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ABSTRACT 

Ethanol dehydration to diethyl ether (DEE) was 

carried out in large-scale reactors using rice husk ash 

(RHA), a low-cost biomass catalyst derived from 

agricultural waste. This paper investigates the impact of 

temperature and liquid hourly space velocity (LHSV) to 

determine the optimal conditions and stability for 

ethanol dehydration to DEE over an RHA catalyst in a 

large-scale reactor (2.1 cm i.d., 30 cm length). The RHA 

catalyst was synthesized using a reflux process with 

sulfuric acid, followed by calcination at 600 °C, and 

characterized through X-ray Diffraction (XRD), Fourier-

Transform Infrared Spectroscopy (FT-IR), Field 

Emission Scanning Electron Microscopy (FE-SEM),    
X-ray Fluorescence (XRF), Surface area and pore size 

analysis, NH₃ temperature-programmed desorption, and 

thermogravimetric analysis (TGA). The optimal 

conditions were determined to be 360 °C and an LHSV 

of 1.3 h⁻¹, which resulted in the highest DEE yield 

production of 99.21% and ethanol conversion exceeding 

99%. The results of the stability tests, conducted over a 

24-hour period, demonstrated that RHA is resilient to 

deactivation and suitable for long-term catalytic 

applications. These findings indicate the potential of 

RHA as a promising and sustainable catalyst for the 

large-scale production of DEE. 

Keywords: Rice husk ash; Catalytic dehydration; 

Diethyl ether; DEE; Dehydration of ethanol 

1. INTRODUCTION 

Diethyl ether (DEE) is one of the most valuable 

chemicals, primarily used as a solvent in chemical and 

pharmaceutical processes. Additionally, DEE has 

important properties, such as a high cetane and octane 

number, which make it widely used as an additive for 

diesel and gasoline engines [1] – [6]. Generally, DEE is 

produced through the catalytic dehydration of ethanol 

using homogeneous acid catalysts, which presents 

challenges due to difficult separation and the corrosive 
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nature of the catalyst [1], [2], [4]. Meanwhile, 

heterogeneous catalysts can help reduce production 

costs [1]. Consequently, the dehydration of ethanol over 

an acidic solid catalyst has gained attention.  

In recent years, researchers have attempted to 

develop various solid catalysts. A 2.41% yield of DEE 

was obtained at 250 °C with 96% ethanol using a Raw 

Klaten natural zeolite (ZA) catalyst [7]. Remi et al. [8] 

investigated the SO₄/SiO₂ catalyst for producing DEE 

through the dehydration of ethanol, achieving a 

maximum DEE yield of 11.36% at 200 °C. Rahmanian’ 

group [9] studied aluminum phosphate-hydroxyapatite 

as a catalyst for ethanol dehydration. The results showed 

a high DEE yield of over 75% at 340 °C and 200 bar. 

However, the catalyst has high production costs and a 

complex synthesis process, so using agricultural biomass 

waste for catalyst synthesis can reduce costs and aid in 

biomass waste disposal [10]. Lakhani and Srifa [11] 

focuses on the use of Ni-Re bimetallic catalysts for the 

conversion of biomass-derived molecules into high-

value fuels and chemicals. The synergy between Ni's 

hydrogenation activity and ReOX's oxophilic acidity 

enables efficient transformations of compounds such as 

furfural, 5-hydroxymethylfurfural, levulinic acid, and 

fatty acid esters. Yuan et al. [12] studied copper-based 

catalysts and ruthenium complexes, with the objective of 

achieving this transformation under mild conditions. The 

direct production of ethyl acetate from bioethanol is a 

significant contribution to the development of green 

chemical processes. 

The main challenge in the ethanol dehydration 

industry lies in the high cost of catalysts and the 

complexity of their preparation [13]. Conventional 

catalysts, including transition metal-based catalysts, 

often necessitate the use of rare or costly materials, 

resulting in increased costs and limited availability [14]. 

