ให้เป็นไปตามเงื่อนไขดังต่อไปน้ี 
คือ 0 0 1 1, , w wk k k k และก าหนดพารามิเตอร์แสดงสัดส่วนความ
แกร่งของสปริงดังสมการต่อไปน้ี 
 

1 0 0wc k k  (34) 

 

2 1 0wc k k  (35) 

 

3 1 0w wc k k  (36) 

 

1 2 30 , , 1 c c c  (37) 

 

โดยการแทนสมการ (34) ถึง สมการ (36) ลงในสมการ (33) จึงได้ 
 

3 2 2 2 2

1 2 3 0 1 2 0 3 0 32 ( )[( ) ]      w w wc c c k c c k c k c  

2

1 2 3 0( ) sin   wc c c k  

 2 2 2

1 2 0 3 0 3( ) [( ) ]     w wc c k c k c  

3

1 2 3 02 cos 0 wc c c k  (38) 

 

ส าหรับฟังก์ชั่นรูปร่างการโก่งเดาะ (Buckling shape functions) 
โดยในท่ีน้ีคือ ( )W ดังนิยามไว้ในสมการ (12) สามารถหาได้
ภายหลังจากการทราบค่า i

ตามสมการ (33) หรือ สมการ (38) 
และเมื่อพิจารณาระบบสมการร่วมท่ีมีพจน์ของตัวไม่ทราบค่าคงท่ี 
คือ 

1C 2C และ
3C ดังแสดงในสมการ (31) ซ่ึงเป็นระบบสมการแบบ

เอกพันธ์ ดังน้ัน หากก าหนดให้ตัวไม่ทราบค่าตัวใดตัวหน่ึงท่ีไม่เป็น
ศูนย์ (Non-zero unknown constants) มีค่าคงท่ีท่ีแน่นอนใดๆ 
เช่นน้ีแล้ว จึงสามารถแก้ระบบสมการเพื่อหาตัวไม่ทราบค่าท่ีเหลือมา
ได ้

จากการพิจารณาสมการ (25) สมการ (27) และก าหนดให้ 

1 1C จึงได้ 
 

2

2 3 0 0C C k k      (39) 

 

2 1 3 1( cos sin )C k C k       

1( sin cos )k       (40) 

 

และภายหลังจากการแก้ระบบสมการดังกล่าวข้างต้น ผลลัพธ์ท่ีไดคื้อ 
 

0 1 1
2

1 0 1

( cos sin )

[ ( cos sin )]

k k k
C

k k k

  

  

  

   

 


 
 (41) 

 
2

1 1
3

1 0 1

( cos sin )

[ ( cos sin )]

k k
C

k k k

 

  

   


   

 
  

 
 (42) 
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เมื่อแทนสมการ (41) และสมการ (42) ส าหรับ
2C และ

3C

ตามล าดับ กลับลงสู่สมการ (29) จึงได้ 
 

3 4

4

0 0 0

1
w w

C
k k k

  
   

 
 

 0 1 1

1 0 1

( cos sin )

[ ( cos sin )]

k k k

k k k

  

  

  

   

  
 

  
 (43) 

 

โดยการใช้สมการ (41) ถึง สมการ (43) ในสมการ (12) และ
ก าหนดใหค่้า 

1 1C  จึงสามารถหาค่าของฟังก์ชั่นรูปร่างการโก่งเดาะ
ท่ีสอดคล้องกับค่าพารามิเตอร์เสถียรภาพ ( )  i

ดังน้ี 
 

2 3 4( ) sin cosW C C C        (44) 

 

5. การตรวจสอบผลเชิงทฤษฎ ี

เกณฑ์การโก่งเดาะท่ีพิสูจน์มาได้โดยวิธีการเชิงวิเคราะห์ดัง
สมการ (33) หรือ สมการ (38) สามารถตรวจสอบความถูกต้องของ
สมการด้วยการทดสอบจากค่าขอบเขตบนและขอบเขตล่างของ
พารามิเตอร์ความแกร่งของสปริง (Upper and lower limits of 
spring stiffness parameters) ซ่ึงค่าขอบเขตบนและขอบเขตล่างมี
ค่าเท่ากับค่าอนันต์ ( ) และศูนย์ (0) ตามล าดับ 