Agricultural waste provides a practical solution to this 

problem [15]. Rice husk ash (RHA) is a widely available 

agricultural waste worldwide, with every metric ton of 

rice producing over 150 kg of rice husk [16]. RHA is 

considered a low-cost catalyst and renewable materials, 

as it contains high silica and small amounts of alumina 

[17]. RHA exhibits good thermal stability, retaining its 

structural integrity under high temperatures, which is 

crucial for catalytic processes [14]. Furthermore, the 

high porosity and large specific surface area of RHA 

render it an optimal material for the production of 

catalysts. Chang et al. [18] developed a Cu/RHA 

catalyst for ethanol dehydrogenation, demonstrating 

high catalytic activity. Chen et al. [19] reported high 

catalytic activity of RHA-based catalysts in the 

transesterification of palm oil, achieving a biodiesel 

yield of 91.5%.  

As mentioned earlier, Rice husk ash (RHA) is a 

viable industrial material due to its status as a low-cost 

and widely available agricultural by-product. The 

material's high silica content, thermal stability, high 

porosity, and large specific surface area provide 

excellent surface properties for catalytic reactions, 

allowing it to maintain activity under high temperatures 

and achieve high reaction efficiency. Additionally, RHA 

has gained increasing attention as a valuable material for 

industrial applications due to its abundance and efficient 

utilization of rice byproducts. In Thailand, the RHA 

market is projected to grow at a rate of 7.60% by 2027, 

following trends seen in major economies such as China, 

India, Japan, Australia, and South Korea. This growth is 

largely driven by its wide applications in sectors such as 

construction and agriculture, where RHA is used in 

concrete production and soil amendment. Beyond these 

uses, its unique physicochemical properties also make 

RHA a promising and sustainable resource for catalyst 

development in chemical industries [20]. 

The aim of the present study is to investigate 

biomass derived RHA as a low - cost catalyst for the 

catalytic dehydration of ethanol to DEE in a large-scale 

fixed bed reactor. This study aims to examine the effects 

of temperature (250 - 380 °C) and liquid hourly space 

velocity (LHSV 1.1-1.9 h⁻¹), as well as to investigate the 

stability and optimal conditions for ethanol dehydration 

over the RHA catalyst. 

 

2. EXPERIMENT 

2.1 SYNTHESIS OF RHA 

The process of extracting silicon dioxide from rice 

husks (RHA) commences with the passage of the husks 

through a sieve with a mesh size of 1.8-2.2 microns,   

the objective being the elimination of impurities. 

Subsequently, the RHA are washed and dried in an oven 

set at 80°C (Memmert, D06062 Model 600). 

Subsequently, silica is extracted through a reflux process 

utilizing a 0.5 M sulfuric acid solution (H₂SO₄, 98 wt.%, 

Anapure Bioscientific) at a ratio of 100 g of rice husk to 

1500 ml of solution, conducted at 80 °C for 2 hours. The 

material is washed on multiple occasions until the pH 

reaches 7, with the process monitored using a positive 

potential hydrogen ion meter (Hanna Instruments, HI 

2211 pH/ORP Meter). Subsequently, the material is 

subjected to a second drying phase in a muffle furnace, 

where it is calcined at 600 °C with a heating rate of 

10°C/min for 4 hours, resulting in rice husk ash rich in 

silicon dioxide. 

 

2.2 RHA characterization 

The crystal structure and phases present in the 

sample were analyzed using X-ray diffraction (XRD, 



SRIUTHAI et al.: RICE HUSK ASH-DERIVED CATALYST FOR DIETHYL ETHER PRODUCTION                  87 

Bruker D2 Phaser, Germany). The morphology and 

elemental composition of the RHA were examined using 

a field emission scanning electron microscope (FE-

SEM, ZEISS Auriga, Germany). The presence and 

properties of SiO₂ in the RHA were identified through 

the use of Fourier-Transform Infrared Spectroscopy 

(FTIR, Bruker Vertex70, Germany) and X-ray 

Fluorescence (XRF, Horiba XGT5200, Japan), 

respectively. The specific surface area of the RHA was 

determined by N₂ adsorption using a surface area and 

pore size analyses (Quantachrome Instruments, Anton 

Paar, Austria). The distribution of acid sites was 

determined by means of NH₃ temperature-programmed 

desorption (NH₃-TPD, BELCAT-B, BEL Japan INC., 

Japan). Finally, the thermogravimetric analyzer (TGA, 

TGA/DSC1, Mettler Toledo, United States) was utilized 

to quantify the quantity of coke deposits on the catalysts. 

 

2.3 CATALYTIC TESTS 

Catalytic experiments were performed in an 

electrically heated fixed-bed reactor with an internal 

diameter of 2.1 cm and a length of 30 cm, using 3 g of 

catalyst (10 - 12 mesh) as shown in Figure 1. The 

reactions were carried out at temperatures ranging from 

250 to 380 °C under atmospheric pressure. Liquid-phase 

ethanol (95 wt.%, Scitrader, Thailand) was introduced 

into a preheater system at 200°C with a variable LHSV 

(liquid hourly space velocity) between 1.1 and 1.9 h⁻¹. 

The catalyst was preheated to the reaction temperature 

for 1 hour before starting the reaction. The outlet gases 

were analyzed using FID gas chromatography with a 

J&W packed GC columns (Agilent 7890A, equipped 

with a packed column), while the liquid product was 

analyzed using TCD gas chromatography (Agilent 6890, 

equipped with an HP-5HS GC capillary column). 

 

 

Fig. 1 Schematic diagram of reaction test system 

 

 

 

3 DISCUSSION AND CONCLUSION 

3.1 CHARACTERIZATION OF RHA 

The XRD patterns obtained at a scan rate of 2.4°/min 

using Cu K-α radiation are shown in Figure 2 The peak 

observed at an angle of 22° (2θ) was confirmed as silica 

(silicon dioxide) [21], [22] and specifically indicated 

cristobalite, a polymorph of silica [23]. Additionally, the 

peak at 22° also indicates the presence of amorphous 

silica [22], [24]. Besides this, the peaks at 20.9°, 21.8°, 

and 26.6° also indicate silica [25], [26]. 

In contrast, the reference silica from a natural source 

exhibits sharp and intense peaks, corresponding to 

crystalline quartz. The absence of crystalline peaks in 

the RHA sample confirms that the treatment 

successfully produced amorphous silica, which is more 

reactive and suitable as a precursor for zeolite synthesis. 

This comparison highlights the effectiveness of RHA as 

a sustainable and high-potential silica source for catalyst 

preparation. 

XRF was used to determine the chemical 

composition and assess the purity of silica extracted 

from rice husk. The XRF results for RHA, shown in 

Table 1, indicate that SiO₂ is the major component, with 

a small amount of Al₂O₃. Other components of RHA 

include metallic elements such as iron (Fe), chromium 

(Cr), potassium (K), manganese dioxide (MnO₂), 

tantalum (Ta) and zinc (Zn). 

 

Fig. 2 Results of the XRD patterns for RHA 

 

Table 1 XRF chemical analysis results of RHA 

Element Mass (%) Compound Mass (%) 

Al 0.31 Al2O3 0.355 

Si 98.23 SiO2 99.009 

P 0.20 P2O5 0.116 

Si 0.33 SiO3 0.204 

Ca 0.80 CaO 0.272 

Fe 0.04 Fe2O3 0.014 
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FTIR spectroscopy was performed to examine the 

functional groups in RHA, as shown in Figure 3. The 

spectra were recorded in the range of 400-4000 cm⁻¹ 

with 64 scans at a resolution of 4 cm⁻¹. High-intensity 

transmittance peaks were observed at 802.32, 1053.05, 

1641.29, 2325.97, and 3747.39 cm⁻¹. The spectral region 

as 1000-1260 cm⁻¹ correspond to Si-O bonds from 

silica, as do those in the 800-1000 cm⁻¹ range [27], [28]. 

Additionally, the bands at 1641.29 cm⁻¹ and in the 3300-

3600 cm⁻¹ region represent the bending vibrations of 

hydroxyl groups and Si-OH (silanol) stretching from 

H₂O molecules [28] – [30]. Silanol groups enhance the 

acidic properties of the RHA catalyst, which are vital in 

ethanol dehydration. Acidic sites facilitate the 

protonation of ethanol molecules, leading to the loss of 

water molecules and the production of ethylene. 