เน่ืองจากปลายเสาแต่ละข้างมีสปริงยึดรั้งท่ีแตกต่างกัน 2 
ประเภท และในแต่ละประเภทของสปริงมีค่าขอบเขต 2 ค่า ดังน้ัน 
เมื่อท าการเรียงสับเปลี่ยน (Permutation) จึงได้เงื่อนไขการยึดรั้ง
ของเสาใน 16 กรณี แต่มีเพียง 8 กรณีท่ีเป็นไปได้ของเสาท่ีมีปลาย
ยึดรั้งแบบคลาสสิคและเสายังคงมีเสถียรภาพภายใน (Internal 
stability) [22] ดังแสดงในตารางท่ี 1 

 

ตารางที่ 1 ค่าพารามิเตอร์สปริงของเสากรณีมีปลายยึดรั้งแบบ
คลาสสิค 

กรณ ี
0wk  k 0

 
wk 1

 k 1
 เง่ือนไข 

1         -C C  
2 0        -G C  
3   0      -S C  
4 0  0      -F C  
5     0    -C G  
6       0  -C S  
7   0    0  -S S  
8     0  0  -C F  

ตารางที่ 2 เกณฑ์การโก่งเดาะของเสากรณีมีปลายยึดรั้ งแบบ
คลาสสิค [3] 

กรณ ี เง่ือนไข รูปท่ี เกณฑ์การโก่งเดาะ 

1 -C C  11 sin( /2) 0 
*, tan( /2) /2 

** 

2 -G C  12 sin 0   
3 -S C  13 tan    
4 -F C  14 cos 0   
5 -C G  12 sin 0   
6 -C S  13 tan    
7 -S S  15 sin 0   
8 -C F  14 cos 0   

 * การโก่งเดาะแบบสมมาตร (Symmetrical buckling) 
** การโก่งเดาะแบบปฏิสมมาตร (Anti-symmetrical buckling) 

 

ดังน้ัน สมการ (33) หรือ สมการ (38) มีความถูกต้องก็ต่อเมื่อ
ให้ผลลัพธ์ตรงตามสมการเกณฑ์การโก่งเดาะของเสาท้ัง 8 กรณี [3] 
ดังตารางท่ี 2 และในท่ีน้ี เลือกใช้สมการ (33) ในการตรวจสอบความ
ถูกต้อง 

 
กรณี 1: เสา -C C (รูปท่ี 11) 

 

 
 

รูปท่ี 11 เสามีปลายยึดแน่นท้ัง 2 ข้าง (เสา -C C ) 
 

เริ่มต้นจากการหารสมการ (33) ด้วยปริมาณ 0 0 1 1( ) w wk k k k

ท้ัง 2 ข้างของสมการ หลังจากน้ัน ก าหนดให้แต่ละค่าของ 

0wk 0k 1wk และ 1k มีค่าเข้าใกล้ค่าอนันต์ ผลลัพธ์ท่ีได้คือ 
 

sin 2sin cos 0
2 2 2

 
  

 

  
  (45) 

 

สมการ (45) เป็นจริงได้ก็ต่อเมื่อ 
 

sin 0
2



 (46) 
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หรือ 
 

tan
2 2


 
 (47) 

 

เมื่อพิจารณาสมการ (46) และสมการ (47) พบว่า สมการ (46) 
เป็นเกณฑ์การโก่งเดาะของเสากรณีแบบสมมาตร (Symmetrical 
buckling) และสมการ (47) ในกรณีแบบปฏิสมมาตร (Anti-
symmetrical buckling) โดยท่ี สมการ (46) ให้ค่าพารามิเตอร์
เสถียรภาพวิกฤติ ( )cr

 
ส าหรับฟังก์ชั่นรูปร่างการโก่งเดาะจากสมการ (44) สามารถลดรูป

มาเป็น 
 

sin
( ) sin (1 cos )

cos 1

 
    

 
W

 
   


 (48) 

 

กรณี 2: เสา -G C (รูปท่ี 12) 
 

 

 
รูปที่ 12 เสามีปลายข้างหน่ึงเคลื่อนท่ีอิสระภายใต้การยึดรั้งเชิงมุม
และมีปลายอีกข้างยึดแน่น (เสา -G C ) 
 

พิจารณาหารสมการ (33) ด้วยปริมาณ
0 1 1( ) wk k k ท้ัง 2 ข้าง

ของสมการและก าหนดให้แต่ละค่าของ 0k 1wk และ 1k ให้มีค่าเข้า
ใกล้ค่าอนันต์พร้อมท้ังแทนค่า 0 0wk  จึงน าไปสูสมการต่อไปน้ี 
 
sin 0  (49) 

 

เมื่อฟังก์ชั่นรูปร่างการโก่งเดาะในกรณีน้ีมีรูปแบบสมการ คือ 
 

( ) cos 1 W    (50) 

 

กรณี 3: เสา -S C (รูปท่ี 13) 
 
 

 

 

รูปที่ 13 เสามีปลายข้างหน่ึงยึดหมุนและปลายอีกข้างยึดแน่น 
(เสา -S C ) 
 

ในกรณีน้ี ให้ท าการหารสมการ (33) ด้วยปริมาณ
0 1 1( )w wk k k

ท้ัง 2 ข้างของสมการ โดยก าหนดให้แต่ละค่าของ 
0wk 1wk และ 

1k

มีค่าเข้าใกล้ค่าอนันตร์่วมกับการแทนค่า 
0 0 k  จึงได้ 

 
tan    (51) 

 

และฟังก์ชั่นรูปร่างการโก่งเดาะจากสมการ (44) ลดรูปมาสู ่
 

sin
( ) sin (1 cos )

cos 1

 
    

 
W

 
   


 (52) 

 

กรณี 4: เสา -F C (รูปท่ี 14) 
 

 
 
รูปที่ 14 เสามีปลายข้างหน่ึงอิสระและมีปลายอีกข้า งยึดแน่น 
(เสา -F C ) 
 

พิจารณาสมการ (33) โดยให้ท าการหารด้วยปริมาณ 1 1( )wk k

ท้ัง 2 ข้างของสมการ จากน้ัน ก าหนดให้แต่ละค่าของ 1wk และ 1k

มีค่าเข้าใกล้ค่าอนันต์และค่าของ 0wk และ 0k  ให้มีค่าเป็นศูนย์ 
ผลลัพธ์ท่ีได้คือ 
 

cos 0  (53) 

 

โดยที่ ฟังก์ชั่นรูปร่างการโก่งเดาะมีรูปแบบเป็น 
 

( ) cos 1 W    (54) 

 

กรณี 5: เสา -C G (รูปท่ี 12) 
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สังเกตว่า เสา -C G มีลักษณะเงื่อนไขท่ีปลายเสาเช่นเดียวกับ
กรณีเสา -G C ซ่ึงสมการเกณฑ์การโก่งเดาะของเสาสามารถหามาได้
โดยการหารสมการ (33) ด้วยปริมาณ

0 0 1( ) wk k k ท้ัง 2 ข้างของ
สมการพร้อมท้ังก าหนดให้ 

0 0 1   wk k k  และ 
1 0wk  

จึงน าไปสู่สมการเดียวกันดังสมการ (49) คือ 
 

sin 0  (55) 

 

และฟังก์ชั่นรูปร่างการโก่งเดาะมีรูปแบบเช่นเดียวกับสมการ (50) ดังน้ี 
 

( ) cos 1 W    (56) 

 

กรณี 6: เสา -C S (รูปท่ี 13) 