Additionally, silanol groups aid in the adsorption of 

ethanol on the catalyst surface through hydrogen 

bonding [11] – [14]. 

NH₃-TPD profiles were obtained using a thermal 

conductivity detector (TCD). The sample was first 

heated from room temperature to 450°C at a rate of 

10°C/min for 50 minutes under helium, then cooled to 

100°C. It was then saturated with a 5% NH₃/He stream 

at 100°C for 30 minutes. Afterward, excess ammonia 

was removed with helium at 100°C for 15 minutes. 

Desorption of NH₃ was carried out by heating from 

100°C to 800°C at a rate of 10°C/min. Figure 4 shows 

the NH₃-TPD profiles of RHA, where the small peak 

observed between 150 - 250°C corresponds to weak and 

medium-strength acid sites, and the large peak at 

temperatures above 600°C indicates the presence of 

abundant strong acid sites [31] – [33]. 

 
 

Fig. 3 FTIR spectrum of RHA 

 

Fig. 4 NH3-TPD profiles of RHA 

 

Fig. 5 shows the RHA particles analyzed using a 

field emission scanning electron microscope (FE-SEM) 

at magnifications of 1,000X (a), 5,000X (b), 10,000X 

(c), and 30,000X (d), revealing their nanospherical 

morphology with a tendency to agglomerate [34] – [36]. 

 

 
 

Fig. 5 FE-SEM results of RHA at different 

magnifications 

 

Table 2 presents the results of the surface area and 

pore size analysis of RHA, including the BET surface 

area, total pore volume, and average pore diameter. The 

BET surface area was determined to be 208.2 m²/g, with 

a total pore volume of 0.332 cm³/g. An average pore 

diameter of 3.187 nm suggests that the material is 

mesoporous. 
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Table 2 Results of surface area and pore size analysis of 

RHA. 

Parameter Unit 
 

BET surface area (m
2
/g) 208.2 

Total pore volume (cm
3
/g) 0.332 

Pore diameter (nm) 3.187 

 

3.2 CATALYTIC PERFORMANCE OF ETHANOL 

DEHYDRATION 

Fig. 5 shows the effect of reaction temperature on the 

catalytic dehydration of ethanol over RHA catalyst. As 

the temperature increases from 250 to 360°C, the yields 

and selectivity of DEE and ethylene also increase, 

similar to the ethanol conversion. Herein, the highest 

yield and selectivity of DEE were observed at 67.83% 

and 98.90%, respectively. As the temperature increased 

to 380°C, a decline in the yield and selectivity of DEE, 

as well as in ethanol conversion, was observed. 

Conversely, the yield of ethylene exhibited an increase. 

The formation of ethylene is favored by high 

temperatures through intramolecular dehydration, 

whereas lower temperatures encourage intermolecular 

dehydration, resulting in the formation of diethyl ether 

[2], [37]. 

The effect of LHSV on the catalytic dehydration of 

ethanol over RHA is illustrated in Fig. 6. As the LHSV 

increased from 1.1 to 1.3 h⁻¹, both the conversion of 

ethanol and the yield of DEE slightly increased. 

However, these values gradually decreased as LHSV 

continued to rise. Meanwhile, the yield and selectivity of 

ethylene decreased as the LHSV increased from 1.1 to 

1.9 h⁻¹. In Fig. 6(b), it can be observed that the yield of 

diethyl ether slightly increased with the increase in 

LHSV, which corresponds to the decrease in ethylene 

yield. The basic reason is that at high space velocities, 

the decreased residence time of ethanol and lower 

interaction with active sites contribute to a reduction in 

conversion [38]. 

Table 3 compares this work with previous studies, 

showing that RHA in a pilot-scale reactor demonstrates 

strong efficiency for DEE production, surpassing many 

micro- and lab-scale catalysts. Although certain catalysts 

achieve marginally higher activity, the scalability and 

robust performance of RHA at elevated temperatures   

(360°C) highlights its potential for industrial application. 