ในท านองเดียวกันกับเสากรณี 5 ก่อนหน้าน้ี โดยท่ี เสา -C S  มี
ลักษณะเงื่อนไขท่ีปลายเสาเช่นเดียวกับกรณีเสา -S C  ดังแสดงใน
รูปท่ี 13 ดังน้ัน ท าการหารสมการ (33) ด้วยปริมาณ

0 0 1( )w wk k k

ท้ัง 2 ข้างของสมการร่วมกับการก าหนดให้ 0 0 1  w wk k k  
และ 1 0 k  จึงได้สมการเช่นเดียวกับสมการ (51) ดังน้ี 
 

tan    (57) 

 

ส าหรับฟังก์ชั่นรูปร่างการโก่งเดาะมีรูปแบบเดียวกับสมการ (52) 
คือ 
 

sin
( ) sin (1 cos )

cos 1

 
    

 
W

 
   


 (58) 

 

กรณี 7: เสา -S S (รูปท่ี 15) 

ให้พิจารณาหารสมการ (33) ด้วยปริมาณ 0 1( )w wk k ท้ัง 2 ข้าง
ข อ ง ส ม ก า ร แ ล ะ ก า ห น ด ใ ห้ ค่ า  0 1 w wk k  แ ล ะ ค่ า 

0 1 0  k k  จึงน าไปสู่สมการต่อไปน้ี 

 

 
รูปท่ี 15 เสามีปลายยึดหมุนท้ัง 2 ข้าง (เสา -S S ) 

 
sin 0  (59) 

 

ส าหรับฟังก์ชั่นรูปร่างการโก่งเดาะในกรณีน้ีคือ 
 

( ) sin sin W      (60) 

 

กรณี 8: เสา -C F (รูปท่ี 14) 

เสาในกรณีน้ีมีลักษณะของเงื่อนไขท่ีปลายเสาเช่นเดียวกับกรณี
เสา -F C ดังในรูปท่ี 14 ท้ังน้ี สมการเกณฑ์การโก่งเดาะสามารถหา
ได้โดยท าการหารสมการ (33) ด้วยปริมาณ

0 0( )wk k ท้ัง 2 ข้างของ
สมการพร้อมท้ังก าหนดให้ 

0 0 wk k  และ 
1 1 0 wk k  

จึงได้สมการ 
 
cos 0  (61) 

 

โดยที่ ฟังก์ชั่นรูปร่างการโก่งเดาะมีรูปแบบเดียวกับสมการ (54) 
 

( ) cos 1 W    (62) 

 

จากผลการตรวจสอบเกณฑ์การโก่งเดาะของเสาท้ัง 8 กรณี ท่ีได้
จากการก าหนดค่าขอบเขตบนและขอบเขตล่างของพารามิเตอร์
ความแกร่งของสปริงตามตารางท่ี 1 ลงในสมการ (33) พบว่า 
ผลลัพธ์ท่ีได้มีสมการรูปแบบเดียวกันกับสมการท่ีแสดงไว้ในตารางท่ี 
2 ส าหรับตารางท่ี 3 แสดงผลการค านวณหาค่าพารามิเตอร์
เสถียรภาพวิกฤติของเสา ( )cr

ท่ีมีปลายยึดรั้งแบบคลาสสิคแตกต่าง
กัน 5 กรณี ซ่ึงเป็นค่าเดียวกับค่าทางทฤษฎี [3] 
 
ตารางที่ 3 ค่าพารามิเตอร์เสถียรภาพวิกฤติ (ค่าต่้าสุด) ของเสาใน
กรณีมีปลายยึดรั้งแบบคลาสสิค 

เง่ือนไข -C C  -C S  -C G  -C F  -S S  

cr (lowest) 2  1.4303    /2    
 

6. บทสรุปและข้อเสนอแนะ 

การโก่งเดาะของเสาชะลูดยาวภายใต้ผลของแรงอัดตาม
แนวแกนเป็นพฤติกรรมท่ีส าคัญและต้องพึงระวังในการวิเคราะห์และ
ออกแบบเสาเพ่ือหลีกเลี่ยงปัญหาการวิบัติเน่ืองจากการโก่งเดาะโดย
สามารถพิจารณาได้จากค่าน้ าหนักบรรทุกวิกฤติซ่ึงขึ้นอยู่กับค่าความ
แกร่งและอัตราส่วนความชะลูดของเสารวมถึงสภาพเงื่อนไขการยึด
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รั้งท่ีปลายเสา ส่วนใหญ่ของการวิเคราะห์มักมีการก าหนดให้เงื่อนไข
การยึดรั้งที่ปลายเสาเป็นเงื่อนไขแบบคลาสสิคแต่ในสภาพของการใช้
งานในความเป็นจริง พบว่า พฤติกรรมของปลายเสามีเงื่อนไขของ
การยึดรั้งไม่ตรงตามท่ีได้ก าหนดไว้แต่แรกซ่ึงอาจมีสาเหตุมาจาก (1) 
ขั้นตอนระหว่างการก่อสร้างท่ีไม่สามารถท าให้ตรงตามเงื่อนไขใน
แบบจ าลอง (2) ในระหว่างการใช้งานโครงสร้างหรือระบบส่งผล
กระทบท าให้สภาพการยึดรั้งเปลี่ยนแปลงไปจากเดิม หรือ (3) ปัจจัย
ท่ีเกิดจากสภาพสิ่งแวดล้อมรอบข้าง เป็นต้น เพื่อให้เกิดความมั่นใจ
ในการใช้งานและเข้าใจในพฤติกรรมท่ีเกิดขึ้นตรงตามสภาพความ
เป็นจริง จึงจ าเป็นต้องทบทวนการวิเคราะห์โดยการก าหนดเงื่อนไข
การยึดรั้งขึ้นใหม่ให้สอดคล้องกับพฤติกรรมท่ีเกิดขึ้น วิธีการหน่ึงท่ี
สะดวกและสามารถประยุกต์ในการวิเคราะห์คือ การจ าลองเงื่อนไข
การยึดรั้งที่ปลายเสาด้วยสปริงยืดหยุ่นท่ีสามารถแปรเปลี่ยนค่าความ
แกร่งของสปริงได้ตรงตามสภาพการตอบสนองท่ีเกิดขึ้น ดังน้ัน 
วัตถุประสงค์ของการศึกษาน้ีคือ เพื่อน าเสนอวิธีการเชิงวิเคราะห์ใน
การแก้ปัญหาการโก่งเดาะของเสาท่ีมีเงื่อนไขการยึดรั้งแบบยืดหยุ่นท่ี
ปลายเสาท้ัง 2 ข้าง ด้วยแบบจ าลองของสปริงยืดหยุ่นต้านทานการ
เคลื่อนท่ีและการหมุนโดยสามารถแปรเปลี่ยนค่าความแกร่งของ
สปริงได้ ผลลัพธ์จากการวิเคราะห์แสดงอยู่ในรูปแบบของสมการ
เกณฑ์การโก่งเดาะท่ัวไปแบบไร้มิติในพจน์ของพารามิเตอร์ความ
แกร่งของสปริงและฟังก์ชั่นรูปร่างการโก่งเดาะพร้อมท้ังแสดงวิธีการ
ตรวจสอบความถูกต้องของผลลัพธ์ 

วิธีการวิเคราะห์ปัญหาในการศึกษาน้ีสามารถประยุกต์ใช้เป็น
แนวทางในการศึกษาปัญหาท่ีมีความซับซ้อนอื่นได้ อาทิเช่น การ
พิจารณาผลของการเสียรูปตามแนวแกนและการเสียรูปเนื่องจากแรง
เฉือนในเสา [23] – [25] การวิเคราะห์การโก่งเดาะของเสาท่ีมีหน้า
ตัดเกิดความเสียหายบางส่วนหรือมีหน้าตัดท่ีอ่อนแอ [26], [27] หรือ 
การซ่อมแซม (Retrofitting) และการเสริมก าลัง (Strengthening) 
เสาเพื่อต้านทานการโก่งเดาะ [28] เป็นต้น 
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