 

 

 

 

 

 

 

(a) 

 
 

(b) 

 

Fig. 6 Conversion of ethanol and yield (a) and 

selectivity (b) of products (DEE and ethylene) over RHA 

at various temperatures with LHSV = 1.5 h⁻¹ 

 
 

(a) 

 

Fig. 7 Conversion of ethanol, and yield (a) and 

selectivity (b) of products (DEE and ethylene) over RHA 

at various LHSV, with T = 380C (Cont.) 
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Fig. 7 Conversion of ethanol, and yield (a) and 

selectivity (b) of products (DEE and ethylene) over RHA 

at various LHSV, with T = 380C 

 

Table 3 Comparison of various catalysts and scale for 

DEE yield. 

Catalyst Scale 
T 

(C) 
%yield  Ref. 

HBZ 
Micro- 

reactor 
250 

35.00 

[39] Ru-HBZ 47.00 

Pt-HBZ 45.00 

SO4/SiO2 

Lab-scale 

200 11.36 [8] 

WO3-MMC  250 42.63 
[40] 

WO3-AC 300 22.30 

Siralox  300 65.00 [41] 

SO4/ZrO2 225 49.85 [42] 

RHA 
Pilot-

scale 
360 99.21 

This 

work 

 

Fig. 8 represents the effect of time-on-stream on 

catalytic dehydration of ethanol over RHA. At a reaction 

temperature of 360°C and an LHSV of 1.3 h⁻¹, the 

highest DEE yield of 99.21% was achieved at 99% 

ethanol conversion. Over the 24-hour period, the 

conversion of ethanol and the yield of DEE remained 

relatively stable, exhibiting only minor fluctuations. 

This stability indicates that the RHA catalyst 

demonstrated robust long-term activity and resilience to 

deactivation under the specified operational conditions. 

In this study, the stability test was performed for 24-

hour, which provides an initial understanding of catalyst 

performance. For future work, extended stability 

evaluations (>100 h) together with catalyst regeneration 

studies are recommended to further verify the long-term 

durability and reusability of the catalyst. 

The thermal stability of RHA was examined from 20 

to 1000°C at a heating rate of 10°C/min under a nitrogen 

atmosphere using TGA, as shown in Fig. 9, indicating 

that the RHA catalysts have high thermal stability. This 

stability is an important characteristic, indicating that 

RHA is capable of withstanding the thermal demands of 

catalytic dehydration reactions over extended periods 

without significant decomposition. 

 
Fig. 8 Long-term 24-hour on-stream catalytic run at 

360°C and LHSV = 1.3 h⁻¹ in the gas phase: conversion 

of ethanol and yield of diethyl ether 

 
Fig. 9 TGA profiles of RHA catalysts after the 24-hour 

stability test 

 

4. CONCLUSION 

This study establishes rice husk ash (RHA), an 

abundant agricultural by-product, as an effective catalyst 

for the dehydration of ethanol to diethyl ether (DEE) in 

a pilot-scale fixed-bed reactor. In the context of optimal 

conditions (360°C, LHSV 1.3 h⁻¹), the process attained a 

DEE yield of 99.21%, accompanied by complete ethanol 

conversion, thereby substantiating the catalytic efficacy 

and stability of RHA. Moreover, the findings of this 

study demonstrate the potential for agricultural waste to 

be transformed into a high-performance catalyst, thus 

advancing circular economy principles, reducing 

reliance on costly synthetic catalysts, and lowering 

overall process costs. 

The physicochemical analysis revealed that RHA's 
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moderate surface area and weak-to-medium acid sites 

were sufficient to drive the dehydration reaction, while 

TGA confirmed its excellent thermal stability. These 

characteristics underscore RHA's aptitude for 

sustainable and long-term catalytic applications. 

However, further research is required to extend the 

stability testing, evaluate the regeneration of the catalyst, 

and assess the scalability of the process. Comprehensive 

techno-economic and life-cycle assessments will be 

essential to validate RHA's industrial feasibility. 

In summary, the present work positions RHA not 

only as a practical catalyst for ethanol dehydration but 

also as a strategic pathway for waste valorization and 

sustainable chemical production, contributing both 

economic and environmental benefits to future industrial 

energy systems.   
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